
Network Working Group C. Jennings

Internet-Draft Cisco

Intended status: Standards Track J.R. Rosenberg

Expires: May 03, 2012 jdrosen.net

J. Uberti

Google

R. Jesup

Mozilla

October 31, 2011

RTCWeb Offer/Answer Protocol (ROAP)

draft-jennings-rtcweb-signaling-01

Abstract

This document describes an protocol used to negotiate media between

browsers or other compatible devices. This protocol provides the state

machinery needed to implement the offer/answer model (RFC 3264), and

defines the semantics and necessary attributes of messages that must be

exchanged. The protocol uses an abstract transport in that it does not

actually define how these messages are exchanged. Rather, such

exchanges are handled through web-based transports like HTTP or

WebSockets. The protocol focuses solely on media negotiation and does

not handle call control, call processing, or other functions.

The IETF has been notified of intellectual property rights claimed in

regard to some or all of the specification contained in this document.

For more information consult the online list of claimed rights.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on May 03, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF

Contributions published or made publicly available before November 10,

2008. The person(s) controlling the copyright in some of this material

may not have granted the IETF Trust the right to allow modifications of

such material outside the IETF Standards Process. Without obtaining an

adequate license from the person(s) controlling the copyright in such

materials, this document may not be modified outside the IETF Standards

Process, and derivative works of it may not be created outside the IETF

Standards Process, except to format it for publication as an RFC or to

translate it into languages other than English.

Table of Contents

1. Introduction

2. Requirements and Design Goals

3. Terminology

4. Protocol Overview

5. Semantics & Syntax

5.1. Reliability Model

5.2. Common Fields

5.2.1. Session IDs

5.2.2. Seq

5.2.3. Session Tokens

5.2.4. Response Tokens

5.3. Media Setup

5.3.1. OFFER Message

5.3.1.1. Offerer Behavior

5.3.1.2. Answerer Behavior

5.3.2. ANSWER

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

5.3.2.1. moreComing Flag

5.3.3. OK

5.3.4. ERROR

5.4. Changing Media Parameters

5.4.1. Conflicting OFFERS (glare)

5.4.2. Premature OFFER

5.5. Notification of Media Termination

5.6. Errors

5.6.1. NOMATCH

5.6.2. TIMEOUT

5.6.3. REFUSED

5.6.4. CONFLICT

5.6.5. DOUBLECONFLICT

5.6.6. FAILED

6. Security Considerations

7. Companion APIs

7.1. Capabilities

7.2. Hints

7.3. Stats

8. Relationship with SIP & Jingle

9. IANA Considerations

10. Acknowledgments

11. Open Issues

12. References

12.1. Normative References

12.2. Informative References

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Authors' Addresses

1. Introduction

This specification defines a protocol that allows an RTCWeb browser to

exchange information to control the set up of media to another browser

or device. The scope of this protocol is limited to functionality

required for the setup and negotiation of media and the associated

transports, referred to as media control. The protocol defines the

minimum set of messages and state machinery necessary to implement the

offer/answer model as defined in [RFC3264]. The offer answer model

specifies rules for the bilateral exchange of Session Description

Protocol (SDP) messages [RFC4566] for creation of media streams.

The protocol specified here defines the state machines, semantic

behaviors, and messages that are exchanged between instances of the

state machines. However, it does not specify the actual on the wire

transport of these messages. Rather, it assumes that the implementation

of this protocol would occur within the browser itself, and then

browser APIs would allow the application's JavaScript to request

creation of messages and insert messages into the state machine. The

actual transfer of these messages would be the responsibility of the

web application, and would utilize protocols such as HTTP and

WebSockets. To facilitate implementation within a browser, messages are

encoded in JSON [RFC4627]. This protocol, with appropriate selected

transports, could also be implemented by a signalling gateway that

converts ROAP to SIP or Jingle.

This protocol is designed to be closely aligned with the PeerConnection

API defined in the RTCWeb API[webrtc-api] specification. It is

important to note that while ROAP does not require what has been

referred to as a low level API for media manipulation, ROAP does not

prevent having a such an API as well and both styles of API could

coexist and be used where appropriate.

The protocol defined here does not provide any call control. Concepts

like ringing of phones, user search, call forwarding, redirection,

transfer, hold, and so on, are all the domain of call processing and

are out of scope for this specification. It is assumed that the

application running within the browser provides any call control based

on the needs of the application, the scope of which is not a matter for

standardization.

Despite that fact that it has an abstract transport, ROAP is still a

protocol. This means it has state machines, and it has rules governing

the behavior of those state machines which guarantee that system

operates properly based on any set of inputs. It is assumed that this

state machinery is implemented in the browser and thus immutable by the

application, which can then guarantee proper behavior regardless of the

operation of the resident JavaScript.

The protocol is designed to operate between two entities (browsers for

example), which exchange messages "directly" - meaning that a message

output by one entity is meant to be directly processed by the other

*

entity without further modification. In practice, this means that a web

server can treat ROAP messages as opaque and just shuffle them between

browser instances. This allows for simple implementations. However,

more powerful applications can be built in which the web server or

JavaScript can modify the messages in order to provide more complex

features. As long as those modifications produce messages compliant to

this specification, SDP Offer/Answer [RFC3264], SDP [RFC4566], ICE

[RFC5245] and any other dependencies, interoperability is still

possible.

This protocol is designed for two major use cases:

Browser to browser

Browser to SIP device via a SIP gateway

In the browser to SIP use case, the gateway obviously needs to be

somewhat more sophisticated. However, because this design is a small

subset of the design space covered by SIP [RFC3261], it is intended to

be simple to translate to and from/SIP via a signalling gateway.

Moreover, many of the elements in messages have clear mappings to

elements in SIP messages, thus allowing simple, stateless translation.

2. Requirements and Design Goals

There has been extensive debate about the best architecture for RTCWeb

signaling. To a great extent this decision is dictated by the

requirements that the signaling mechanism is intended to fit. The

protocol in this document was designed to minimize the amount of

implementation effort required outside the browser and RTC-Web

signaling gateways. This implies the following requirements:

It should be possible to develop a simple browser to browser voice and

video service in a small amount of code. In particular, it MUST be

possible to implement a functional service such that:

It's possible to build a web service that maintains only

transaction state, not call state;

In the browser to browser case, the web server can simply pass

protocol messages between the browser agents without examining or

modifying them;

The service operates without needing to examine the details of

the browser capabilities (e.g., new codecs should be

automatically accommodated without modifying either the service

or the associated JS.

It should be possible to implement a simple RTC-Web gateway that:

Connects to legacy SIP devices ranging from multiscreen video

phones to PSTN gateways;

*

*

*

*

*

*

Has a deterministic mapping between RTC-Web messages and SIP

messages;

Permits the mechanical translation of messages without knowledge

of the details of all the browser capabilities;

is only required to maintains transaction state, not call state

(note is fine if an implementation want to maintain call state);

and

Does not need to send or receive the media (unless also acting as

a relay or a translator for codecs which are not jointly

supported).

Finally it seems clear that SDP is too complicated to reinvent, so

despite its manifest deficiencies we opt to take it as-is rather than

trying to reinvent it.

3. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",

"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be

interpreted as described in [RFC2119].

This draft uses the API and terminology described in [webrtc-api].

4. Protocol Overview

We start with a simple example. Consider the case where browser A

wishes to setup up a media session with browser B. At the high level, A

needs to communicate the following information:

This is a new media session and not an update to a different

session.

Here is A's SDP offer, including media parameters and ICE

candidates.

The OFFER message is used to carry this information. For example, A

might send B:

*

*

*

*

*

*

{

 "messageType":"OFFER",

 "offererSessionId":"13456789ABCDEF",

 "seq": 1,

 "sdp":"

v=0\n

o=- 2890844526 2890842807 IN IP4 192.0.2.1\n

s= \n

c=IN IP4 192.0.2.1\n

t=2873397496 2873404696\n

m=audio 49170 RTP/AVP 0"

}

The messageType field indicates that this is an OFFER and the

offererSessionId indicates the media session that this OFFER is

associated with. B can tell that this is for a new media session

because it contains a offererSessionId that he has not seen before. The

sdp field contains the offer itself, which is just an ordinary SDP

offer rendered as a string.

If B elects to start a media session, B responds with an ANSWER message

containing SDP, as shown below.

{

 "messageType":"ANSWER",

 "offererSessionId":"13456789ABCDEF",

 "answererSessionId":"abc1234356",

 "seq": 1,

 "sdp":"

v=0\n

o=- 2890844526 2890842807 IN IP4 192.0.2.3\n

s= \n

c=IN IP4 192.0.2.3\n

t=2873397496 2873404696\n

m=audio 49175 RTP/AVP 0"

}

The contents of this message are more or less the same as those in the

OFFER, except that B also includes a answererSessionId to uniquely

identify the session from B's perspective. The combination of

offererSessionId and answererSessionId uniquely identifies this

session.

Finally, in order to confirm that A has seen B's ANSWER, A responds

with an OK message.

{

 "messageType":"OK",

 "offererSessionId":"13456789ABCDEF",

 "answererSessionId":"abc1234356",

 "seq": 1

}

Note that all of these messages contain a seq field which contains a

transaction sequence number. The seq field makes it possible to

correlate messages which belong to the same transaction, as well as to

detect duplicates, which is described later in section Section 5.1.

The messageType value of "OFFER" will always contain an SDP offer, and

an object with a messageType value of "ANSWER" will always contain an

SDP answer. The complete list of message types is defined in Section 5.

Only a small number of messages are permitted and much of the message

set is devoted to error handling.

In building web systems it is often useful for a request to contain

some state that is passed back in future messages. This system includes

two types of state: session state and request state. If a browser

receives a message that contains state in a setSessionState attribute,

any future messages it sends that have the same offererSessionId MUST

include this state in a sessionState attribute. Similarly if a request

contains an setResponseState attribute, that state MUST be included in

any response to that request in a responseState attribute.

Once a session has been set up, additional rounds of offer/answer can

be sent using the OFFER/ANSWER/OK sequence. Note that the seq attribute

makes it easy to differentiate these additional rounds from the initial

exchange and from each other.

At the point that one side which to end the session, it simply sends a

SHUTDOWN message which is responded to with an OK response. A SHUTDOWN

can be sent regardless of it any response has been received to the

initial OFFER. The key purpose of the SHUTDOWN messages is to allow the

other side to know they can clean up any state associated with the

session.

5. Semantics & Syntax

5.1. Reliability Model

ROAP messages are typically carried over a reliable transport (likely

HTTP via XMLHttpRequest or WebSockets), so the chance of message loss

is low (though non-zero), provided that the signaling service is up.

However, the common web reliability and scaleability model is based on

the principle that transactions are idempotent and that requests can

just be discarded and will be retried. A retry of a transaction might

happened if a given host was down and the DNS round robin approach

wanted to move to the next server, or if a server was overloaded, or if

there was a hiccup in the network. Web applications that want to work

well need to deal with theses issues to get the advantages of the

NOTE:

offererSessionId

answererSessionId

Note:

general web design pattern for scaleability and reliability. Because

only the application knows what its internal reliability

characteristics are, the JS application (and whatever associated

servers it uses) are ultimately responsible for ensuring end-to-end

delivery; the browser simply assumes that messages which are provided

to the JS will be delivered eventually.

However, in order to maintain OFFER/ANSWER transaction state, the SDP

state machine does need to understand when the far end has received an

ANSWER if it caused an error or not. To support this model, OFFER and

ANSWER messages are acknowledged end to end with an ANSWER or OK

however any retransmission need to be handled by the JS or whatever is

providing the transport of the ROAP messages. The combination of the

sessionID and seq allow the browser to detect and discard duplicate

requests and to detect glare.

The split of the reliability model between the JS and browser is

something where implementations are playing around with and trying

to get some experience with what works best. This is an area that is

highly likely to change as understanding of the implications

evolves.

5.2. Common Fields

5.2.1. Session IDs

Each call is identified by a pair of session identifiers:

The offerer's half of the session ID (supplied in the

OFFER)

The answerer's half of the session ID (supplied in

the response to an OFFER)

The session ID values MUST be generated so that they are globally

unique. Thus, the combination of both sessionIds is itself globally

unique. Session IDs never change for the duration of an media session.

All messages MUST contain the "offererSessionId", and all messages

other than OFFER or an error in response to an OFFER MUST contain both

"offererSessionId" and "answererSessionId".

5.2.2. Seq

This is a sequence counter for the key requests that helps correlate

responses to the correct request.

This is a 32-bit unsigned integer. On each new OFFER (from either

browser) it is incremented by one. The Seq of an OK or ANSWER is set to

the same Seq that was used in the OFFER which caused it. When a

PeerConnection objects originates a new session by sending an OFFER

type message, it starts the Seq at 1.

If browser A starts an OFFER/ANSWER/OK transaction with a seq of 1

to browser B, then later B initiates a second OFFER/ANSWER?/OK

transaction, it will have a seq of 2.

5.2.3. Session Tokens

While session IDs serve to uniquely identify a session, it may be

useful to allow one or another sides to offload state onto the other

side (for instance to enable a stateless gateway). The

"setSessionToken" and "sessionToken" fields are used for this purpose.

When an implementation receives a message with a "setSessionToken"

field, it MUST associate the field value with the session. For all

future messages in the session MUST send the associated value in the

"sessionToken" field (unless the session token is reset by another

"setSessionToken" value). If no session token has yet been received,

the "sessionToken" field MUST be omitted.

5.2.4. Response Tokens

In addition to tokens which persist for the life of a session, it is

also possible to have tokens which are only valid for the lifetime of a

given request/response pair. The "setResponseToken" and "responseToken"

fields are used for this purpose.

When an implementation responds to a message from the other side (e.g.,

supplies an answer to an offer, or replies to an answer with an OK), it

MUST copy into the "responseToken" field any value found in a

"setResponseToken" field in the message being responded to. If no

"setResponseToken" field is present, then the "responseToken" field

MUST be omitted.

5.3. Media Setup

In order to initiate sending media between the browsers, the offerer

sends an OFFER message. In order to accept the media, the answerer

responds with an ANSWER message. A sample message flow for this is

shown below:

participant OffererUA

participant OffererJS

participant AnswererJS

participant AnswererUA

OffererJS->OffererUA: peer=new PeerConnection();

OffererJS->OffererUA: peer->addStream();

OffererUA->OffererJS: sendSignalingChannel();

OffererJS->AnswererJS: {"type":"OFFER", "sdp":"..."}

AnswererJS->AnswererUA: peer=new PeerConnection();

AnswererJS->AnswererUA: peer->processSignalingMessage();

AnswererUA->AnswererJS: onconnecting();

AnswererUA->OffererUA: ICE starts checking

note right of AnswererUA: User decides it is OK to send video

AnswererJS->AnswererUA: peer->addStream();

AnswererUA->OffererUA: Media

AnswererUA->AnswererJS: sendSignalingChannel();

AnswererJS->OffererJS: {"type":"ANSWER","sdp":"..."}

OffererJS->OffererUA: peer->processSignalingMessage();

OffererUA->OffererJS: onaddstream();

OffererUA->AnswererUA: Media

AnswererUA->OffererUA: ICE Completes

AnswererUA->AnswererJS: onopen();

OffererUA->OffererJS: onopen();

OffererUA->OffererJS: sendSignalingChannel();

OffererJS->AnswererJS: {"type":"OK" }

AnswererJS->AnswererUA: peer->processSignalingMessage();

AnswererUA->AnswererJS: onaddstream();

The above figure shows a simple message flow for negotiating media:

The offerer sends an OFFER to initiate the call;

At this point, ICE negotiation starts;

Once the browser authorizes sending media to the far side, the

answerer sends an ANSWER containing the media parameters; and

finally,

Once ICE is completed and an OK to the ANSWER is received, both

sides know that media can flow.

The contents of each of these messages is detailed below.

*

*

*

*

5.3.1. OFFER Message

The first OFFER message with a given offererSessionId is used to

indicate the desire to start a media session.

5.3.1.1. Offerer Behavior

In order to start a new media session, a offerer constructs a new OFFER

message with a fresh offererSessionId. The answererSessionId field MUST

be empty. Like all SDP offers, the message MUST contain an "sdp" field

with the offerer's offer. It MUST also contain the tieBreaker field,

containing a 32 bit random integer used for glare resolution as

described in Section 5.4.1.

5.3.1.2. Answerer Behavior

A answerer can receive an OFFER in three cases:

A new session (this is detected by seeing a new offererSessionId

value);

A retransmit of a new OFFER (known offererSessionId, empty

answererSessionId); or

A request to change media parameters (known offererSessionId,

known answererSessionId, new seq value).

The first two situations are described in this section. The third case

is described in Section 5.4. Any other condition represents an alien

packet and SHOULD be rejected with Error:NOMATCH

If no media session exists with the given "offererSessionId" value,

then this is a new media session. The answerer has three primary

options:

Reject the request, either silently with no response or with an

Error:REFUSED message;

Reply to the OFFER message with a final ANSWER message; or

Section 5.3.2

Send back a non final ANSWER message and then later respond with

an final ANSWER.

In either of the latter two cases, the answerer performs the following

steps:

Generate a "answererSessionId" value;

Create some local call state (i.e., a PeerConnection object)

and bind it to the "offererSessionId"/"answererSessionId" pair.

*

*

*

*

*

*

1.

2.

All future messages on this session MUST then be delivered to

that PeerConnection object;

Start ICE handshaking with the offerer; and finally,

Respond with a message containing an SDP answer in the "sdp"

field. This will contain the answerer's (potentially with

moreComing=true) media information and the ICE parameters.

If an OFFER is received that has already been received and responded to

and the media session still exists, then the answerer MUST respond with

the same message as before. If the session has been terminated in the

meantime, then an Error:NOMATCH message SHOULD be sent.

5.3.2. ANSWER

The ANSWER message is used by the receiver of an OFFER message to

indicate that the offer has been accepted. The ANSWER message MUST

contain the answererSessionId for this media session and an sdp

parameter containing ICE candidates and the final media parameters for

the session (although of course these can be adjusted by a new OFFER/

ANSWER exchange. See Section 5.4). In addition, ANSWERs MAY contain the

moreComing flag, as described below.

5.3.2.1. moreComing Flag

This is a boolean flag that can only appear in an ANSWER and, if set to

true, indicates that this answer is not the final answer that will be

sent for the associated OFFER. If this flag is not present, it is

assumed to be false.

One motivating use case for moreComing is where an Agent wishes to

respond immediately to an OFFER in order to start ICE checking before

the user has provided authorization to send media. The Agent cannot

send an ANSWER containing media information but can send ICE candidate.

In this case, the Agent could send an ANSWER that had moreComing=true

but that allowed ICE to start. Then later, when the user had authorized

the media, the Agent could send an ANSWER with the moreComing

flag=false that indicated this was the final media selection.

To see why simply having multiple independent offers (as opposed to

multiple answers for a single offer), consider the case where browser A

requests video with B. When the A side that sent the initial OFFER gets

an ANSWER that rejects the video, it may very well present a UI

indication that there is no media. Five seconds later when browser B

sends an OFFER requesting video, browser A may present a UI element

that asks is OK to do the video that was just rejected. This results in

a bad user experience and in the extreme can result in both sides

always rejecting the other side's OFFER of video, then waiting for the

user to authorize video that results in a new OFFER that is always

rejected.

3.

4.

It easier to be able to indicate that OFFER resulted in one valid

ANSWER, but that the OFFER needs to be held open as other valid ANSWERS

which would replace the current one. This stops the other side from

generating new a new OFFER while this is taking place. This is also

needed to support a SIP gateway doing early media.

5.3.3. OK

The OK message is used by the receiver of an ANSWER message to indicate

that it has received the ANSWER message. It has no contents itself and

is merely used to stop the retransmissions of the ANSWER.

5.3.4. ERROR

The ERROR message is used to indicate that there has been an error. The

contents and semantics of this message are defined in Section 5.6.

5.4. Changing Media Parameters

Once a call has been set up, it is common to want to adjust the media

parameters, e.g., to add video to an audio-only call. This is also done

with the OFFER/ANSWER/OK sequence of messages, though the details are

slightly different.

Either side may initiate a new OFFER/ANSWER exchange by sending an

OFFER message. However, implementations MUST NOT attempt this for

sessions which are still in active negotiation. Specifically, the

offerer MUST NOT send a new OFFER until it has received the ANSWER, and

the answerer MUST NOT send a new OFFER until it has received the OK

indicating receipt of the ANSWER.

A new OFFER MUST contain a complete set of media parameters describing

the proposed new media configuration as well as a full set of ICE

parameters. The recipient of a new OFFER on a valid connection MUST

respond with an appropriate ANSWER message. However that message MAY

refuse to accept the proposed new configuration. If the session has

been terminated in the meantime, then an Error:NOMATCH message SHOULD

be sent.

5.4.1. Conflicting OFFERS (glare)

Because a change of media parameters may be initiated by either side,

there is a potential for the change requests to occur simultaneously

(i.e., "glare"). This document defines a glare handling procedure that

results in immediate resolution of the glare condition allowing one

OFFER message to continue to be processed while the other is

terminated. It is defined in such a way that it can interwork with

SIP's glare handling mechanism. However SIP's timer based mechanism

aren't suitable for the ROAP as strict requirements on ROAP message

transport between end-points are not possible and thus easily could

result in an repeated glare situation.

1

2

3A

To achieve immediate resolution each OFFER message includes a 32

unsigned integer value, the tie breaker, that is randomly generated for

each new OFFER message an end-point issues. Whenever a end-point

receives an OFFER message that has the same sequence number as an

outstanding OFFER the end-point itself sent, a glare condition has

arisen. In a glare condition the end-point compares the received

OFFER's tiebreaker value with the tiebreaker value of the tiebreaker in

the OFFER outstanding. The OFFER with the greatest numerical value wins

and that OFFER is allowed to continue being processed. IF the received

OFFER lost the tie breaking an Error:CONFLICT message is sent. If it is

the outstanding OFFER that lost, the end-point can expect an

Error:CONFLICT message to be eventually received. However, that OFFER

can immediately be considered as terminated.

Some special considerations has been made in this glare handling for

interworking well with SIP glare handling as currently specified. Thus

it has the notion of a gateway that converts the ROAP message into SIP

message. This process is discussed in more detail below after the basic

rules are defined normatively.

A regular end-point SHALL generate a random 32-bit unsigned numerical

value for each OFFER message. In the case the random value becomes 0 or

4,294,967,295 a new random value SHALL be generated until it is neither

values. The values 0 and 4,294,967,295 MAY be assigned to ROAP messages

generated by gateways to ensure efficient glare handling towards other

systems.

An ROAP message end-point that has an outstanding OFFER, i.e. an OFFER

where it has not yet received an ANSWER SHALL upon receiving an OFFER

perform the following processing:

Check if the incomming OFFER has a answererSessionId, if not it is

an initial offer. If the outstanding OFFER also is an intial OFFER

there is an Error. If the outstanding OFFER is not an initial OFFER

and the outstanding OFFER do have answererSessionId equal to the

offererSessionId in the received message then the sequence numbers

are checked. In case the incomming OFFER's sequence number is equal

to the sequence number of the outstanding OFFER there is glare. If

the sequence number is not the same and the sequence number of the

incomming is larger than the outstanding OFFER's sequence number,

then this message is out of order with an ANSWER to the out-standing

message. If the sequence number of the incomming is lower than the

outstanding, then this is a old request.

In case of glare, compare the tie-breaker values for each OFFER. The

tie-breaker value that is greater than the other wins. The OFFER

with the winning value is processed as if there was no glare. The

OFFER with the losing value is terminated, see 3A or 3B. In case the

tie-breaker values are equal the double-glare case in 3C is invoked.

The OFFER being terminated is the received one: The end-point SHALL

send a Error:CONFLICT response message.

3B

3C

The OFFER being terminated is this end-points outstanding OFFER:

The end-point knows the OFFER will be terminated and can expect an

Error:CONFLICT response. The end-point can assume this termination

and MAY issue a new OFFER as soon as possible after having concluded

the transactions for the winning OFFER.

The two tie-breaker values where equal, in this case both OFFERs

are terminated and a Error:DOUBLCONFLICT message is sent. Both of

the Offerer SHOULD re-attempt their offers by generating new OFFER

messages, these messages SHALL have new tie-breaker values and

incremented sequence number. Also gateways SHOULD generate random

values, as one reason for this double conflict is that two gateways

have become interconnected and both selects either 0 or

4,294,967,295.

The following figure assumes the previous message flow has happened and

media is flowing.

participant OffererUA

participant OffererJS

participant AnswererJS

participant AnswererUA

note left of OffererJS: "Hi, Let's do video"

note right of AnswererJS: "Sounds great"

OffererJS->OffererUA: peer->addStream(new MediaStream());

OffererUA->OffererJS: sendSignalingChannel();

AnswererJS->AnswererUA: peer->addStream(new MediaStream());

AnswererUA->AnswererJS: sendSignalingChannel();

OffererJS->AnswererJS: {"type":"OFFER", tiebreaker="123", "sdp":"..."}

AnswererJS->OffererJS: {"type":"OFFER", tiebreaker="456", "sdp":"..."}

AnswererJS->AnswererUA: peer->processSignalingMessage();

OffererJS->OffererUA: peer->processSignalingMessage();

OffererUA->OffererJS: sendSignalingChannel();

AnswererUA->AnswererJS: sendSignalingChannel();

OffererJS->AnswererJS: {"type":"ERROR",error="conflict","sdp":"..."}

AnswererJS->OffererJS: {"type":"ANSWER", "sdp":"..."}

AnswererJS->AnswererUA: peer->processSignalingMessage();

OffererJS->OffererUA: peer->processSignalingMessage();

OffererUA->OffererJS: sendSignalingChannel();

OffererJS->AnswererJS: {"type":"OK"}

AnswererJS->AnswererUA: peer->processSignalingMessage();

AnswererUA->AnswererJS: onaddstream();

AnswererUA->AnswererJS: sendSignalingChannel();

AnswererJS->OffererJS: {"type":"OFFER", tiebreaker="789", "sdp":"..."}

OffererJS->OffererUA: peer->processSignalingMessage();

OffererUA->OffererJS: sendSignalingChannel();

OffererJS->AnswererJS: {"type":"ANSWER", "sdp":"..."}

AnswererJS->AnswererUA: peer->processSignalingMessage();

AnswererUA->OffererUA: Both way Video

AnswererUA->AnswererJS: sendSignalingChannel();

AnswererJS->OffererJS: {"type":"OK"}

OffererJS->OffererUA: peer->processSignalingMessage();

OffererUA->OffererJS: onaddstream();

5.4.2. Premature OFFER

It is an error, though technically possible, for an agent to generate a

second OFFER while it already has an unanswered OFFER pending. An agent

which receives such an offer MUST respond with an Error:FAILED message

containing a "RetryAfter" attribute generated as a random value from 0

to 10 seconds.

5.5. Notification of Media Termination

The SHUTDOWN message is used to indicate the termination of an existing

session. Either side may initiate a SHUTDOWN at any time during the

session, including while the initial OFFER is outstanding (i.e., before

an ANSWER has been sent/received.)

TODO - FIX NAMES

participant OffererUA

participant OffererJS

participant AnswererJS

participant AnswererUA

OffererJS->OffererUA: peer->close();

OffererUA->OffererJS: sendSignalingChannel();

OffererJS->AnswererJS: { "type":"SHUTDOWN" }

AnswererJS->AnswererUA: peer->processSignalingMessage();

AnswererUA->AnswererJS: onclose();

AnswererUA->AnswererJS: sendSignalingChannel();

AnswererJS->OffererJS: {"type":"OK"}

OffererJS->OffererUA: peer->processSignalingMessage();

OffererUA->OffererJS: onclose();

Upon receipt of a SHUTDOWN which corresponds to an existing session, an

agent MUST immediately terminate the session and send an OK message.

Subsequent messages directed to this session MUST result in an

Error:NOMATCH message. Similarly, on receipt of the OK, the agent which

sent the SHUTDOWN MUST terminate the session and SHOULD respond to

future messages with Error:NOMATCH.

5.6. Errors

Errors are indicated by the messageType "ERROR". All errors MUST

contain an "errorType" field indicating the type of error which

occurred and echo the "seq" value (if any) and the session id values of

the message which generated the error. The following sections describe

each error type.

5.6.1. NOMATCH

An implementation which receives a message with either an unknown

offererSessionId (for an OFFER) or an unknown offererSessionId/

answererSessionId pair SHOULD respond with a NOMATCH error.

Note:

5.6.2. TIMEOUT

The TIMEOUT error is used to indicate that the corresponding message

required some processing which timed out. For instance, an agent which

is a SIP gateway translates ROAP signaling messages into SIP messages.

If those SIP messages time out, the gateway would generate a TIMEOUT

error.

5.6.3. REFUSED

An agent which has received an initial OFFER MAY indicate its refusal

of the media session by sending a REFUSED error. Note that this error

is not required; an agent MAY simply drop the OFFER with no

acknowledgement at all. However, agents which do not wish to accept

subsequent OFFERS SHOULD [OPEN ISSUE: MUST?] send a REFUSED in order to

avoid timeouts and confusion on the offerer side.

5.6.4. CONFLICT

The CONFLICT error is used to indicate that an agent has received an

OFFER while it has its own OFFER outstanding. The offerer's behavior in

response to this error is defined in Section 5.4.1.

5.6.5. DOUBLECONFLICT

The DOUBLECONFLICT error is used to indicate the tiebreaker values in

CONFLICT were the same. See Section 5.4.1.

5.6.6. FAILED

FAILED is a catch-all error indicating that something went wrong while

processing a message. A FAILED error MAY contain a "retryAfter" field,

which indicates the time (in seconds) after which the message MAY be

retried (though retries are OPTIONAL).

6. Security Considerations

TBD

7. Companion APIs

This section may need to move to the requirements draft[I-

D.ietf-rtcweb-use-cases-and-requirements] but for now it is

convenient to put it here just to help see how all the pieces fit

together.

The offer / answer concepts in this draft are not enough to meet all

the use cases of RTCWeb. They need to be combined with some additional

functionality that the browser exposes to the JavaScript applications.

This additional functionality loosely falls into three categories:

capabilities, hints, and stats. The capabilities allow the JS

application to find out what video codecs and capabilities a given

browser supports before initiating a media session. The hints provide a

way for the JS application to provide useful information to the browser

about how the media will be used so that the browser can negotiate

appropriate codecs and modes. Stats provides statistics about what the

current media sessions. The capabilities, hints, and stats do not need

to be communicated between the two browsers, so they are not specified

in this draft. However, this drafts assumes the existence of API so

that these three can be used to build complete systems. Some of the

assumptions about these APIs are described in the following sections.

7.1. Capabilities

The APIs need to provide a way to find out the capabilities as defined

in section 9 of RFC 3264. This allows the JS to find out the codecs

that the browser supports.

7.2. Hints

When creating a new PeerConenction in a browser, the application needs

to be able to provide optional hints to the browser about preferences

for the media to be negotiated. These include:

Whether the session has audio, video, or both;

Whether the audio is spoken voice or music;

Preferred video resolution and frame rate (perhaps these just

come from the MediaTrack objects);

Whether the video should prefer temporal or spatial fidelity;

<add more here>

The JS applications should also be able to update and change these

hints mid-session. Some types of hint changes may simply impact the

parameter on various codecs and require no signalling to the other end

of the media stream. Other types of hint changes may cause a new offer

answer exchange.

7.3. Stats

Several parts of the media session create statistics that are important

to some applications. APIs should provide the JS applications with

information on the following statistics:

Total IP data rate for the session;

ICE statistics including current candidates, active pairs, RTT;

1.

2.

3.

4.

5.

1.

2.

RTP statistics including codecs selected, parameters, and bit

rates;

RTCP statistics including packet loss rate; and

SRTP statistics.

8. Relationship with SIP & Jingle

The SIP [RFC3261] specifies an application protocol that provides a

complete solution for setting up and managing communications on the

Internet. It combines both "call processing" functions - identity and

name spaces, call routing, user search, call features, authentication,

and so on - as well as media processing through its transport of SDP

and support for the offer/answer model.

In a web context, application processing can be done through

proprietary logic implemented in Javascript/HTML, along with

proprietary logic implemented in the web server, and proprietary

messaging transported through HTTP and WebSockets. One of the

advantages of the web is to allow a rich set of applications to be

built without changing the browser. Although application processing and

be done in JavaScript and the web servers, we do require raw media

control in the browser. ROAP basically extracts the offer/answer media

control processing used in SIP, and puts it into an protocol that can

operate independently of SIP itself.

The information contained in ROAP messages corresponds closely to the

offer/answer information carried by complete solutions such as SIP and

Jingle, so it is straightforward to build gateways to and from ROAP.

These gateways need only translate the signaling, while allowing end-

to-end media without the need for media relays (except, of course, for

NAT traversal.) In the case of SIP, which uses SDP directly, such

gateways would translate between SIP and ROAP, while transporting SDP

end-to-end. In the case of Jingle [XEP-0166], it would also be

necessary to translate between SDP and the Jingle offer/answer format;

[XEP-0167] describes such a mapping.

9. IANA Considerations

This document requires no actions from IANA.

10. Acknowledgments

The text for the glare resoltuion section was provided by Magnus

Westerlund. Many thanks for comment, ideas, and text from Eric

Rescorla, Harald Alvestrand, Magnus Westerlund, Ted Hardie, and Stefan

Hakansson.

3.

4.

5.

11. Open Issues

How to negotiate support for enhancements to this JSON message.

(consider supported / required)

Common way to indicate destination in offer going to a signalling

gateway.

Need to generate proper ASCII art version of message flows.

12. References

12.1. Normative References

[RFC4627]

Crockford, D., "The application/json Media Type for

JavaScript Object Notation (JSON)", RFC 4627, July

2006.

[RFC3264]

Rosenberg, J. and H. Schulzrinne, "An Offer/Answer

Model with Session Description Protocol (SDP)", RFC

3264, June 2002.

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC4566]
Handley, M., Jacobson, V. and C. Perkins, "SDP: Session

Description Protocol", RFC 4566, July 2006.

12.2. Informative References

[RFC3261]

Rosenberg, J., Schulzrinne, H., Camarillo,

G., Johnston, A., Peterson, J., Sparks, R.,

Handley, M. and E. Schooler, "SIP: Session

Initiation Protocol", RFC 3261, June 2002.

[XEP-0166]

Ludwig, S., Beda, J., Saint-Andre, P.,

McQueen, R., Egan, S. and J. Hildebrand,

"Jingle", XSF XEP 0166, December 2009.

[XEP-0167]

Ludwig, S., Saint-Andre, P., Egan, S.,

McQueen, R. and D. Cionoiu, "Jingle RTP

Sessions", XSF XEP 0167, December 2008.

[RFC5245]

Rosenberg, J., "Interactive Connectivity

Establishment (ICE): A Protocol for Network

Address Translator (NAT) Traversal for Offer/

Answer Protocols", RFC 5245, April 2010.

[webrtc-api]

Bergkvist, Burnett, Jennings, Narayanan, ,

"WebRTC 1.0: Real-time Communication Between

Browsers", October 2011.

Available at http://dev.w3.org/2011/webrtc/

editor/webrtc.html

[I-D.ietf-rtcweb-

use-cases-and-

requirements]

Holmberg, C, Hakansson, S and G Eriksson,

"Web Real-Time Communication Use-cases and

Requirements", Internet-Draft draft-ietf-

rtcweb-use-cases-and-requirements-06, October

2011.

http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc3264
http://tools.ietf.org/html/rfc3264
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc4566
http://tools.ietf.org/html/rfc4566
http://tools.ietf.org/html/rfc3261
http://tools.ietf.org/html/rfc3261
mailto:scottlu@google.com
mailto:jbeda@google.com
mailto:stpeter@jabber.org
mailto:robert.mcqueen@collabora.co.uk
mailto:seanegan@google.com
mailto:jhildebr@cisco.com
mailto:scottlu@google.com
mailto:seanegan@google.com
mailto:robert.mcqueen@collabora.co.uk
mailto:diana@null.ro
http://tools.ietf.org/html/rfc5245
http://tools.ietf.org/html/rfc5245
http://tools.ietf.org/html/rfc5245
http://tools.ietf.org/html/rfc5245
http://tools.ietf.org/html/draft-ietf-rtcweb-use-cases-and-requirements-06
http://tools.ietf.org/html/draft-ietf-rtcweb-use-cases-and-requirements-06

Authors' Addresses

Cullen Jennings Jennings Cisco 170 West Tasman Drive San Jose, CA

95134 USA Phone: +1 408 421-9990 EMail: fluffy@cisco.com

Jonathan Rosenberg Rosenberg jdrosen.net EMail: jdrosen@jdrosen.net

URI: http://www.jdrosen.net

Justin Uberti Uberti Google, Inc.

Randell Jesup Jesup Mozilla EMail: randell-ietf@jesup.org

mailto:fluffy@cisco.com
mailto:jdrosen@jdrosen.net
http://www.jdrosen.net
mailto:randell-ietf@jesup.org

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Requirements and Design Goals
	3. Terminology
	4. Protocol Overview
	5. Semantics & Syntax
	5.1. Reliability Model
	5.2. Common Fields
	5.2.1. Session IDs
	5.2.2. Seq
	5.2.3. Session Tokens
	5.2.4. Response Tokens
	5.3. Media Setup
	5.3.1. OFFER Message
	5.3.1.1. Offerer Behavior
	5.3.1.2. Answerer Behavior
	5.3.2. ANSWER
	5.3.2.1. moreComing Flag
	5.3.3. OK
	5.3.4. ERROR
	5.4. Changing Media Parameters
	5.4.1. Conflicting OFFERS (glare)
	5.4.2. Premature OFFER
	5.5. Notification of Media Termination
	5.6. Errors
	5.6.1. NOMATCH
	5.6.2. TIMEOUT
	5.6.3. REFUSED
	5.6.4. CONFLICT
	5.6.5. DOUBLECONFLICT
	5.6.6. FAILED
	6. Security Considerations
	7. Companion APIs
	7.1. Capabilities
	7.2. Hints
	7.3. Stats
	8. Relationship with SIP & Jingle
	9. IANA Considerations
	10. Acknowledgments
	11. Open Issues
	12. References
	12.1. Normative References
	12.2. Informative References
	Authors' Addresses

