
SIMPLE WG C. Jennings
Internet-Draft R. Mahy
Expires: August 9, 2004 J. Garg
 Cisco Systems, Inc.
 February 9, 2004

SIMPLE Instant Messaging Sessions (SIMS)
draft-jennings-simple-sims-00.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 9, 2004.

Copyright Notice

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

 This document defines a protocol for conveying binary MIME content in
 near-real time, peer-to-peer or through one or more relays, with the
 opportunity for store and forward. SIMS (SIMPLE Instant Messaging
 Sessions) can be used as a standalone protocol, or in conjunction
 with a rendezvous or session setup protocol such as SIP.

 While SIMS was originally envisioned as an alternative to the Media
 Session Relay Protocol (MSRP), one section of this document describes
 how these ideas could be applied as MSRP extensions for features such
 as chunking, relay connection multiplexing, and prevention of
 head-of-line blocking.

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Jennings, et al. Expires August 9, 2004 [Page 1]

Internet-Draft SIMS February 2004

Table of Contents

1. Conventions and Definitions 4
2. Introduction and Requirements 5
3. Protocol Overview . 6
4. Building SIMS as extensions to MSRP 9
4.1 Changes Required to the core MSRP spec 9
4.2 MSRP extensions for using relays 10
5. SIMS parcel structure 10
5.1 Basic parcel organization 10
5.2 SIMS Headers . 12
5.2.1 Essential Headers . 12
5.2.2 Message-Specific headers 13
5.2.3 Headers related to MIME Content 13
5.2.4 Headers used for extensibility 14
5.2.5 Authentication headers 15
5.2.6 Time-related headers . 15
5.2.7 Error-related headers 15
5.2.8 The Server and User-Agent headers 16
5.2.9 Table of header fields 16
5.3 SIMS Responses . 17
5.4 SIMS bodies . 18
6. Procedures . 20
6.1 Client behavior . 20
6.1.1 Sending requests . 20
6.1.2 Receiving Requests . 21
6.1.3 Receiving CHUNK requests 22
6.1.4 Sending INFORM requests 23
6.1.5 Sending AUTH requests 23
6.1.6 Managing Connections . 24
6.2 Relay behavior . 24
6.2.1 Generic request behavior 24
6.2.2 Forwarding CHUNK requests 24
6.2.3 Receiving AUTH requests 25
6.2.4 Forwarding INFORM requests 27
6.2.5 Forwarding Responses . 27
6.2.6 Managing Connections . 27
6.2.7 Forwarding unknown requests 27
6.3 Acting as a Message Taker 27
7. Formal Syntax . 28
8. Finding SIMS Servers . 37
9. Security Considerations 38
9.1 Using HTTP Authentication 38
9.2 Using TLS . 38
9.3 S/MIME . 38
9.4 Threat Model . 39
9.5 Security Mechanism . 40
9.6 Preventing Spam and Denial of Service Attacks 41

Jennings, et al. Expires August 9, 2004 [Page 2]

Internet-Draft SIMS February 2004

10. IANA Considerations . 41
10.1 Port number registrations 41
10.2 URI scheme registration 41
10.3 Message-Context . 41
10.4 SDP Parameters . 42
11. Using SIMS with SIP and SDP 42
11.1 SDP Extensions . 42
12. Comparison with requirements and with MSRP 44
13. Examples . 44
13.1 Client to Client with SIP 44
13.2 3 relays with SIP . 47
13.3 client fragmentation . 60
13.4 relay fragmentation . 65
14. Acknowledgments . 70

 Normative References . 70
 Informative References 71
 Authors' Addresses . 73
 Intellectual Property and Copyright Statements 74

Jennings, et al. Expires August 9, 2004 [Page 3]

Internet-Draft SIMS February 2004

1. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC-2119 [1].

 Below we list several definitions important to SIMS:

 'SIMS node:' A host that implements the SIMS protocols as a Client
 or a Relay

 'SIMS Client:' A SIMS role which is the initial sender or final
 target of messages and delivery status.

 'SIMS Relay:' A SIMS role which forwards messages and delivery
 status and may provide policy enforcement. Relays MAY fragment
 and reassemble portions of messages.

 'Message-Taker:' A SIMS Client which persistently stores messages
 on behalf of specific users or resources

 'message:' arbitrary MIME content which one client wishes to send
 to another. For the purposes of this specification, a complete
 MIME body as opposed to a portion of a complete message.

 'message fragment:' a portion of a complete message carried in a
 message/byteranges MIME type.

 'message:' binary MIME content of an arbitrary type. Each message
 has a unique message-id. In SIMS, messages may be broken up into
 pieces and sent in separate CHUNK requests.

 'parcel:' a SIMS request or response. CHUNK request parcels
 typically contain a portion of a complete message.

 'end-to-end:' delivery of data from the initiating client to the
 final target client

 'hop:' delivery of data between one SIMS node and an adjacent
 node.

 'transaction:' a request and response as seen from a single SIMS
 node. Each transaction has a locally significant transaction
 identifier.

https://datatracker.ietf.org/doc/html/rfc2119

Jennings, et al. Expires August 9, 2004 [Page 4]

Internet-Draft SIMS February 2004

2. Introduction and Requirements

 The IETF SIMPLE Working Group has identified a number of scenarios
 where using a separate protocol for bulk messaging is desirable. In
 particular, the SIMPLE WG will use this facility to handle a sequence
 of messages as a session of media initiated using SIP [2], just like
 any other media type. The SIMPLE community has investigated many
 options for sessions of messages (Jabber [27], SIP [28], IMTP [29],
 and AMSX [30]), the most recent of these called MSRP [19].

 While the wireless community has responded favorably to MSRP for
 point-to-point usage, the authors feel that MSRP does not
 sufficiently address the relay requirements of the Enterprise and
 Consumer IM community. Indeed, the most recent version of MSRP has
 completely removed any normative discussion about building relays at
 all. This proposal attempts to capture the benefits of MSRP
 (especially peer-to-peer operation) and also address these additional
 requirements. SIMS instead borrows heavily from the relay
 capabilities of IMTP. Section 4 discusses how the concepts in SIMS
 could be implemented as MSRP extensions.

 The rest of this document describes SIMS as a separate protocol for
 conveying arbitrary MIME [3] content in near-real time through zero
 or more relays, with the opportunity for store and forward. SIMS
 (SIMPLE Instant Messaging Sessions) can be used as a standalone
 protocol, or in conjunction with a rendezvous or session setup
 protocol such as SIP. As with MSRP, all SIMS traffic is sent over
 reliable, congestion-safe transports.

 SIMS was designed to allow SIMS clients to communicate directly, or
 through an arbitrary number of relays. Each client is responsible
 for identifying any relays acting on its behalf and providing
 appropriate credentials.

 The Goals of SIMS are listed below:

 o convey arbitrary binary MIME data

 o operate as a standalone protocol or as a session media protocol

 o support client to client operation (no servers required)

 o operate through an arbitrary number of relays for policy
 enforcement

 o allow each client to control which relays are traversed on its
 behalf

Jennings, et al. Expires August 9, 2004 [Page 5]

Internet-Draft SIMS February 2004

 o prevent unsolicited messages (spam), "open relays", and denial of
 service amplification

 o allow relays to use one or a small number of TCP or TLS [4]
 connections to carry messages for multiple sessions, recipients,
 and senders

 o allow large messages to be sent over a slow connection without
 causing head-of-line blocking problems

 o allow transmission of a large message to be interrupted and
 resumed in place when network connectivity is lost and later
 reestablished

 o offer end-to-end notification of message receipt

 o provide notification of message storage (desirable)

 o easy to implement

 o allow relays to delete state after a short amount of time

3. Protocol Overview

 SIMS defines the concept of clients and relays. Clients send
 messages to relays and other clients. Relays forward messages and
 message delivery status to clients and other relays. Clients which
 can open TCP connections to each other without intervening policy
 restrictions, can communicate directly with each other. Clients who
 are behind a firewall or who need to use an intermediary for policy
 reasons can use the services of a relay. Each client is responsible
 for enlisting the assistance of one or more relays for its half of
 the communication.

 SIMS also defines the special role of a Message-Taker, which is a
 client that can receive messages and store them persistently on
 behalf of a user. Note that these roles can be co-resident.

 Clients which use a relay operate by first opening a connection with
 a relay and authenticating. When clients wish to send a short
 message, they send a CHUNK request with the entire contents of the
 message.

 CHUNK sims:bob.example.net SIMS/1.0
 Via: TCP/SIMS-TLS/1.0 alice.example.org;received=10.1.1.1:9000
 ;branch=3847873847083047
 Message-Id: 12313513

Jennings, et al. Expires August 9, 2004 [Page 6]

Internet-Draft SIMS February 2004

 Route: <sims:example.org:9000;transport=tls+tcp>,
 <sims:magic-cookie@example.net:9000;transport=tls+tcp>
 Content-Type: text/plain

 Hi Bob, I'm about to send you "The Lord of the Rings".

 Each hop (relay or recipient client) that receives a CHUNK request
 acknowledges receipt of the request before forwarding. For larger
 messages, each CHUNK request may contain only a portion of the
 complete message. To avoid confusion and ambiguity, each request or
 response is called a "parcel". When Alice sends Bob a 4GB file
 called "The Lord of the Rings.mpeg", she will sends several CHUNK
 requests (parcels) each with one part of the complete message. Relays
 can repack parcels en-route. As individual parts of the complete
 message arrive at the final destination client, the receiving client
 sends INFORM requests indicating delivery status.

 Typical flow with no relays
 (peer-to-peer client communication).

 Alice Bob

 | |
 | CHUNK | "Hey dude! I think your IM
 |----------------------->| client is spewing chunks!"
 | |
 | 200 OK |
 |<-----------------------|
 | INFORM |
 |<-----------------------| Message displayed
 | 200 OK |
 |----------------------->|
 | |

 When a client uses a relay, it first opens a TLS connection to its
 first relay and authenticates using an AUTH request which can contain
 Digest Authentication credentials. In a successful AUTH response,
 the relay provides a SIMS URI associated with the path to the client
 that the client can give to other clients for end-to-end message
 delivery.

 SIMS nodes can send individual portions of a complete message in
 multiple CHUNK requests. Each parcel uses the message/byteranges
 MIME type defined in RFC 2616 [5] to correlate that part to the
 complete message. As each CHUNK request is received, the next hop
 acknowledges the request. As relays receive parcels they can
 reassemble or re-fragment them as long as each chunk is sent in
 order. Once a chunk or complete message arrives at the destination

https://datatracker.ietf.org/doc/html/rfc2616

Jennings, et al. Expires August 9, 2004 [Page 7]

Internet-Draft SIMS February 2004

 client, the destination sends an INFORM request indicating that a
 chunk arrived end-to-end. This request travels back along the reverse
 path of the CHUNK request. Unlike the CHUNK request which is
 acknowledged along every hop, only the sender of the INFORM request
 responds to an INFORM. Relays then forward the INFORM response back
 to the recipient of the original CHUNK.

 Typical flow involving two relays

 Alice a.example.org b.example.net Bob
 | | | |
 | | | |
 |--- AUTH ----------->| |<-- AUTH ------------|
 |<-- 401 Auth---------| |--- 401 Auth-------->|
 |--- AUTH ----------->| |<-- AUTH ------------|
 |<-- 200 OK-----------| |--- 200 OK---------->|
 | | | |
 time passes
 | | | |
 |--- CHUNK 0-3 ------>| | |
 |<-- 200 OK ----------| | (slow link) |
 |--- CHUNK 4-7 ------>|--- CHUNK 0-5 ----->| |
 |<-- 200 OK ----------|<-- 200 OK ---------|--- CHUNK 0-3 ------>|
 |--- CHUNK 8-10 ----->|--- CHUNK 6-10 ---->| >|
 |<-- 200 OK ----------|<-- 200 OK ---------| ..>|
 | | |<-- 200 OK ----------|
 | | |<-- INFORM 0-3 ------|
 | |<-- INFORM 0-3 -----|--- CHUNK 4-7 ------>|
 |<-- INFORM 0-3 ------| | ...>|
 |--- 200 OK --------->| | ..>|
 | |--- 200 OK -------->| |
 | | |--- 200 OK --------->|
 | | |<-- INFORM 4-7 ----->|
 | |<-- INFORM 4-7 -----|--- CHUNK 8-10 ----->|
 |<-- INFORM 4-7 ------| | ..>|
 |--- 200 OK --------->| |<-- 200 OK ----------|
 | |<-- INFORM done-----|<-- INFORM done -----|
 |<-- INFORM done -----|--- 200 OK -------->| |
 |--- 200 OK --------->| |--- 200 OK --------->|
 | |--- 200 OK -------->| |
 | | |--- 200 OK --------->|
 | | | |

 Relays only keep transaction state for a short period of time for
 each chunk. Delivery of each hope should take no more than 32
 seconds after the last byte of data is sent. Clients applications
 define their own implementation-dependent timers for end-to-end
 message delivery.

Jennings, et al. Expires August 9, 2004 [Page 8]

Internet-Draft SIMS February 2004

 In some cases the end user node may not have its own client or that
 client or node may be unavailable. In this case, a message-taker can
 take receipt of the message or fragment and deliver an INFORM back to
 the sender indicating that the message or fragment was successfully
 stored.

 For client to client communication, the sender of a message typically
 opens a new TCP connection if one is needed. Relays reuse existing
 connections first, but can open new connections (typically to another
 relay) to deliver a CHUNK request. INFORM requests are only delivered
 over an existing connection.

4. Building SIMS as extensions to MSRP

 While SIMS is described as a standalone protocol in the bulk of this
 document, this proposal could be applied to MSRP while preserving the
 energy the SIMPLE working group has invested in discussing MSRP.

4.1 Changes Required to the core MSRP spec

 If a SIMS-inspired relay extension to MSRP is implemented, a number
 of changes need to be made to the core MSRP specification.
 Specifically, many changes are needed when the requirements of
 multiplexing and no head-of-line blocking are introduced.

 The most significant of these deals with the elimination of the VISIT
 command and with connection oriented media. The authors propose that
 the offerer initiate any needed TCP or TLS connections and
 immediately use a SEND to send the first message or portion of a
 message.

 SEND requests will require a new mandatory header field which
 correlates a message or chunk with the session responsible for that
 session. Likewise for some conferencing applications, it may be
 necessary to include the identity of the original sender of the
 request.

 Instead of relying on port numbers, connection identifiers or
 connection handles would be needed in an MSRP URI so that a client
 can provide enough information for a relay to forward over an
 existing TCP or TLS connection.

 To prevent head-of-line blocking, it is necessary for clients to be
 able to stop sending large messages midstream and chunk messages
 using the message/byteranges MIME type. (Since using multiple
 connections as described in section 5.1 of MSRP is undesirable in a
 relay environment). Portions of messages conveyed with SEND need a
 corresponding message identifier to correlate them. Similarly the

Jennings, et al. Expires August 9, 2004 [Page 9]

Internet-Draft SIMS February 2004

 length value in the start line of each MSRP request should be
 replaced with a MIME boundary. The end of that boundary marker would
 signal the end of a request.

 TLS and TCP on the same port with no STARTTLS command would be an
 unacceptable implementation burden for relay providers. Either two
 port numbers of a STARTTLS command should be introduced. Further, it
 is unacceptable and of questionable usefulness to switch from TCP to
 TLS at any time other than immediately at connection establishment.

4.2 MSRP extensions for using relays

 Other features of SIMS could be introduced as an extension to MSRP or
 even as a separate protocol. It is desirable for example to add an
 optional Route header in MSRP which clients can use to direct their
 request through specific relays. The "hop" SDP attribute could be
 added to convey this information in SIP offers and answers.

 Because introducing relays which can repack messages changes the way
 chunks are acknowledged, an end-to-end message delivery mechanism
 such as INFORM would be needed.

 A mechanism to authenticate with relays to prevent open relay and DoS
 amplification is needed. A mechanism similar to AUTH can be added.

5. SIMS parcel structure

5.1 Basic parcel organization

 SIMS defines the concept of a parcel, which is analogous to a
 "message" (a request or response) in HTTP, SIP, and RTSP [20]. In
 SIMS, a message is a complete MIME document with a single Message-ID.
 Since messages can be arbitrarily large, a message can be sent in one
 or more piece, each piece carried in its own parcel.

 SIMS parcels can be either requests or responses. Like HTTP
 messages, SIMS Parcels consist of a start line, headers and an
 optional body. Requests contain a method name and the Request-URI in
 the start line. Responses contain a response code and response phrase
 in the start line.

 The Request-URI in a SIMS request is typically a SIMS URI. A SIMS
 URI takes the form sims:userinfo@hostport;param=value. For example:
 sims:r13-9dELHJ@server.example.com:9000;transport=tls+tcp

 SIMS defines three types of requests, the CHUNK request, the INFORM
 request, and the AUTH request. The semantics of each of these methods
 is described in turn.

Jennings, et al. Expires August 9, 2004 [Page 10]

Internet-Draft SIMS February 2004

 The CHUNK method is used to send a chunk of a message. CHUNK
 requests contain a Message-ID used to associate all the chunks of a
 message. In addition, an optional Thread-ID and Call-ID can
 correlate the chunk with a specific thread or session respectively.
 CHUNK requests are sent one hop at a time. Once a CHUNK request is
 received by a hop, that hop immediately generates a response parcel.
 This kind of request and response is called a per-hop transaction.
 CHUNK requests are per-hop for two reasons: 1) SIMS relays may pack
 or rechunk any message in a different set of chunks as long as they
 preserve ordering, and 2) since the amount of bandwidth available
 between each hop may be radically different, there is no way to set a
 sensible timer for the success or failure of a chunk delivered
 end-to-end.

 CHUNK->
 <- 200 OK
 CHUNK ->
 <- 200 OK

 Chunks of messages are managed using the message/byterangesmessage/
 byteranges MIME container defined in RFC 2616. Each CHUNK parcel
 MAY contain a complete MIME body, or it MAY contain a chunk,
 described using message/byterange. It is not necessary to know the
 length of a message or a chunk before sending, although setting one
 or both of these can help SIMS clients receiving a message, display
 progress information (for example, a progress thermometer).

 INFORM requests are sent to indicate delivery status of a chunk.
 INFORM requests contain a Message-ID header with the same value as
 the corresponding CHUNK requests. INFORM requests are typically sent
 by the final recipient to indicate the delivery status of a chunk.
 (Note that the INFORM may provide status for a different sized chunk
 than sent in any of the original CHUNK requests). Other INFORM
 requests can be sent to indicate a forwarding delay or error
 condition. Unlike CHUNK transactions, INFORM transactions are
 multi-hop. Only the sender of the original message responds to an
 INFORM request. Relays forward responses to an INFORM back to the
 sender of the INFORM.

 <-- INFORM
 <-- INFORM
 200 OK -->
 200 OK -->

 Finally, AUTH requests are used by clients with ephemeral addresses
 to create a handle they can use to receive incoming requests. AUTH
 requests can also contain credentials used to authenticate a client,
 and authorization policy used to block Denial of Service attacks.

https://datatracker.ietf.org/doc/html/rfc2616

Jennings, et al. Expires August 9, 2004 [Page 11]

Internet-Draft SIMS February 2004

 AUTH requests do not contain a Message-ID header. AUTH requests are
 discussed in more detail in Section XXX TODO.

 SIMS responses contain a 3-digit response code. Responses in the
 range 200-299 indicate a successful transaction. Responses in the
 ranges 400-499 and 500-599 indicate client and server errors
 respectively. Responses in the 600-699 range indicate that the
 receiver of a request has declined the request. Unlike in HTTP and
 SIP there are no redirection responses and no provisional responses.

5.2 SIMS Headers

 SIMS parcels contain a number of header fields. Many header fields
 can contain an ordered list of multiple header field values separated
 by commas or printed on several lines with the same header name. For
 example, the following two Accept header fields are semantically
 identical (they contain the same header field values in the same
 order.

 Accept: message/cpim
 Accept: text/plain

 Accept: message/cpim, text/plain

 Note that for many headers fields, the order of header field values
 is significant and must be preserved (for example, see the discussion
 on the Via and Route header fields).

5.2.1 Essential Headers

 There are three addresses which work in concert to properly route
 parcels. The Request-URI and the Route header work together to route
 SIMS requests: the Request-URI is the final target (Client) of the
 request) , and the Route header contains a list of relays (if any)
 which must be visited before contacting the Request-URI. The Via
 header contains a list of SIMS nodes used to route responses back to
 the sender of the request.

 The Via header indicates the path taken by a request so far and the
 path that should be followed to route responses. The "branch"
 parameter contains a transaction identifier which allows SIMS nodes
 to correlate responses with requests. [blah blah]

 The Route header contains a list of SIMS relays through which a
 request must traverse to reach a specific destination. A Route
 header MAY appear in any request. In a request, the top-most Route
 header is contacted according to the rules in [seciton foo] until the
 Route list is exhausted. Then the Request-URI is contacted. In

Jennings, et al. Expires August 9, 2004 [Page 12]

Internet-Draft SIMS February 2004

 addition, a Route header MUST appear in any 2xx response to an AUTH
 request. This indicates the list of URIs that the client should
 advertise for requests targetted to the client.

 The Max-Forwards header contains an integer value of the maximum
 number of nodes the current request may pass through, before a 483
 Too Many Hops error is generated. The Max-Forwards header prevents
 infinite message forwarding loops. When a client sends a request for
 the first time, it sets the Max-Forwards header to the default
 starting value of 20.

5.2.2 Message-Specific headers

 The Message-ID header contains a identifier unique to each message.
 The Message-ID header MUST be present in CHUNK and INFORM requests.
 In CHUNK requests it is used to associate multiple portions of a
 message (sent in several CHUNK requests) for reassembly. In INFORM
 requests it is used to correlate delivery status with the appropriate
 message. The Message-ID header MUST NOT be sent in responses.

 The Thread-ID header is an optional header which can contain a unique
 identifier for threading related messages which do not share a common
 session (for example in a conference, group chat, or data
 collaboration).

 The Call-ID header is optional in CHUNK and INFORM requests to
 correlate a message with a session identifier from other protocols
 such as SIP.

 The Delivery-Status header contains the status of delivery of a
 portion of a message. The status is indicated by one of the
 following tokens. The portion of the message is identified by a
 byterange. [need more!] Copy a bunch of the values from RFC xxxx on
 message delivery disposition. These include dispositions such as
 displayed, dispatched, processed, deleted, denied, failed. the
 delivery status can indicate a portion of the relevant message was
 received (with the range parameter), whether the status was caused by
 human or automatic action, and can include an additional 3-digit
 error code.

 The Message-Context header contains ... text-message or
 multimedia-message = email. instant-message and page-message are
 instant.

5.2.3 Headers related to MIME Content

 The Accept header contains a list of the MIME types that the sender
 of the parcel supports. Note that SIMS mandatory to implement types

Jennings, et al. Expires August 9, 2004 [Page 13]

Internet-Draft SIMS February 2004

 do not need to be included in this list. An empty list implies
 support for only the mandatory to implement types.

 The Accept-Language header contains a list of preferred languages for
 reason phases, message bodies, delivery status, and other textual
 information. The "q" parameter specifies the relative preference
 among the listed languages, with the default value of 1.0 the most
 preferred.

 The Content-Disposition header described how the content of the body
 is to be interpreted. This header is copied from RFC 2183. The
 value "inline" means to render the content immediately, while
 "attachment" means to store the attached MIME type as a file. An
 instant-message with Content-Disposition of attachment is a bit like
 a file transfer.

 The Content-Language header describes the language of the contents of
 the body. It is optional.

 The Content-Length header describes the length of the content of the
 body. It's use is optional when there is no body, or if there is a
 body which has natural MIME boundaries.

 The Content-Type header describes the MIME type of the content. The
 Content-Type header MUST be present if a body is present. The
 Content-Type header MUST be present in CHUNK requests, even if no
 body is present.

 The Message-Context header defined in RFC 3458 [6] describes the
 context of a message (for example: fax-message, voice-message,
 page-message, instant-message). This specification extends this
 header with two additional context values: instant-message, and
 file-delivery.

5.2.4 Headers used for extensibility

 The Allow header contains a list of method names supported by the
 sender of the parcel.

 The Require header contains a list of option tags which the other
 client must support. In a request, this indicates a list which the
 target client MUST support for the request to succeed. If the target
 client does not support these options it returns a 420 "Unsupported
 Extension" error response and includes a list of the option tags it
 does not understand in an Unsupported header field. In a 421
 "Extension Required" response, this indicates a list of option tags
 which the responder expected the requester to advertise in a
 Supported header field value in the request.

https://datatracker.ietf.org/doc/html/rfc2183
https://datatracker.ietf.org/doc/html/rfc3458

Jennings, et al. Expires August 9, 2004 [Page 14]

Internet-Draft SIMS February 2004

 The Supported header lists all the extensions supported by the sender
 of a parcel. The Supported header MAY included in any request, but it
 MUST be included in any 420 response.

 The Unsupported header lists all the extensions in a request which
 where not supported or understood by the sender of a parcel. The
 Unsupported header is only sent in a 420 "Bad Extension" response.

5.2.5 Authentication headers

 The Authentication-Info header provides optional information for HTTP
 Digest authentication. This header MAY be included in the response
 to an AUTH request. Semantics of the header are described in RFC

2617

 The Authorization header contains authentication credentials for HTTP
 Digest authentication in an AUTH request. Section [x.y] . Note that
 the parameters of this header are separated by commas instead of
 semicolons. The presence of commas in this header does not imply
 that there is more than one header field value for this header field
 (only one header field value is allowed). Semantics of the header are
 described in RFC 2617. This header MUST NOT appear in any parcel
 other than an AUTH request.

 The WWW-Authenticate header [more]

5.2.6 Time-related headers

 The Date header contains the date and time in RFC 1123 format. In
 SIMS, the date and time are always expressed in the "GMT" timezone.

 The Expires header in a provides a relative time after which the
 action implied by the method of the request is no longer of interest.
 In a request, the Expires header indicates how long the sender would
 like to . In a response, the Expires header indicates how long the
 responder considers this information relevant (if the responder
 [more]

 The Min-Expires header contains the minimum duration a server will
 permit in an Expires header. It is sent only in 423 "Interval Too
 Brief" responses.

 The Retry-After header [more]

5.2.7 Error-related headers

 The Error-Info header provides a pointer to additional information
 about an error-code in a response, or delivery error (conveyed in an

https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc1123

Jennings, et al. Expires August 9, 2004 [Page 15]

Internet-Draft SIMS February 2004

 INFORM request).

 The Warning header [snore, maybe we should delete this one]

5.2.8 The Server and User-Agent headers

 The Server header contains information about the software used to
 handle the request. Use of this header is useful for debugging and
 troubleshooting, but can also reveal potentially private information.

 The User-Agent header contains information about the software used to
 initiate the request. Use of this header is useful for debugging and
 troubleshooting, but can also reveal potentially private information.

5.2.9 Table of header fields

 The following table explains which headers are optional (o),
 mandatory (m), or not appropriate (-) for requests and responses to
 each method defined in this specification. For the requests, a
 specific 3-digit code indicates that the header is only meaningful
 for that specific code. The code 4xx indicates that the header is
 valid in any 400-class response.

 Requests Responses

 CHUNK INFORM AUTH ??? CHUNK INFORM AUTH ???

 Accept o o o o 4xx 4xx 4xx 4xx
 Accept-Language o o o o 4xx 4xx 4xx 4xx
 Allow o o o o - - 405 405
 Authentication-Info - - - - - - o -
 Authorization - - o - - - - -
 Call-ID o o - o - - - -
 Content-Disposition o o o o o o o o
 Content-Language o o o o o o o o
 Content-Length o o o o o o o o
 Content-Type m o o o o o o o
 Date o o o o o o o o
 Delivery-Status - m - - - - - -
 Error-Info - o - - 4xx 4xx 4xx 4xx
 Expires o o o o o o o o
 Max-Forwards m m m m - - - -
 Message-Context o - - - - - - -
 Message-ID m m - o - - - o
 Min-Expires - - - - 423 423 423 423
 Require o o o o 421 421 421 421
 Retry-After - o - o 501 501 501 501
 Route o o o o - - 2xx -

Jennings, et al. Expires August 9, 2004 [Page 16]

Internet-Draft SIMS February 2004

 Server - - - - o o o o
 Supported o o o o o o o o
 Thread-ID o o - o - - - -
 Unsupported - - - - 420 420 420 420
 User-Agent o o o o - - - -
 Via m m m m m m m m
 Warning - o - - 4xx 4xx 4xx 4xx
 WWW-Authenticate - - - - - - 401 -

 All parcels MUST contain a Via header field. Clients and relays set
 the Via header when sending requests and consume the Via on the
 return to route responses.

 The Route header is used to provide a list of relays to traverse
 before visiting the Request-URI.

 The Message-ID header is used in CHUNK and INFORM requests to refer
 to a specific message.

 The Delivery-Status header is used in INFORM requests to indicate the
 status of a chunk or an entire message. Some examples:

 Delivery-Status: ok;range=0-131071
 Delivery-Status: ok;range=*
 Delivery-Status: stored
 Delivery-Status: failure;error=disk-full

 Other Optional headers (temporal relevance, priority)

 Note Expire header must look like Expire: 3600 meaning expires 3600
 seconds in future. Absolute times are not supported.

5.3 SIMS Responses

 Response codes semantically convey the success or failure of a
 request. These meaning of each response code is described briefly.

 200 OK indicates that the request was successful. 202 Accepted
 indicates that the request was accept for further processing.

 [TODO: fill-in semantics]
 400 Bad Request
 401 Unauthorized
 402 Payment Required
 403 Forbidden
 404 Not Found
 405 Method Not Allowed
 406 Not Acceptable

Jennings, et al. Expires August 9, 2004 [Page 17]

Internet-Draft SIMS February 2004

 408 Request Timeout
 409 Puzzle Required
 410 Gone
 413 Request Entity Too Large
 414 Request-URI Too Large
 415 Unsupported Media Type
 416 Unsupported URI Scheme
 420 Bad Extension
 421 Extension Required
 423 Interval Too Brief
 480 Temporarily not available
 481 Message/Transaction Does Not Exist
 482 Loop Detected
 483 Too Many Hops
 488 Not Acceptable Here
 491 Request Pending
 493 Undecipherable

 500 Internal Server Error
 501 Not Implemented
 503 Service Unavailable
 504 Server Time-out

 603 Decline indicates that the request was declined due to user or
 administrator policy

5.4 SIMS bodies

 Body handling and use of message/byteranges

 CHUNK
 Content-type: multipart/byteranges; boundary=------bound123456

 -------bound123456
 Content-type: text/plain
 Content-range: bytes 0-2/8

 hi
 -------bound123456--

 The "0" indicates that the data in this body starts is for byte
 location 0 in the complete message. The "2" is a hint of the byte
 position of the last byte in this chunk but MUST be ignored if the
 actual size is different. The "8" indicates the size of the total
 parcel. If it is unknown, a * would be used.

 An important feature of the way the bodies are defined is that a
 network element sending a message, can decide to change the size of

Jennings, et al. Expires August 9, 2004 [Page 18]

Internet-Draft SIMS February 2004

 what it is sending after it starts sending. For example, say that an
 element has 500 bytes of a message that start at location 1000 to
 2000. It expects to send all 500 bytes but after sending the first 5
 bytes that contain the the word hello, the element discovers there is
 a higher priority message that it needs to send over the same link.
 It closes off the first messages. The receiver will get something
 that looks like:

 CHUNK
 Content-type: multipart/byteranges; boundary=-----bound123456

 -------bound123456
 Content-type: text/plain
 Content-range: bytes 1000-1499/8000

 12345
 -------bound123456--

 If a relay has selected a boundary marker of "bound1234" and
 encounters the string "bound1234" in the data it is sending. It can
 just close off the current parcel and start a new one so there is no
 need to escape any of the data inside of the multipart bodies.

 The multipart boundaries are constructed in a special way to allow
 for simple high speed parsing of them. In addition to the two dashes
 (-) that are normally before a boundary, the boundary itself MUST
 start with five additional dashes followed by a string that MUST have
 at least 16 bits of randomness in it. For example, a valid boundary
 would be "boundary=-----6ea7" where the 6ea7 was a randomly chosen
 four digit hexadecimal number.

 The advantage of this is there will always be several "-" in a row in
 the boundaries that the scanner is searching for. This guarantees
 that 4 of then will be aligned on a 32 bit boundary and the scanner
 can quickly look for them by just looking for a 32 bit value that is
 equal to the "----". Once this word is found, the scanner can
 carefully check and see if this is the boundary it is looking for or
 just some random data.

 All SIMS clients and relays must support multipart/related,
 multipart/mixed, message/byteranges, and multipart/signed MIME types.
 It is not required to check the signatures if they don't support S/
 MIME but they still need to be able to receive the content in a
 multipart/signed messages. Any MIME type that is acceptable for
 content (such as text/plain) must also be supported inside any
 supported MIME container.

Jennings, et al. Expires August 9, 2004 [Page 19]

Internet-Draft SIMS February 2004

6. Procedures

6.1 Client behavior

6.1.1 Sending requests

 To send a new request, clients start by setting the Request-URI to
 the final target (the URI of the receiving client) and the method of
 the request (ex: CHUNK, AUTH, INFORM). The client also includes a
 Max-Forwards header with the default value (20), and a Via
 identifying itself. If the requests needs to be routed through any
 relays, those relay should be listed in a Route header field. If a
 body is present in the request, the appropriate Content-* headers
 need to be present (for example: Content-Type, Content-Disposition,
 Content-Length). If the attached content is large as defined by
 local policy, the outermost MIME container SHOULD be of the type
 message/byteranges. If any extensions involving option-tags are
 required, the client includes these in a Require header field. The
 client also includes any method-specific headers and any optional
 headers desired.

 When a new request is ready to send, the client MUST determine the
 next-hop target URI by taking the URI in the topmost Route header
 field value if one exists or the Request-URI if no Route header field
 values exist. Once the next-hop URI is determined, the client MUST
 use the resolution rules described in Section 8 to find the
 appropriate address, port, and transport to use. Next the client
 MUST check if there is already an existing suitable connection to the
 next-hop target. If so, the client MUST send the request over the
 most suitable connection. Suitability MAY be determined by a variety
 of factors such as measured load and local policy, however in most
 simple implementations a connection will be suitable if it exists and
 is in an active state.

 If the client wants to interrupt sending a request after the request
 headers have been sent (while sending the body contents) to deliver
 another parcel, the client SHOULD close the MIME boundary associated
 with the outermost request body, and therefore complete the request
 early. Clients MUST NOT interrupt sending parcel start lines (the
 request or response line) or parcel headers. In addition, clients
 SHOULD chunk messages based on the amount of data sent in a
 configurable amount of time. The default time for a chunk is one
 minute.

 After the last byte of the request is sent, the client MUST set a
 timer for 32 seconds. If a response to that request is not received
 within 32 seconds, the client will consider that the request failed.
 When receiving a response, all SIMS nodes MUST verify that the top

Jennings, et al. Expires August 9, 2004 [Page 20]

Internet-Draft SIMS February 2004

 Via header field value corresponds to the node receiving the
 response, and that the branch tag matches a valid transaction for
 that node. If either case is not true the client SHOULD silently
 discard the response. If the branch tag matches a valid transaction,
 the client MUST mark the transaction completed.

 If the client receives a success response, it should continue sending
 any additional portions of the relevant outstanding message. If the
 client receives a recoverable error (for example a 416 Not Acceptable
 response), the client SHOULD try to resubmit the request if it is
 capable after modifying the request to address the nature of the
 error. Note that any resubmitted request MUST have a different
 transaction identifier than the original request.

 When sending a CHUNK request, the client MUST include a Message-ID
 header, and MAY add Thread-ID, Call-ID, Content-Disposition, and
 Message-Context headers to further identify the handling of the
 content of the message. If the client wishes to convey that the
 parcel is no longer relevant after some time period, it can include
 an Expires header field indicating when the chunk should no longer be
 forwarded.

 When sending an INFORM request, the client MUST include a Message-ID
 header and a Delivery-Status header. The client MAY also include
 Error-Info, Retry-After, and Warning headers if the Delivery-Status
 does not indicate successful delivery.

 When sending an AUTH request, the client MAY add an Expires header to
 request a SIMS URI that is valid for no longer that the provided
 interval. If an AUTH request returns a 401 Unauthorized request, the
 client SHOULD fetch the Digest challenge from the WWW-Authenticate
 header in the response and retry the AUTH request, including an
 Authorization header with the Digest response. Unlike in HTTP and
 SIP, Digest authentication in SIMS is only permitted for AUTH
 requests.

6.1.2 Receiving Requests

 Upon receiving a valid SIMS request, SIMS clients add a "received"
 parameter to the topmost Via to indicate to the client the connection
 handle over which the request arrived. Clients MUST verify the
 Request-URI corresponds to an address managed by the client. (A
 collocated client and relay would handle the request as a relay). If
 the request is unacceptable for any reason, the client creates an
 appropriate error response and returns it over the connection from
 which the request arrived.

 To form a request, a client deletes all the headers from the response

Jennings, et al. Expires August 9, 2004 [Page 21]

Internet-Draft SIMS February 2004

 except for the Via headers. If an extension is required in the
 response, the client includes the required option-tags in a Require
 header. If a body is present (typically one is not), include the
 appropriate Content-* headers. If an error occurred, the client
 SHOULD include any headers mentioned in the description of the
 corresponding response code. (For example the Accept header should be
 included in a 416 Not Acceptable response). The receiving client MAY
 also include Retry-After, Error-Info, and/or Warning header fields.
 If the request was successful, the client returns a 200 or 202
 response and may optionally include an Expires header indicating the
 actual time after which the receiving client will ignore the contents
 of the request.

 When a client receives a CHUNK request, it SHOULD send an INFORM
 request to the client which initiated the content indicating the
 delivery status of the corresponding message.

6.1.3 Receiving CHUNK requests

 A SIMS client that receives a CHUNK request MUST respond with a final
 response immediately. A 200-class response indicates the successful
 delivery of the message fragment to the final hop, but does not mean
 that the message has been read by the user.

 The final response to the CHUNK MUST be sent to the previous hop,
 which could be a SIMS relay or the sender of the CHUNK.

 The 2xx response to the CHUNK MUST NOT contain a body. A 4xx or 5xx
 response indicates that the message was not delivered successfully.
 A 6xx response means it was delivered successfully, but refused.

 The client SHOULD reconstruct the original message sent by combining
 the message fragments that it receives in different CHUNK requests
 with the same messageID. It SHOULD not display or store the message
 until the entire message has been reconstructed.

 After the final response has been sent, the client MUST send back an
 INFORM to the sender of the CHUNK request,indicating the successful
 end-to-end delivery of the message fragment. For more details on
 constructing the INFORM request, see section Section 6.1.4.

 After the message has received fully, the client may display the
 message to the user. If the CHUNK expires before the client is able
 to present the message to the user, the client SHOULD handle the
 message based on local policy. Example policies include: deleting the
 message without displaying it, displaying to the user with an
 indication that the message is expired, or some other policy. If the
 message is displayed, the client SHOULD clearly indicate to the user

Jennings, et al. Expires August 9, 2004 [Page 22]

Internet-Draft SIMS February 2004

 that the message has expired.

6.1.4 Sending INFORM requests

 When a client or a note taker receives a message parcel, it MUST send
 an INFORM request that indicates the byte range that has been
 received. The route header for this INFOM message is formed by
 looking at the Via headers of the CHUNK request that was received. If
 an error response is received when sending an INFOM, it is not
 retried.

 A relay can also send an INFORM to indicate that some error happened
 when sending sending a parcel. It is possible to get INFORM requests
 a long time after the original message was sent. If a client receives
 an INFORM for a message it knows nothing about, it can discard the
 INFORM.

6.1.5 Sending AUTH requests

 Clients can be configured (typically through discovery or manual
 provisioning) with a list of relays they need to use. They MUST be
 able to form a connection to each relay and send an AUTH command to
 get a URI that can be used in route headers. The client can
 authenticate the relay by looking at the relay's TLS certificate. The
 relay MUST authenticate the client using digest authentication.

 The relay will return a URI, or list of URIs, in the Route header of
 the response. When using a session-protocol such as SIP, these URI
 can be used by the client in the route set that is sent in the SDP to
 setup the session. The same URI can be used for multiple session to
 send to the client.

 Example with two relays on one side. Need to AUTH to first, then use
 the supplied route header to AUTH to second thought the first.

 NOTE - only auth not auth-int is needed because TLS provides
 integrity

 When a client wishes to use more than one relay, they must AUTH to
 each relay they wish to use. Consider a client A, that whishes
 messages to flow from A to the first relays, R1, then on to a second
 relays, R2. This client with do a normal AUTH with R1. It will then
 do an AUTH transaction with R2 that is routed through R1. The client
 will form this AUTH messages by setting the request URI to R2 and
 adding a route header with the URI learned from R1 then sending this
 message to R1. R1 will forward this like a INFORM request is
 forwarded to R2.

Jennings, et al. Expires August 9, 2004 [Page 23]

Internet-Draft SIMS February 2004

 When the client sends an AUTH request, it may set the Expires header
 a relative time. The relay will return a URI that is only valid for
 that periods of time.

6.1.6 Managing Connections

 Clients should open connection whenever they wish to deliver a
 request and no suitable connection exists. For client to client
 connections, a client should close a connection when there are no
 longer any sessions associated with the connection. For connections
 to relays, the client should leave a connection up until no sessions
 are using the connection for a locally defined period of time, which
 defaults to 5 minutes for foreign relays and one hour for the
 client's relays.

6.2 Relay behavior

6.2.1 Generic request behavior

 Like clients receiving requests, relays receiving requests MUST add a
 "received" parameter to the top most Via header. Relays then examine
 the topmost Route header field value and remove this if it matches a
 URI corresponding to the relay. If no Route header field value is
 present, the relay examines the Request-URI to determine if the
 Request-URI corresponds to the relay itself.

6.2.2 Forwarding CHUNK requests

 A SIMS relay that receives a CHUNK request MUST respond with a final
 response immediately. A 200-class response indicates the successful
 delivery of the message fragment, but does not mean that the message
 has been forwarded on to its next hop.

 The final response to the CHUNK MUST be sent to the previous hop,
 which could be a SIMS relay or the sender of the CHUNK.

 The 2xx response to the CHUNK MUST NOT contain a body. A 4xx or 5xx
 response indicates that the message was not delivered successfully.
 A 6xx response means it was delivered successfully, but refused.

 The SIMS relay MAY further break up the message fragment received in
 the CHUNK request into smaller fragments and forward them to the next
 hop in separate CHUNK requests. It MAY also combine message fragments
 received before or after this CHUNK request, and forward them out in
 a single CHUNK request to the next hop identified in the Route
 header. The SIMS relay MUST NOT combine message fragments from CHUNK
 requests with different messageIDs.

Jennings, et al. Expires August 9, 2004 [Page 24]

Internet-Draft SIMS February 2004

 The SIMS relay MAY choose whether to further fragment the message, or
 combine message fragments, or send the message as is, based on some
 policy which is administered, or based on the network speed to the
 next hop, or any other mechanism.

 If the SIMS relay has knowledge of the byte range that it will
 transmit to the next hop, it SHOULD update the message/byteranges
 parameter in the CHUNK request appropriately.

 Before forwarding the CHUNK request to the next hop, the SIMS relay
 MUST inspect the URI in the topmost Route header field value. If it
 indicates this relay, the relay removes it from the Route header
 field. It MUST then delete all the Via headers from the new request.
 Then it MUST insert a Via header into the request for itself.

 If the SIMS relay fails to forward the CHUNK on to the next hop, it
 SHOULD return an INFORM back to the sender of the CHUNK indicating
 the reason for failure. [how? example. see section]

6.2.3 Receiving AUTH requests

 When a relay receives an AUTH request, it must digest challenge the
 request. Once the challenge is complete, it MUST provide a URI that
 can be used in future route headers. When the route URI is received
 in future messages. It MUST verify that this URI was issues by this
 relay. It MUST ensure that the message is either being forwarded from
 an entity that did the AUTH request that resulted in this URI or it
 is being forwarded to the the entity that did the AUTH request that
 resulted in this URI.

 The relay does not necessarily needs to save state to meet these
 requirements. One way that a relay could implement this is the
 following. When an AUTH request arrives, the relay concatenates the
 current time, the identity of the sender of the AUTH request, the
 identity of the previous hop the request came from. It then takes the
 concatenates string and encrypts it with a key only the relay knows
 and uses this for form the user portion of the sims URI that it
 returns. Later when it receives a URI, it can decrypt this
 information and use it to decide if the request should be forwarded
 or not. If the relay is actually several servers that share a DNS
 name, the URI may also encrypt which server actually has the
 connection to the client.

 When a relay receive an AUTH request, it must authenticate the client
 that sent it with digest, it must also authenticate the previous hop
 that send the message to it. When previous hop was a relay this is
 done with the mutual TLS while when the previous hop was a client
 mutual TLS MAY be used it is available or the client authorization

Jennings, et al. Expires August 9, 2004 [Page 25]

Internet-Draft SIMS February 2004

 from the digest is used. The relay will generate a URI that it a
 token that allows messages to be forwarded to and from this client.
 If the previous hop was authenticated by mutual TLS, then the URI
 MUST be valid to route across any connection the relay has to the
 previous hop relay. If the previous hop was not authenticated by
 mutual TLS, then the URI MUST only be valid to route across the same
 connection that the AUTH was received on. If this connection is
 closed then reopened, the URI MUST NOT be valid. Valid to route means
 that when the relay receives a messages that contains this URI, if
 the message it going to element that was the previous hop in the
 AUTH, then the relay can forward it and if the messages is coming
 from previous hop in the AUTH, then the relay can forward it to any
 location, otherwise the RELAY must discard the message and MAY send a
 INFORM indicating the auth URI was bad. If the AUTH request contains
 an Expires header, then the relay MUST ensure that the URI is not
 valid to route after the expiry time.

 It is possible to implement all of the above requirements without the
 relay saving any state. When a relay starts up it could pick a crypto
 random 128 bit password (K) and 128 bit initialization vector (IV).
 If the relay was actually a NDS farm, all the machines in the farm
 would need to share the same K. When an ATUH request was received the
 relay form a string that contains: the expiry time of the URI, an
 indication if the previous hop was mutual TLS authenticated or not
 and it it was, the name of the previous hop, if it was not the
 identifier for the connection which received the AUTH request. This
 string would be padded by appending a byte with the value 0x80 then
 adding zero or more bytes with the value of 0x00 until the string
 length is a multiple of 16 bytes long. A new random IV vector would
 be selected (it needs to change because it forms the salt) and the
 padded string would be encrypted using AES-CBC with a key of K. The
 IV and encrypted data and an SPI (security parameter index) that
 changed each time K changed would be base 64 encoded and form the
 user portion of the request URI. The SPI allows the key to be changed
 and for the system to know which K should be used. Later when the
 relay received this URI, it could decrypt it and check the current
 time was before the expiry time and check that the messages was
 coming from or going to the connection or location specified in the
 URI. Integrity protection is not required because it is extremely
 unlikely that random data that was decrypted would result in a valid
 location that was the same as the messages was routing to or from.
 When implementing something like this, implementers should be careful
 not to use a scheme like EBE that would allows portion of encrypted
 tokens to be cut and paste into others.

 Note: A successful AUTH response returns a Route header which
 contains a base SIMS URI that the client can use to create a number
 of different URIs which are all associated with the current

Jennings, et al. Expires August 9, 2004 [Page 26]

Internet-Draft SIMS February 2004

 connection.

6.2.4 Forwarding INFORM requests

 A SIMS relay that receives an INFORM request, MUST inspect the URI in
 the topmost Route header field value. If it indicates this relay, the
 relay removes it from the Route header field. It MUST then insert a
 Via header into the request. Then, it MUST forward the INFORM request
 on to the next hop listed in the Route Header.

6.2.5 Forwarding Responses

 Relays forward responses by first verifying the topmost Via
 corresponds to the Via and that the response matches a valid
 transaction. Then the relay sends the request over the connection
 which corresponds to the handle in the received tag of the next Via
 header field value. If this connection has closed, then the response
 is silently discarded.

 A SIMS relay can distinguish between responses for an INFORM and a
 CHUNK request based on the transaction ID of the request (the branch
 tag in the Via)

6.2.6 Managing Connections

 Relays should keep connection open as long as possible. If a
 connection has not been used in a significant time (many minutes) it
 could be closed. If the relay runs out of resource and must close
 connections, it should first stop accepting new connections from
 clients then start closing connections on a least recently used
 basis.

6.2.7 Forwarding unknown requests

 Requests with an unknown method are forwarded as if they were INFORM
 requests.

6.3 Acting as a Message Taker

 A Message Taker merely acts like a Client which returns different
 INFORM responses.

 TODO - how do I let the message taker know to send all the requests
 it saved for me to me. I assume I still send INFOMS to the original
 sender as well as the message take to let them know I got the
 message.

Jennings, et al. Expires August 9, 2004 [Page 27]

Internet-Draft SIMS February 2004

7. Formal Syntax

 The following syntax specification uses the augmented Backus-Naur
 Form (BNF) as described in RFC-2234 [7]. Section 6.1 of RFC 2234
 defines a set of core rules that are used by this specification, and
 not repeated here. Implementers need to be familiar with the
 notation and content of RFC 2234 in order to understand this
 specification. Certain basic rules are in uppercase, such as SP,
 LWS, HTAB, CRLF, DIGIT, ALPHA, etc. Angle brackets are used within
 definitions to clarify the use of rule names.

 The use of square brackets is redundant syntactically. It is used as
 a semantic hint that the specific parameter is optional to use.

 The following rules are used throughout this specification to
 describe basic parsing constructs. Also, several rules are
 incorporated from RFC 2396 [5] but are updated to make them compliant
 with RFC 2234 [10]. These include:

 alphanum = ALPHA / DIGIT

 reserved = ";" / "/" / "?" / ":" / "@" / "&" / "=" / "+"
 / "$" / ","
 unreserved = alphanum / mark
 mark = "-" / "_" / "." / "!" / "~" / "*" / "'"
 / "(" / ")"
 escaped = "%" HEXDIG HEXDIG

 The most frequently-used production in SIMS is the token. Unless
 otherwise stated, tokens are case- insensitive. Non-token characters
 MUST be in a quoted string to be used within a parameter value.

 token = 1*(alphanum / "-" / "." / "!" / "%" / "*"
 / "_" / "+" / "`" / "'" / "~")

 A string of text is parsed as a single word if it is quoted using
 double-quote marks. In quoted strings, quotation marks (") and
 backslashes (\) need to be escaped. The backslash character (\) MAY
 be used as a single-character quoting mechanism only within
 quoted-string and comment constructs. Unlike HTTP/1.1, the
 characters CR and LF cannot be escaped by this mechanism to avoid
 conflict with line folding and header separation.

 quoted-string = SWS DQUOTE *(qdtext / quoted-pair) DQUOTE
 qdtext = LWS / %x21 / %x23-5B / %x5D-7E
 / UTF8-NONASCII
 quoted-pair = "\" (%x00-09 / %x0B-0C / %x0E-7F)

https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc2234#section-6.1
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc2234

Jennings, et al. Expires August 9, 2004 [Page 28]

Internet-Draft SIMS February 2004

 Unlike SIP/2.0 and HTTP/1.1 which allow line folding, line folding in
 SIMS is not allowed. In SIMS header field values, all unquoted
 linear white space has the same semantics as SP. A recipient MAY
 replace any unquoted linear white space with a single SP before
 interpreting the field value or forwarding the message downstream.

 The SWS construct is used when linear white space is optional,
 generally between tokens and separators. When tokens are used or
 separators are used between elements, whitespace is often allowed
 before or after the characters below.

 LWS = 1*WSP
 SWS = [LWS]

 HCOLON = SWS ":" SWS

 EQUAL = SWS "=" SWS ; equal
 LPAREN = SWS "(" SWS ; left parenthesis
 RPAREN = SWS ")" SWS ; right parenthesis
 RAQUOT = ">" SWS ; right angle quote
 LAQUOT = SWS "<"; left angle quote
 COMMA = SWS "," SWS ; comma
 SEMI = SWS ";" SWS ; semicolon
 LDQUOT = SWS DQUOTE; open double quotation mark
 RDQUOT = DQUOTE SWS ; close double quotation mark

 The TEXT-UTF8 rule is only used for descriptive field contents and
 values that are not intended to be interpreted by the message parser.
 Words of *TEXT-UTF8 contain characters from the UTF-8 charset (RFC

2279 [7]). The TEXT-UTF8-TRIM rule is used for descriptive field
 contents that are n t quoted strings, where leading and trailing LWS
 is not meaningful. In this regard, SIMS differs from HTTP, which
 uses the ISO 8859-1 character set.

 TEXT-UTF8-TRIM = 1*TEXT-UTF8char *(*LWS TEXT-UTF8char)
 TEXT-UTF8char = %x21-7E / UTF8-NONASCII
 UTF8-NONASCII = %xC0-DF 1UTF8-CONT
 / %xE0-EF 2UTF8-CONT
 / %xF0-F7 3UTF8-CONT
 / %xF8-Fb 4UTF8-CONT
 / %xFC-FD 5UTF8-CONT
 UTF8-CONT = %x80-BF

 SIMS-URI = "sims:" [userinfo] hostport
 uri-parameters

https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc2279

Jennings, et al. Expires August 9, 2004 [Page 29]

Internet-Draft SIMS February 2004

 userinfo = user "@"
 user = 1*(unreserved / escaped / user-unreserved)
 user-unreserved = "&" / "=" / "+" / "$" / "," / ";" / "?" / "/"
 hostport = host [":" port]
 host = hostname / IPv4address / IPv6reference
 hostname = *(domainlabel ".") toplabel ["."]
 domainlabel = alphanum
 / alphanum *(alphanum / "-") alphanum
 toplabel = ALPHA / ALPHA *(alphanum / "-") alphanum

 IPv4address = 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT
 IPv6reference = "[" IPv6address "]"
 IPv6address = hexpart [":" IPv4address]
 hexpart = hexseq / hexseq "::" [hexseq] / "::" [hexseq]
 hexseq = hex4 *(":" hex4)
 hex4 = 1*4HEXDIG
 port = 1*DIGIT

 uri-parameters = *(";" uri-parameter)
 uri-parameter = transport-param / method-param / other-param
 transport-param = "transport="
 ("tcp" / "tls+tcp" / other-transport)
 other-transport = token
 method-param = "method=" Method
 other-param = pname ["=" pvalue]
 pname = 1*paramchar
 pvalue = 1*paramchar
 paramchar = param-unreserved / unreserved / escaped
 param-unreserved = "[" / "]" / "/" / ":" / "&" / "+" / "$"

 SIMS-parcel = Request / Response
 Request = Request-Line
 *(parcel-header)
 CRLF
 [parcel-body]
 Request-Line = Method SP Request-URI SP SIMS-Version CRLF
 Request-URI = SIMS-URI / anyURI
 anyURI = scheme ":" *uric
 scheme = ALPHA *(ALPHA / DIGIT / "+" / "-" / ".")
 uric = reserved / unreserved / escaped
 SIMS-Version = "SIMS" "/" 1*DIGIT "." 1*DIGIT

 parcel-header = (Accept
 / Accept-Language
 / Allow
 / Authentication-Info
 / Authorization

Jennings, et al. Expires August 9, 2004 [Page 30]

Internet-Draft SIMS February 2004

 / Call-ID
 / Content-Disposition
 / Content-Language
 / Content-Length
 / Content-Type
 / Date
 / Delivery-Status
 / Error-Info
 / Expires
 / Max-Forwards
 / Message-Context
 / Message-Id
 / Min-Expires
 / Require
 / Retry-After
 / Route
 / Server
 / Supported
 / Thread-ID
 / Unsupported
 / User-Agent
 / Via
 / Warning
 / WWW-Authenticate
 / extension-header) CRLF

 CHUNKm = %x43.48.55.4E.4B ; CHUNK in caps
 INFORMm = %x49.4E.46.4F.52.4D ; INFORM in caps
 AUTHm = %x41.55.54.48 ; AUTH in caps
 Method = CHUNKm / INFORMm / AUTHm
 / extension-method

 extension-method = token

 Response = Status-Line
 *(message-header)
 CRLF
 [message-body]

 Status-Line = SIMS-Version SP Status-Code SP Reason-Phrase CRLF
 Status-Code = Success
 / Client-Error
 / Server-Error
 / Global-Failure
 / extension-code
 extension-code = 3DIGIT

Jennings, et al. Expires August 9, 2004 [Page 31]

Internet-Draft SIMS February 2004

 Reason-Phrase = *(reserved / unreserved / escaped
 / UTF8-NONASCII / UTF8-CONT / SP / HTAB)

 Success = "200" ; OK
 / "202" ; Accepted

 Client-Error = "400" ; Bad Request
 / "401" ; Unauthorized
 / "402" ; Payment Required
 / "403" ; Forbidden
 / "404" ; Not Found
 / "405" ; Method Not Allowed
 / "406" ; Not Acceptable
 / "408" ; Request Timeout
 / "409" ; Puzzle Required
 / "410" ; Gone
 / "413" ; Request Entity Too Large
 / "414" ; Request-URI Too Large
 / "415" ; Unsupported Media Type
 / "416" ; Unsupported URI Scheme
 / "420" ; Bad Extension
 / "421" ; Extension Required
 / "423" ; Interval Too Brief
 / "480" ; Temporarily not available
 / "481" ; Message/Transaction Does Not Exist
 / "482" ; Loop Detected
 / "483" ; Too Many Hops
 / "488" ; Not Acceptable Here
 / "491" ; Request Pending
 / "493" ; Undecipherable

 Server-Error = "500" ; Internal Server Error
 / "501" ; Not Implemented
 / "503" ; Service Unavailable
 / "504" ; Server Time-out

 Global-Failure = "603" ; Decline

 Accept = "Accept" HCOLON
 [accept-range *(COMMA accept-range)]
 accept-range = media-range *(SEMI accept-param)
 media-range = ("*/*"
 / (m-type "/" "*")
 / (m-type "/" m-subtype)
) *(SEMI m-parameter)
 accept-param = ("q" EQUAL qvalue) / generic-param
 qvalue = ("0" ["." 0*3DIGIT])

Jennings, et al. Expires August 9, 2004 [Page 32]

Internet-Draft SIMS February 2004

 / ("1" ["." 0*3("0")])
 generic-param = token [EQUAL gen-value]
 gen-value = token / host / quoted-string

 Accept-Language = "Accept-Language" HCOLON
 [language *(COMMA language)]
 language = language-range *(SEMI accept-param)
 language-range = ((1*8ALPHA *("-" 1*8ALPHA)) / "*")

 Allow = "Allow" HCOLON [Method *(COMMA Method)]

 Authentication-Info = "Authentication-Info" HCOLON ainfo
 *(COMMA ainfo)
 ainfo = nextnonce / message-qop
 / response-auth / cnonce
 / nonce-count
 nextnonce = "nextnonce" EQUAL nonce-value
 response-auth = "rspauth" EQUAL response-digest
 response-digest = LDQUOT *LHEX RDQUOT

 Authorization = "Authorization" HCOLON credentials
 credentials = ("Digest" LWS digest-response)
 / other-response
 digest-response = dig-resp *(COMMA dig-resp)
 dig-resp = username / realm / nonce / digest-uri
 / dresponse / algorithm / cnonce
 / opaque / message-qop
 / nonce-count / auth-param
 username = "username" EQUAL username-value
 username-value = quoted-string
 digest-uri = "uri" EQUAL LDQUOT digest-uri-value RDQUOT
 digest-uri-value = rquest-uri ; Equal to request-uri as specified
 by HTTP/1.1
 message-qop = "qop" EQUAL qop-value
 cnonce = "cnonce" EQUAL cnonce-value
 cnonce-value = nonce-value
 nonce-count = "nc" EQUAL nc-value
 nc-value = 8LHEX
 dresponse = "response" EQUAL request-digest
 request-digest = LDQUOT 32LHEX RDQUOT
 auth-param = auth-param-name EQUAL
 (token / quoted-string)
 auth-param-name = token
 other-response = auth-scheme LWS auth-param
 *(COMMA auth-param)
 auth-scheme = token
 LHEX = DIGIT / %x61-66 ;lowercase a-f
 ; Some elements (authentication) force hex alphas to be lower case.

Jennings, et al. Expires August 9, 2004 [Page 33]

Internet-Draft SIMS February 2004

 Call-ID = "Message-ID" HCOLON msgid
 msgid = token ["@" token]

 Content-Disposition = "Content-Disposition" HCOLON
 disp-type *(SEMI disp-param)
 disp-type = "render" / "status" /
 disp-extension-token
 disp-param = handling-param / generic-param
 handling-param = "handling" EQUAL
 ("optional" / "required"
 / other-handling)
 other-handling = token
 disp-extension-token = token

 Content-Language = "Content-Language" HCOLON
 language-tag *(COMMA language-tag)
 language-tag = primary-tag *("-" subtag)
 primary-tag = 1*8ALPHA
 subtag = 1*8ALPHA

 Content-Length = "Content-Length" HCOLON 1*DIGIT
 Content-Type = "Content-Type" HCOLON media-type
 media-type = m-type "/" m-subtype *(SEMI m-parameter)
 m-type = discrete-type / composite-type
 discrete-type = "text" / "image" / "audio" / "video"
 / "application" / extension-token
 composite-type = "message" / "multipart" / extension-token
 extension-token = ietf-token / x-token
 ietf-token = token
 x-token = "x-" token
 m-subtype = extension-token / iana-token
 iana-token = token
 m-parameter = m-attribute EQUAL m-value
 m-attribute = token
 m-value = token / quoted-string

 Date = "Date" HCOLON rfc1123-date
rfc1123-date = wkday "," SP date1 SP time SP "GMT"

 date1 = 2DIGIT SP month SP 4DIGIT
 ; day month year (e.g., 02 Jun 1982)
 time = 2DIGIT ":" 2DIGIT ":" 2DIGIT
 ; 00:00:00 - 23:59:59
 wkday = "Mon" / "Tue" / "Wed"
 / "Thu" / "Fri" / "Sat" / "Sun"
 month = "Jan" / "Feb" / "Mar" / "Apr"
 / "May" / "Jun" / "Jul" / "Aug"
 / "Sep" / "Oct" / "Nov" / "Dec"

https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc1123

Jennings, et al. Expires August 9, 2004 [Page 34]

Internet-Draft SIMS February 2004

 Delivery-Status = "Delivery-Status" HCOLON msgstat
 *(SEMI delivery-params)
 msgstat = "ok" / "stored" / "failure" / "delay" / token
 delivery-params = delivery-range / deliver-err /
 delivery-retry / generic-param
 delivery-range = "range" EQUAL
 ("*" / (begin-range "-" end-range))
 begin-range = 1*DIGIT
 end-range = 1*DIGIT
 delivery-err = "error" EQUAL (token / quoted-string)
 delivery-retry = "retry-after" EQUAL delta-seconds
 delta-seconds = 1*DIGIT

 Error-Info = "Error-Info" HCOLON info *(COMMA info)
 info = LAQUOT anyURI RAQUOT *(SEMI generic-param)

 Expires = "Expires" HCOLON delta-seconds

 Max-Forwards = "Max-Forwards" HCOLON 1*DIGIT

 Message-ID = "Message-ID" HCOLON msgid

 MIME-Version = "MIME-Version" HCOLON 1*DIGIT "." 1*DIGIT

 Min-Expires = "Min-Expires" HCOLON delta-seconds

 Priority = "Priority" HCOLON priority-value
 priority-value = "emergency" / "urgent" / "normal"
 / "non-urgent" / other-priority
 other-priority = token

 Require = "Require" HCOLON option-tag *(COMMA option-tag)
 option-tag = token

 Retry-After = "Retry-After" HCOLON delta-seconds
 *(SEMI retry-param)
 retry-param = ("duration" EQUAL delta-seconds)
 / generic-param

 Route = "Route" HCOLON route-param *(COMMA route-param)
 route-param = LAQUOT SIMS-URI RAQUOT

 Server = "Server" HCOLON server-val *(LWS server-val)
 server-val = product / comment
 product = token ["/" product-version]
 product-version = token
 comment = LPAREN *(ctext / quoted-pair / comment) RPAREN
 ctext = %x21-27 / %x2A-5B / %x5D-7E / UTF8-NONASCII

Jennings, et al. Expires August 9, 2004 [Page 35]

Internet-Draft SIMS February 2004

 / LWS

 Supported = "Supported" HCOLON option-tag *(COMMA option-tag)

 Thread-ID = "Thread-ID" HCOLON msgid

 Unsupported = "Unsupported" HCOLON option-tag *(COMMA option-tag)

 User-Agent = "User-Agent" HCOLON server-val *(LWS server-val)

 Via = "Via" HCOLON via-parm *(COMMA via-parm)
 via-parm = sent-protocol LWS sent-by *(SEMI via-params)
 via-params = via-received / via-branch
 / via-extension
 via-received = "received" EQUAL connection-handle
 connection-handle = token / hostport / quoted-string
 via-branch = "branch" EQUAL token
 via-extension = generic-param
 sent-protocol = protocol-name "/" protocol-version
 "/" transport
 protocol-name = "SIMS" / token
 protocol-version = token
 transport = "TCP" / "TLS+TCP" / other-transport
 sent-by = host [":" port]

 Warning = "Warning" HCOLON warning-value
 *(COMMA warning-value)
 warning-value = warn-code SP warn-agent SP warn-text
 warn-code = 3DIGIT
 warn-agent = hostport / pseudonym
 ; the name or pseudonym of the server adding
 ; the Warning header, for use in debugging
 warn-text = quoted-string
 pseudonym = token

 WWW-Authenticate = "WWW-Authenticate" HCOLON challenge
 challenge = ("Digest" LWS digest-cln *(COMMA digest-cln))
 / other-challenge
 other-challenge = auth-scheme LWS auth-param
 *(COMMA auth-param)
 digest-cln = realm / domain / nonce
 / opaque / stale / algorithm
 / qop-options / auth-param
 realm = "realm" EQUAL realm-value
 realm-value = quoted-string
 domain = "domain" EQUAL LDQUOT URI
 *(1*SP URI) RDQUOT
 URI = SIMS-URI / anyURI

Jennings, et al. Expires August 9, 2004 [Page 36]

Internet-Draft SIMS February 2004

 nonce = "nonce" EQUAL nonce-value
 nonce-value = quoted-string
 opaque = "opaque" EQUAL quoted-string
 stale = "stale" EQUAL ("true" / "false")
 algorithm = "algorithm" EQUAL ("MD5" / "MD5-sess"
 / token)
 qop-options = "qop" EQUAL LDQUOT qop-value
 *("," qop-value) RDQUOT
 qop-value = "auth" / token

 extension-header = header-name HCOLON header-value
 header-name = token
 header-value = *(TEXT-UTF8char / UTF8-CONT / LWS)
 parcel-body = *OCTET

8. Finding SIMS Servers

 When sending a response, the response is always forwarded over an
 existing connection using the connection handle set in the receiver
 parameter in the topmost Via header field value and the sent-by
 transport in that Via header field value to determine the correct
 connection.

 When resolving a URI (for example from a Route header field, or from
 the Request-URI), examine the hostport portion of the URI and the
 transport URI parameter to decide how to proceed.

 If the hostport is an IPv4 address or an IPv6 reference, send the
 request to that address using the port and transport specified in the
 URI. If no transport is provided, use the default (tls+tcp). If no
 port number is provided, use the default for the selected protocol
 (port 8999 for tcp, and port 9000 for tls over tcp).

 If the hostport is a domain name and an explicit port number is
 provided, attempt to lookup a valid address record (A, AAAA, or A6)
 for the domain name. Connect using the specified protocol (or the
 default of tls+tcp if none is specified) and port number.

 If a domain name is provided, but no port number, perform a DNS SRV
 [8] lookup for all transports supported by the client and select the
 entry with the highest weight. If no SRV records are found, try an
 address lookup using the default port number procedures described in
 the previous paragraph. Note that AUTH requests MUST only be sent
 over a TLS-protected channel. An SRV lookup in the example.com
 domain might return:

Jennings, et al. Expires August 9, 2004 [Page 37]

Internet-Draft SIMS February 2004

 ;; in example.com. Pri Wght Port Target
 _sims+tls._tcp IN SRV 0 1 9000 server1.example.com.
 _sims+tls._tcp IN SRV 0 2 9000 server2.example.com.
 _sims._tcp IN SRV 1 1 8999 server1.example.com.
 _sims._tcp IN SRV 1 2 8999 server2.example.com.

 If implementing a relay farm, it is RECOMMENDED that each member of
 the relay farm have an SRV entry. If any members of the farm have
 multiple IP addresses (for example an IPv4 and an IPv6 address), each
 of these addresses SHOULD be registered in DNS as separate A, AAAA,
 or A6 records corresponding to a single target.

9. Security Considerations

 This section first describes the security mechanisms available for
 use in SIMS. Then the threat model is presented. Finally we list
 implementation requirements related to security.

9.1 Using HTTP Authentication

 AUTH requests SHOULD be authenticated using HTTP authentication.
 HTTP authentication is done as described in [RFC 2617], with the
 following exceptions. Basic authentication MUST NOT be used. A qop
 value of auth-int MUST NOT be used as the AUTH requests are integrity
 protected by TLS and there is no body to protect. Note that unlike in
 some usages of HTTP Authentication (for example, SIP), the uri
 parameter in the Authorize header is the same as the Request-URI in
 the request line of the SIMS parcel of the AUTH request. Note the
 BNF in RFC-2617 has an error--the value of the uri parameter MUST be
 in quotes. The BNF in this document is correct, as are the examples
 in RFC 2617.

9.2 Using TLS

 TLS is used to authenticate relays to senders and to provide
 integrity and confidentiality for the headers being transported. SIMS
 client and relays MUST support TLS. Clients and relays MUST support
 the TLS ClientExtendedHello extended hello information for server
 name indication as described in RFC 3546 [9]. A TLS cipher-suite of
 TLS_RSA_WITH_AES_128_CBC_SHA [10] MUST be supported (other
 cipher-suites MAY also be suported). Relays must act as TLS servers
 and present a certificate with their identity in the SubjectAltName
 using the choice type of dnsName. Relay to relay connections MUST use
 TLS and client to relay communications MUST use TLS for AUTH requests
 and responses.

9.3 S/MIME

https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc3546

Jennings, et al. Expires August 9, 2004 [Page 38]

Internet-Draft SIMS February 2004

 Since SIMS carries arbitrary MIME content, it can trivially carry S/
 MIME protected messages are well. Note that all SIMS implementations
 MUST support the multipart/signed MIME type even if they do not
 support S/MIME. Since SIP can carry a session key, S/MIME messages
 in the context of a session can be protected using a key-wrapped
 shared secret provided in the session setup.

9.4 Threat Model

 This section discuses the threat model and the broad mechanism that
 must come into place to secure the protocol. The next section
 describes the details of how the protocol mechanism meet the broad
 requirements.

 SIMS allows two peer to peer clients to exchange messages. Each peer
 can select a set of relays to perform certain policy operation for
 them. This combined set of relays is referred to as the route set.
 There often exists a channel outside of SIMS, such as out-of-band
 provisioning or an explicit rendezvous protocol such as SIP, that can
 securely negotiate setting up the SIMS session and communicate the
 route set to both clients. A client may trust a relay with certain
 types of routing and policy decisions but it might or might not trust
 the relay with all the contents of the session. For example, a relay
 being trusted to look for viruses would probably need to be allowed
 to see all the contents of the session. A relay that helped deal with
 firewall traversal of the ISPs firewall would likely not be trusted
 with the contents of the session but would be trusted to correctly
 forward information.

 Clients need to be able to authenticate that the relay they are
 communicating with is the one they trust. Likewise, relays need to be
 able to authenticate the client is the authorized client for them to
 forward information to. Clients need the option of ensuring
 information between the relay and the client is integrity protected
 and confidential to elements other than the relays and clients. To
 simplify the number of options, traffic between relays must always be
 integrity protected and encrypted regardless of if the client request
 it or not. There is no way for the clients to tell the relays what
 strength of crypto to use between relays other than the clients to
 choose to use relays that are operated by people requiring an
 adequate level of security.

 The system also need to stop the messages from being directed to
 relays that are not supposed to see them. To keep the relays from
 being used in DDoS attacks, the relays must not forward messages
 unless they have a trust relationship with either the client sending
 or receiving the message and that they only forward that message if
 it is coming from or going to the client they have the trust

Jennings, et al. Expires August 9, 2004 [Page 39]

Internet-Draft SIMS February 2004

 relationship with. If a relay has a trust relationship with the
 client that is the destination of the message, it should not send the
 message anywhere except the client that is the destination.

 Some terminology used in this discussion is SClient is the client
 sending a message and RClient is the client receiving a message.
 SRelay is a relay the sender trusts and RRelay is a relay the
 receiver trusts. The message will go from SClient to SRelay1 to
 SRelay2 to RRelay2 to RRelay1 to RClient.

9.5 Security Mechanism

 Confidentiality and Privacy from elements not in the route set is
 provided by using TLS on all the transports. If a client decided to
 not use TLS that is it's choice but relays must use TLS. Clients must
 implement TLS.

 The relays authenticate to the clients using TLS (but don't have to
 do mutual TLS). The clients authenticate to the relays using HTTP
 Digest inside of TLS. Relays authenticate to each other using mutual
 TLS.

 The clients can protect the contents so that the relays can not see
 them by using S/MIME encryption. End to end signing is also possible
 with S/MIME.

 The complex part is making sure that relays do not send messages
 place where they should not. This is done by having the client
 authenticate to the relay and having the relay return a token.
 Messages that contain this token can be relayed if they come from the
 client that got the token or if they are being forwarded towards the
 client that got the token. The tokens must only ever be seen by
 things in the route set or other elements that at least one of the
 parties trusts. If some 3rd party discovers the token that RRelay2
 uses to forward messages to RClient, then that 3rd party can send as
 many messages as they want to RRelay2 and it will forward them to
 RClient. The 3rd party can not cause them to be forwarded anywhere
 except to RClient eliminating the open relay problems. SRelay1 will
 not forward the message unless it contains a valid token.

 When SClient goes to get a token from SRelay2, this request is
 relayed through SRelay1. SRelay authenticates that it really is
 SClient requesting the token but it generates a token that is only
 valid for forwarding messages to or from SRelay1. SRelay two knows it
 is connected to SRelay1 because of the mutual TLS.

 The tokens are carried in the user portion of the SIMS URLs.

Jennings, et al. Expires August 9, 2004 [Page 40]

Internet-Draft SIMS February 2004

 Issues: How to tokens expire - rekeying. Will probably use Expire
 header on AUTH response. Token MAY be valid for between 10 minutes
 and 24 hours with 1 hour recommended. Both sides need to do a SIP
 re-invite to set up new tokens before the old one expires.

 Issues: Token good for single session or for all session

 Note: tokens are only required for relays, not clients or note
 takers.

 TODO talk about example from client to client and from Client A, then
 to a relay that A uses, RA, then on to client B.

9.6 Preventing Spam and Denial of Service Attacks

 While this specification already implements a number of significant
 improvements to prevent unsolicited messaging and Denial of Service,
 additional mechanisms are envisioned being useful in the future. The
 402 Payment Required and 409 Puzzle Required response codes are
 reserved for future use and may be useful to further discourage
 unsolicited messages.

10. IANA Considerations

10.1 Port number registrations

 SIMS uses port XXX for SIMS over TCP and port YYY for TLS over TCP.
 These port numbers should be determined by allocation from IANA.

10.2 URI scheme registration

 This document defines the sims: URI scheme.

 Scheme: sims
 Syntax: Defined in Section 7 of this document
 Character-Encoding: UTF-8
 Intended Usage: Real-time delivery of MIME content,
 especially instant messages
 Protocol: SIMPLE Instant Messaging Sessions (SIMS)
 Security Considerations: Section 9 of this document
 Relevant Publications: This document

10.3 Message-Context

 This document registers the message-context: "instant-message". The
 contact person is Rohan Mahy, rohan@cisco.com.

Jennings, et al. Expires August 9, 2004 [Page 41]

Internet-Draft SIMS February 2004

10.4 SDP Parameters

 This document registers the following SDP parameters:

 [TODO] accept and hop attributes

11. Using SIMS with SIP and SDP

 In order for two SIMS clients to communicate with each other, they
 need to negotiate the characteristics of the SIMS session. These
 include the addresses where messages can be sent, the path that the
 SIMS requests/responses should take, and the content type that is
 acceptable to both ends.

 This information MAY be exchanged and agreed upon between two SIMS
 clients using a session setup protocol like SIP, and the negotation
 of the session characteristics MAY be done using the offer-answer
 approach with SDP contained in the SIP messages.

 The Call-ID of the SIP session SHOULD be used as the Call-ID in the
 SIMS messages, so that the correlation between the media and the
 control signaling can be achieved.

11.1 SDP Extensions

 There will be an m-line in the SDP for the SIMS session. The m-line
 has the form:

 m = <media> <port> <protocol> <format-list>

 The media type for a SIMS session SHOULD be "message". The port is
 not used. The protocol should be sims/tcp or sims/tcp+tls. And the
 format list is not used. It should be set to "*".

 The m-line used to define a SIMS session has two attributes: the hop
 attribute and the accept-type attribute.

 CHUNK requests can carry any MIME encoded payload. Endpoints specify
 MIME content types that they are willing to receive in the accept
 types "a"-line attribute. This attribute has the following syntax:

 accept-types = accept-types-label ":" format-list
 accept-types-label = "accept-types"
 format-list = format-entry *(SP format-entry)
 format-entry = (type "/" subtype)
 type = token

Jennings, et al. Expires August 9, 2004 [Page 42]

Internet-Draft SIMS February 2004

 subtype = token

 SDP offers for SIMS sessions MUST include an accept-types attribute.
 SDP answers MUST also include the attribute, which MUST contain
 either the same list as in the offer or a subset of that list.

 If no format-entry is specified in the accept-types attribute, it
 indicates that the sender may attempt to send messages with media
 types that have not been explicitly listed. If the receiver is able
 to process the media type, it does so. If not, it will respond with a
 415. Note that all explicit entries SHOULD be considered preferred
 over any non-listed types. This feature is needed as, otherwise, the
 list of formats for rich IM devices may be prohibitively large.

 The accept-types attribute may include container types, that is, mime
 formats that contain other types internally. If compound types are
 used, the types listed in the accept-types attribute may be used both
 as the root payload, or may be wrapped in a listed container type.
 (Note that the container type MUST also be listed in the accept-types
 attribute.)

 Clients specify the relays they wish to use in an "a=hop" attribute
 line in the SDP. A SIP answer only contains the relays that that side
 wishes to use, it does not include the relays that the client that
 made the offer wishes to use. This attribute line has the following
 syntax:

 hop-attribute = hop-label ":" sims-url
 hop-label = "hop"

 There can be several hop labels in the SDP and they are associated
 with the m line that proceed them. The top hop one corresponds to the
 relay closest to the client that is sending the SDP and the next hop
 corresponds to the next relay out and so on.

 A sample SDP offer for a SIMS session could look like:

 c=IN IP4 invalid.none
 m=message 1234 sims/tcp+tls alice@alice.example.com
 a=accept: message/cpim text/plain text/html
 a=hop:sims:magic456@a.example.com:1234;transport=tcp+tls

 In this offer Alice wishes to receive SIMS messages at
 alice@alice.example.com. She wants to use tcp+tls as the transport
 for the SIMS session. She can accept message/cpim, text/plain and
 text/html message boldies in CHUNK requests. She wishes to use the
 relay sims:magic456@a.example.com for the SIMS session.

Jennings, et al. Expires August 9, 2004 [Page 43]

Internet-Draft SIMS February 2004

 To this offer, Bob's answer could look like:

 c=IN IP4 invalid.none
 m=message 1234 sims/tcp+tls bob@bob.example.com
 a=accept: message/cpim text/plain
 a=hop:sims:magic789@b1.example.com:1234;transport=tcp+tls
 a=hop:sims:magic012@b2.example.com:1234;transport=tcp+tls

 Here Bob has agreed to use tcp+tls as the transport, and wishes to
 receive the SIMS messages at bob@bob.example.com. He can accept only
 message/cpim and text/plain message bodies in CHUNK requests and has
 rejected text/html offer made by Alice. He wishes to use two relays
 for the SIMS session - sims:magic789@b1.example.com and
 sims:magic012@b2.example.com.

12. Comparison with requirements and with MSRP

 TODO - Topics to compare: TCP fan out, HOL blocking, next hop
 congestion at a relay, congestion back pressure, robust sending of a
 message even as host temporarily disconnects and reconnects. scale,
 relay farms, multiple relays, and congestion.

13. Examples

13.1 Client to Client with SIP

 In this example, Alice and Bob setup a SIMS session with the help of
 SIP. To keep the example simple and easy to understand, there are no
 SIP proxies shown. There are no SIMS relays which need to be
 traversed between Alice and Bob. It also shows the session tear-down
 using a SIP BYE.

 Alice Bob
 | |
 | |
 |---------INVITE (1)------->|
 | |
 |<------200 OK (2)----------|
 | |
 |----------ACK (3)--------->|
 | |
 |--------CHUNK (4)--------->|
 | |
 |<-------200 OK (5)---------|
 | |
 |<--------INFORM (6)--------|
 | |

Jennings, et al. Expires August 9, 2004 [Page 44]

Internet-Draft SIMS February 2004

 |---------200 OK (7)------->|
 | |
 |-----------BYE (8)-------->|
 | |
 | |

 1 INVITE Alice -> Bob (SIP) : Alice sends an INVITE to Bob to start
 an IM session, with an SDP offer for the session.

 INVITE sip:bob@pc1.example.com SIP/2.0
 Via: SIP/2.0/UDP pc2.atlanta.com;branch=z9hG4bKkjshdyff
 To: Bob <sip:bob@pc1.example.com>
 From: Alice <sip:alice@pc2.example.com>;tag=88sja8x
 Max-Forwards: 70
 Call-ID: 987asjd97y7atg
 CSeq: 986759 INVITE
 Content-Type: application/ sdp
 Content-Length: 120

 c=IN IP4 invalid.none
 m=message 1234 sims/tcp+tls alice@pc2.example.com
 a=accept-types:text/plain message/cpim

 2 200 OK Bob -> Alice (SIP): Bob responds with a 200 OK and an answer
 SDP.

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP pc2.example.com;branch=z9hG4bKnashds8
 ;received=192.0.2.1
 To: Bob <sip:bob@pc1.example.com>;tag=a6c85cf
 From: Alice <sip:alice@pc2.example.com>;tag=88sja8x
 Call-ID: 987asjd97y7atg
 CSeq: 986759 INVITE
 Content-Type: application/sdp
 Content-Length: 131

 c=IN IP4 invalid.none
 m=message 1234 sims/tcp+tls bob@pc1.example.com
 a=accept-types:text/plain

Jennings, et al. Expires August 9, 2004 [Page 45]

Internet-Draft SIMS February 2004

 3 ACK Alice -> Bob (SIP): Alice sends an ACK to Bob and the session
 is successfully set up. Alice and Bob can now start sending messages
 to each other.

 ACK sip:bob@pc1.example.com SIP/2.0
 Via: SIP/2.0/UDP pc2.example.com;branch=z9hG4bKkjshdyff
 To: Bob <sip:bob@pc1.example.com>;tag=a6c85cf
 From: Alice <sip:alice@pc2.example.com>;tag=88sja8x
 Max-Forwards: 70
 Call-ID: 987asjd97y7atg
 CSeq: 986759 ACK

 4 CHUNK Alice -> Bob (SIMS): Alice sends a CHUNK to Bob. This is a
 complete message.

 CHUNK sims:bob@pc1.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS pc2.example.com;branch=z9hG4bKkjshdyff
 Call-ID: 987asjd97y7atg
 Message-ID: 34561345
 Max-Forwards: 70
 Content-Type: text/plain;boundary=-----bound123456

 -------bound123456
 Hi Bob, How are you?
 -------bound123456

 5 200 OK Bob -> Alice (SIMS): Bob responds with a 200 OK to indicate
 successful delivery of the CHUNK.

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS pc2.example.com;branch=z9hG4bKnashds8
 ;received=192.0.2.1
 Call-ID: 987asjd97y7atg

 6 INFORM Bob -> Alice (SIMS): Bob INFORMs Alice of the successful
 end-to-end delivery of the entire message.

 INFORM sims:alice@pc2.example.com SIMS/1.0

Jennings, et al. Expires August 9, 2004 [Page 46]

Internet-Draft SIMS February 2004

 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8
 Delivery-Status:ok
 Message-ID: 34561345
 Call-ID: 987asjd97y7atg

 7 200 OK Alice -> Bob (SIMS): Alice responds with a 200 OK to
 indicate that it has received the INFORM.

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8
 ;received=192.0.2.1
 Call-ID: 987asjd97y7atg

 8 BYE Alice -> Bob (SIP): Alice sends a BYE to Bob to tear down the
 SIP session.

 BYE sip:alice@pc2.example.com SIP/2.0
 Via: SIP/2.0/UDP pc2.example.com;branch=z9hG4bKkjshdyff
 Max-Forwards: 70
 To: Bob <sip:bob@pc1.example.com>;tag=a6c85cf
 From: Alice <sip:alice@pc2.example.com>;tag=88sja8x
 Call-ID: 987asjd97y7atg
 CSeq: 231 BYE
 Content-Length: 0

13.2 3 relays with SIP

 In this example, Alice has been configured to use two relays
 (r1.example.com and r2.example.com) for SIMS, and Bob has been
 configured with one relay (r3.example.com). Alice and Bob establish a
 TLS session with the relays and authenticate themselves, getting back
 the URIs for the relays that they should use in the Route headers of
 the SIMS messages.

 Alice r1.example.com r2.example.com r3.example.com Bob
 | | | | |
 | | | | |
 |---AUTH (1)---->| | |<--AUTH (5)----|
 | | | | |
 |<------401 (2)--| | |------401 (6)->|

Jennings, et al. Expires August 9, 2004 [Page 47]

Internet-Draft SIMS February 2004

 | | | | |
 |---AUTH (3)---->| | |<--AUTH (7)----|
 | | | | |
 |<--200 OK (4)---| | |--200 OK (8)-->|
 | | | | |
 |--AUTH (9)----->| | | |
 | | | | |
 | |---AUTH (10)--->| | |
 | | | | |
 | |<-401 (11)-----| | |
 | | | | |
 |<-401 (12)------| | | |
 | | | | |
 |--AUTH (13)---->| | | |
 | | | | |
 | |---AUTH (14)--->| | |
 | | | | |
 | |<--200 OK (15)--| | |
 | | | | |
 |<--200 OK (16)--| | | |
 | |
 | |
 |----------------------------INVITE (17)------------------------>|
 | |
 |<----------------------------200 OK (18)------------------------|
 | |
 |-------------------------------ACK (19)------------------------>|
 | |
 | | | | |
 |--CHUNK (20)--->| | | |
 | | | | |
 |<--200 OK (21)--| | | |
 | | | | |
 | |--CHUNK (22)--->| | |
 | | | | |
 | |<--200 OK (23)--| | |
 | | | | |
 | | |--CHUNK (24)->| |
 | | | | |
 | | |<-200 OK (25)-| |
 | | | | |
 | | | |--CHUNK (26)-->|
 | | | | |
 | | | |<--200 OK (27)-|
 | | | | |
 | | | |<--INFORM (28)-|
 | | | | |
 | | |<-INFORM (29)-| |

Jennings, et al. Expires August 9, 2004 [Page 48]

Internet-Draft SIMS February 2004

 | | | | |
 | |<--INFORM (30)--| | |
 | | | | |
 |<--INFORM (31)--| | | |
 | | | | |
 |--200 OK (32)-->| | | |
 | | | | |
 | |--200 OK (33)-->| | |
 | | | | |
 | | |-200 OK (34)->| |
 | | | | |
 | | | |--200 OK (35)->|
 | | | | |
 | | | | |

 1 AUTH Alice -> r1.example.com (SIMS) - Alice wants to authenticate
 itself with the first relay

 AUTH sims:r1.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS pc2.example.com;branch=z9hG4bK4b43c2ff8.1
 Expires: 3600

 2 401 Unauthorized r1.example.com -> Alice (SIMS) - Relay challenges
 Alice

 SIMS/1.0 401 Unauthorized
 Via: SIMS/1.0/TCP-TLS pc2.example.com;branch=z9hG4bK4b43c2ff8.1
 ;received=192.0.2.3
 Expires: 3600
 WWW-Authenticate: Digest
 realm="testrealm@host.com",
 qop="auth",
 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
 opaque="5ccc069c403ebaf9f0171e9517f40e41"

 3 AUTH Alice -> r1.example.com (SIMS) - Alice responds to the
 challenge

 AUTH sims:r1.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS pc2.example.com;branch=z9hG4bK4b43c2ff8.1

Jennings, et al. Expires August 9, 2004 [Page 49]

Internet-Draft SIMS February 2004

 Expires: 3600
 Authorization: Digest username="Alice",
 realm="testrealm@host.com",
 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
 uri="sims:r1.example.com",
 qop=auth,
 nc=00000001,
 cnonce="0a4f113b",
 response="6629fae49393a05397450978507c4ef1",
 opaque="5ccc069c403ebaf9f0171e9517f40e41"

 4 200 OK r1.example.com -> Alice (SIMS) - Relay responds to Alice
 with its authentication info

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS pc2.example.com;branch=z9hG4bK4b43c2ff8.1
 ;received=192.0.2.3
 Expires: 3600
 Authentication-info: rspauth="sims:saiulfywifucbscb@r1.example.com"

 5 AUTH Bob -> r3.example.com (SIMS) - Bob wants to authenticate with
 its relay

 AUTH sims:r3.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bK4b43c2ff8.1
 Expires: 3600

 6 401 AUTH r3.example.com -> Bob (SIMS) - Relay challenges Bob

 SIMS/1.0 401 Unauthorized
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bK4b43c2ff8.1
 ;received=192.0.2.3
 Expires: 3600
 WWW-Authenticate: Digest
 realm="testrealm@host.com",
 qop="auth",
 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
 opaque="5ccc069c403ebaf9f0171e9517f40e41"

Jennings, et al. Expires August 9, 2004 [Page 50]

Internet-Draft SIMS February 2004

 7 AUTH Bob -> r3.example.com (SIMS) - Bob responds to the challenge

 AUTH sims:r3.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bK4b43c2ff8.1
 Expires: 3600
 Authorization: Digest username="Bob",
 realm="testrealm@host.com",
 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
 uri="sims:r3.example.com",
 qop=auth,
 nc=00000001,
 cnonce="0a4f113b",
 response="6629fae49393a05397450978507c4ef1",
 opaque="5ccc069c403ebaf9f0171e9517f40e41"

 8 200 OK r3.example.com -> Bob (SIMS) - Relay responds to Bob with
 its authentication information

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bK4b43c2ff8.1
 ;received=192.0.2.3
 Expires: 3600
 Authentication-Info: rspauth="sims:skusblfygwuhrwuh@r3.example.com"

 9 AUTH Alice -> r1.example.com (SIMS) - Alice wants to authenticate
 itself with its second relay now

 AUTH sims:r2.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS pc2.example.com;branch=z9hG4bK4b43c2ff8.1
 Route:sims:saiulfywifucbscb@r1.example.com
 Expires: 3600

 10 AUTH r1.example.com -> r2.example.com (SIMS) - This authenicate
 request is routed through the first relay, to which Alice has already
 authenticated itself

 AUTH sims:r2.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS r1.example.com;branch=sldhgsdhgqfwaf

Jennings, et al. Expires August 9, 2004 [Page 51]

Internet-Draft SIMS February 2004

 Via: SIMS/1.0/TCP-TLS pc2.example.com;branch=z9hG4bK4b43c2ff8.1
 ;received=192.0.2.3
 Expires: 3600

 11 401 AUTH r2.example.com -> r1.example.com (SIMS) - Relay 2
 challenges Alice

 SIMS/1.0 401 Unauthorized
 Via: SIMS/1.0/TCP-TLS r1.example.com;branch=sldhgsdhgqfwaf
 ;received=192.0.2.4
 Via: SIMS/1.0/TCP-TLS pc2.example.com;branch=z9hG4bK4b43c2ff8.1
 ;received=192.0.2.3
 Expires: 3600
 WWW-Authenticate: Digest
 realm="testrealm@host.com",
 qop="auth",
 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
 opaque="5ccc069c403ebaf9f0171e9517f40e41"

 12 401 AUTH r1.example.com -> Alice (SIMS) - Relay 1 passes on the
 challenge to Alice

 SIMS/1.0 401 Unauthorized
 Via: SIMS/1.0/TCP-TLS pc2.example.com;branch=z9hG4bK4b43c2ff8.1
 ;received=192.0.2.3
 Expires: 3600
 WWW-Authenticate: Digest
 realm="testrealm@host.com",
 qop="auth",
 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
 opaque="5ccc069c403ebaf9f0171e9517f40e41"

 13 AUTH Alice -> r1.example.com (SIMS) - Alice responds to the
 challenge

 AUTH sims:r2.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS pc2.example.com;branch=z9hG4bK4b43c2ff8.1
 Route: sims:saiulfywifucbscb@r1.example.com

Jennings, et al. Expires August 9, 2004 [Page 52]

Internet-Draft SIMS February 2004

 Expires: 3600
 Authorization: Digest username="Alice",
 realm="testrealm@host.com",
 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
 uri="sims:r2.example.com",
 qop=auth,
 nc=00000001,
 cnonce="0a4f113b",
 response="6629fae49393a05397450978507c4ef1",
 opaque="5ccc069c403ebaf9f0171e9517f40e41"

 14 AUTH r1.example.com -> r2.example.com (SIMS) - Relay 1 passes on
 Alice's response to Relay 2

 AUTH sims:r2.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS r1.example.com;branch=sldhgsdhgqfwaf
 Via: SIMS/1.0/TCP-TLS pc2.example.com;branch=z9hG4bK4b43c2ff8.1
 ;received=192.0.2.3
 Expires: 3600
 Authorization: Digest username="Alice",
 realm="testrealm@host.com",
 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
 uri="sims:r2.example.com",
 qop=auth,
 nc=00000001,
 cnonce="0a4f113b",
 response="6629fae49393a05397450978507c4ef1",
 opaque="5ccc069c403ebaf9f0171e9517f40e41"

 15 200 OK r2.example.com -> r1.example.com (SIMS) - Relay 2 accepts
 Alice's response and sends back its authentication info

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS r1.example.com;branch=sldhgsdhgqfwaf
 ;received=192.0.2.4
 Via: SIMS/1.0/TCP-TLS pc2.example.com;branch=z9hG4bK4b43c2ff8.1
 ;received=192.0.2.3
 Expires: 3600
 Authentication-Info: rspauth="sims:eioweoerhgerofef@r2.example.com"

Jennings, et al. Expires August 9, 2004 [Page 53]

Internet-Draft SIMS February 2004

 16 200 OK r1.example.com -> Alice (SIMS) - Relay 1 forwards Relay2's
 authentication info to Alice

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS pc2.example.com;branch=z9hG4bK4b43c2ff8.1
 ;received=192.0.2.3
 Expires: 3600
 Authentication-Info: rspauth="sims:eioweoerhgerofef@r2.example.com"

 17 INVITE Alice -> Bob (SIP) : Alice sends an INVITe to Bob to start
 an IM session, with an SDP offer for the session.

 INVITE sip:bob@pc1.example.com SIP/2.0
 Via: SIP/2.0/UDP pc2.atlanta.com;branch=z9hG4bKkjshdyff
 To: Bob <sip:bob@pc1.example.com>
 From: Alice <sip:alice@pc2.example.com>;tag=88sja8x
 Max-Forwards: 70
 Call-ID: 987asjd97y7atg
 CSeq: 986759 INVITE
 Content-Type: application/ sdp
 Content-Length: 120

 c=IN IP4 invalid.none
 m=message 1234 sims/tcp+tls alice@pc2.example.com
 a=accept-types:text/plain message/cpim
 a=hop:sims:saiulfywifucbscb@r1.example.com
 a=hop:sims:eioweoerhgerofef@r2.example.com

 18 200 OK Bob -> Alice (SIP): Bob responds with a 200 OK and an
 answer SDP.

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP pc2.example.com;branch=z9hG4bKnashds8
 ;received=192.0.2.1
 To: Bob <sip:bob@pc1.example.com>;tag=a6c85cf
 From: Alice <sip:alice@pc2.example.com>;tag=88sja8x
 Call-ID: 987asjd97y7atg
 CSeq: 986759 INVITE
 Content-Type: application/sdp
 Content-Length: 131

Jennings, et al. Expires August 9, 2004 [Page 54]

Internet-Draft SIMS February 2004

 c=IN IP4 invalid.none
 m=message 1234 sims/tcp+tls bob@pc1.example.com
 a=accept-types:text/plain
 a=hop:sims:skusblfygwuhrwuh@r3.example.com

 19 ACK Alice -> Bob (SIP): Alice sends an ACK to Bob and the session
 is successfully set up. Alice and Bob can now start sending messages
 to each other.

 ACK sip:bob@pc1.example.com SIP/2.0
 Via: SIP/2.0/UDP pc2.example.com;branch=z9hG4bKkjshdyff
 To: Bob <sip:bob@pc1.example.com>;tag=a6c85cf
 From: Alice <sip:alice@pc2.example.com>;tag=88sja8x
 Max-Forwards: 70
 Call-ID: 987asjd97y7atg
 CSeq: 986759 ACK

 20 CHUNK Alice -> r1.example.com (SIMS) - Alice sends a CHUNK to Bob.
 This will be routed through the three relays

 CHUNK sims:bob@pc1.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS pc2.example.com;branch=z9hG4bKkjshdyff
 Route: sims:saiulfywifucbscb@r1.example.com
 Route: sims:eioweoerhgerofef@r2.example.com
 Route: sims:skusblfygwuhrwuh@r3.example.com
 Call-ID: 987asjd97y7atg
 Message-ID: 34561345
 Max-Forwards: 70
 Content-Type: text/plain;boundary=-----bound123456

 -------bound123456
 Hi Bob! How are you?
 -------bound123456

 21 200 OK r1.example.com -> Alice (SIMS) - Relay 1 responds to Alice
 that the CHUNK has reached it successfully.

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS pc2.example.com;branch=z9hG4bKkjshdyff

Jennings, et al. Expires August 9, 2004 [Page 55]

Internet-Draft SIMS February 2004

 ;received=192.0.2.3
 Call-ID: 987asjd97y7atg

 22 CHUNK r1.example.com -> r2.example.com (SIMS) - Relay 1 forwards
 the CHUNK as-is to Relay2

 CHUNK sims:bob@pc1.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS r1.example.com;branch=sldhgsdhgqfwaf
 Route: sims:eioweoerhgerofef@r2.example.com
 Route: sims:skusblfygwuhrwuh@r3.example.com
 Call-ID: 987asjd97y7atg
 Message-ID: 34561345
 Max-Forwards: 70
 Content-Type: text/plain;boundary=-----bound123456

 -------bound123456
 Hi Bob! How are you?
 -------bound123456

 23 200 OK r2.example.com -> r1.example.com (SIMS) - Relay2 responds
 to Relay1 that the CHUNK has reached it successfully

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS r1.example.com;branch=sldhgsdhgqfwaf
 ;received=192.0.2.3
 Call-ID: 987asjd97y7atg

 24 CHUNK r2.example.com -> r3.example.com (SIMS) - Relay2 forwards
 the CHUNK as-is to Relay3

 CHUNK sims:bob@pc1.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS r2.example.com;branch=wuoshfuetyheiot
 Route: sims:skusblfygwuhrwuh@r3.example.com
 Call-ID: 987asjd97y7atg
 Message-ID: 34561345
 Max-Forwards: 70
 Content-Type: text/plain;boundary=-----bound123456

 -------bound123456

Jennings, et al. Expires August 9, 2004 [Page 56]

Internet-Draft SIMS February 2004

 Hi Bob! How are you?
 -------bound123456

 25 200 OK r3.example.com -> r2.example.com (SIMS) - Relay3 responds
 to Relay2 that the CHUNK has reached it successfully

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS r2.example.com;branch=wuoshfuetyheiot
 ;received=192.0.2.3
 Call-ID: 987asjd97y7atg

 26 CHUNK r3.example.com -> Bob (SIMS) - Relay3 forwards the CHUNK to
 Bob

 CHUNK sims:bob@pc1.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS r3.example.com;branch=hsruoghlweugho
 Call-ID: 987asjd97y7atg
 Message-ID: 34561345
 Max-Forwards: 70
 Content-Type: text/plain;boundary=-----bound123456

 -------bound123456
 Hi Bob! How are you?
 -------bound123456

 27 200 OK Bob -> r3.example.com (SIMS) - Bob reports its successful
 delivery tp relay3

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS r3.example.com;branch=hsruoghlweugho
 ;received=192.0.2.3
 Call-ID: 987asjd97y7atg

 28 INFORM Bob -> r3.example.com (SIMS) - Bob now sends an INFORM to
 Alice to indicate the successful end-to-end delivery of the message

Jennings, et al. Expires August 9, 2004 [Page 57]

Internet-Draft SIMS February 2004

 INFORM sims:alice@pc2.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8
 Route: sims:skusblfygwuhrwuh@r3.example.com
 Route: sims:eioweoerhgerofef@r2.example.com
 Route: sims:saiulfywifucbscb@r1.example.com
 Delivery-Status:ok
 Message-ID: 34561345
 Call-ID: 987asjd97y7atg

 29 INFORM r3.example.com -> r2.example.com (SIMS)

 INFORM sims:alice@pc2.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS r3.example.com;branch=wvehrugheurghei
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8
 ;received=192.0.2.1
 Route: sims:eioweoerhgerofef@r2.example.com
 Route: sims:saiulfywifucbscb@r1.example.com
 Delivery-Status:ok
 Message-ID: 34561345
 Call-ID: 987asjd97y7atg

 30 INFORM r2.example.com -> r1.example.com (SIMS)

 INFORM sims:alice@pc2.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS r2.example.com;brnach=woifwehfovndjnv
 Via: SIMS/1.0/TCP-TLS r3.example.com;branch=wvehrugheurghei
 ;received=192.0.2.3
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8
 ;received=192.0.2.1
 Route: sims:saiulfywifucbscb@r1.example.com
 Delivery-Status:ok
 Message-ID: 34561345
 Call-ID: 987asjd97y7atg

 31 INFORM r1.example.com -> Alice (SIMS)

 INFORM sims:alice@pc2.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS r1.example.com;branch=wkehweiothoqowq
 Via: SIMS/1.0/TCP-TLS r2.example.com;brnach=woifwehfovndjnv

Jennings, et al. Expires August 9, 2004 [Page 58]

Internet-Draft SIMS February 2004

 ;received=192.0.2.3
 Via: SIMS/1.0/TCP-TLS r3.example.com;branch=wvehrugheurghei
 ;received=192.0.2.3
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8
 ;received=192.0.2.1
 Delivery-Status:ok
 Message-ID: 34561345
 Call-ID: 987asjd97y7atg

 32 200 OK Alice -> r1.example.com (SIMS)

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS r1.example.com;branch=wkehweiothoqowq
 ;received=192.0.2.3
 Via: SIMS/1.0/TCP-TLS r2.example.com;brnach=woifwehfovndjnv
 ;received=192.0.2.3
 Via: SIMS/1.0/TCP-TLS r3.example.com;branch=wvehrugheurghei
 ;received=192.0.2.3
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8
 ;received=192.0.2.1
 Call-ID: 987asjd97y7atg

 33 200 OK r1.example.com -> r2.example.com (SIMS)

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS r2.example.com;brnach=woifwehfovndjnv
 ;received=192.0.2.3
 Via: SIMS/1.0/TCP-TLS r3.example.com;branch=wvehrugheurghei
 ;received=192.0.2.3
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8
 ;received=192.0.2.1
 Call-ID: 987asjd97y7atg

 34 200 OK r2.example.com -> r3.example.com (SIMS)

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS r3.example.com;branch=wvehrugheurghei
 ;received=192.0.2.3
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8

Jennings, et al. Expires August 9, 2004 [Page 59]

Internet-Draft SIMS February 2004

 ;received=192.0.2.1
 Call-ID: 987asjd97y7atg

 35 200 OK r3.example.com -> Bob (SIMS)

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8
 ;received=192.0.2.1
 Call-ID: 987asjd97y7atg

13.3 client fragmentation

 In this example, Alice wants to send a message to Bob. Alice decides
 to fragment this message into two parts.

 Alice r.example.com Bob
 | | |
 |----CHUNK (1)--------->| |
 | | |
 |<-----200 OK (2)-------| |
 | | |
 | |-------CHUNK (3)----->|
 | | |
 | |<------200 OK (4)-----|
 | | |
 | |<-----INFORM (5)------|
 | | |
 |<-------INFORM (6)-----| |
 | | |
 |------200 OK (7)------>| |
 | | |
 | |------200 OK (8)----->|
 | | |
 |------CHUNK (9)------->| |
 | | |
 |<-------200 OK (10)----| |
 | | |
 | |-----CHUNK (11)------>|
 | | |
 | |<-----200 OK (12)-----|
 | | |
 | |<------INFORM (13)----|
 | | |

Jennings, et al. Expires August 9, 2004 [Page 60]

Internet-Draft SIMS February 2004

 |<-----INFORM (14)------| |
 | | |
 |------200 OK (15)----->| |
 | | |
 | |-----200 OK (16)----->|
 | | |

 1 CHUNK Alice -> r1.example.com (SIMS) - Alice sends the first CHUNK

 CHUNK sims:bob@pc1.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS pc2.example.com;branch=hsruoghlweugho
 Route: saiulfywifucbscb@r1.example.com
 Call-ID: 987asjd97y7atg
 Message-ID: 34561345
 Max-Forwards: 70
 Content-Type: multipart/byteranges; boundary=-----bound123456

 -------bound123456
 Content-type: text/plain
 Content-range: bytes 0-44/96

 This is the first part of a two-part message
 -------bound123456

 2 200 OK r1.example.com -> Alice (SIMS) - Relay1 receives the CHUNK
 successfully

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS pc2.example.com;branch=hsruoghlweugho
 ;received=192.0.2.3
 Call-ID: 987asjd97y7atg

 3 CHUNK r1.example.com -> Bob (SIMS) - Relay forwards the CHUNK as-is
 to Bob

 CHUNK sims:bob@pc1.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS r1.example.com;branch=shoghwogiwhgokb
 Call-ID: 987asjd97y7atg

Jennings, et al. Expires August 9, 2004 [Page 61]

Internet-Draft SIMS February 2004

 Message-ID: 34561345
 Max-Forwards: 70
 Content-Type: multipart/byteranges; boundary=-----bound123456

 -------bound123456
 Content-type: text/plain
 Content-range: bytes 0-44/96

 This is the first part of a two-part message
 -------bound123456

 4 200 OK Bob -> r1.example.com (SIMS) - CHUNK reaches Bob
 successfully

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS r1.example.com;branch=shoghwogiwhgokb
 ;received=192.0.2.3
 Call-ID: 987asjd97y7atg

 5 INFORM Bob -> r1.example.com (SIMS) - Bob INFORMs Alice about the
 successful end-to-end delivery of the first part of the message

 INFORM sims:alice@pc2.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8
 Route: sims:saiulfywifucbscb@r1.example.com
 Delivery-Status:ok;range=0-44
 Message-ID: 34561345
 Call-ID: 987asjd97y7atg

 6 INFORM r1.example.com -> Alice (SIMS) - INFORM gets forwarded by
 the relay

 INFORM sims:alice@pc2.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS r1.example.com;branch=wuwfiuhwifuhwif
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8
 ;received=192.0.2.1
 Delivery-Status:ok;range=0-44
 Message-ID: 34561345
 Call-ID: 987asjd97y7atg

Jennings, et al. Expires August 9, 2004 [Page 62]

Internet-Draft SIMS February 2004

 7 200 OK Alice -> r1.example.com (SIMS) - Alice responds to the
 INFORM

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS r1.example.com;branch=wuwfiuhwifuhwif
 ;received=192.0.2.3
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8
 ;received=192.0.2.1
 Call-ID: 987asjd97y7atg

 8 200 OK r1.example.com -> Bob (SIMS) - Relay forwards the response
 to the INFORM to Bob

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8
 ;received=192.0.2.1
 Call-ID: 987asjd97y7atg

 9 CHUNK Alice -> r1.example.com (SIMS) - Alice sends the second CHUNK
 of the message to Bob

 CHUNK sims:bob@pc1.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS pc2.example.com;branch=hsruoghlweugho
 Route: saiulfywifucbscb@r1.example.com
 Call-ID: 987asjd97y7atg
 Message-ID: 34561345
 Max-Forwards: 70
 Content-Type: multipart/byteranges; boundary=-----bound123456

 -------bound123456
 Content-type: text/plain
 Content-range: bytes 45-96/96

 This is the second and the last part of this message
 -------bound123456

 10 200 OK r1.example.com -> Alice (SIMS)

Jennings, et al. Expires August 9, 2004 [Page 63]

Internet-Draft SIMS February 2004

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS pc2.example.com;branch=hsruoghlweugho
 ;received=192.0.2.3
 Call-ID: 987asjd97y7atg

 11 CHUNK r1.example.com -> Bob (SIMS) - Relay passes on the second
 CHUNK as-is to Bob

 CHUNK sims:bob@pc1.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS r1.example.com;branch=shoghwogiwhgokb
 Call-ID: 987asjd97y7atg
 Message-ID: 34561345
 Max-Forwards: 70
 Content-Type: multipart/byteranges; boundary=-----bound123456

 -------bound123456
 Content-type: text/plain
 Content-range: bytes 45-96/96

 This is the second and the last part of this message
 -------bound123456

 12 200 OK Bob -> r1.example.com (SIMS)

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS r1.example.com;branch=shoghwogiwhgokb
 ;received=192.0.2.3
 Call-ID: 987asjd97y7atg

 13 INFORM Bob -> r1.example.com (SIMS) - Bob INFORMs Alice of the
 successful end-to-end delivery of the entire message

 INFORM sims:alice@pc2.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8
 Route: sims:saiulfywifucbscb@r1.example.com
 Delivery-Status:ok
 Message-ID: 34561345
 Call-ID: 987asjd97y7atg

Jennings, et al. Expires August 9, 2004 [Page 64]

Internet-Draft SIMS February 2004

 14 INFORM r1.example.com -> Alice (SIMS)

 INFORM sims:alice@pc2.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS r1.example.com;branch=wuwfiuhwifuhwif
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8
 ;received=192.0.2.1
 Delivery-Status:ok
 Message-ID: 34561345
 Call-ID: 987asjd97y7atg

 15 200 OK Alice -> r1.example.com (SIMS)

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS r1.example.com;branch=wuwfiuhwifuhwif
 ;received=192.0.2.3
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8
 ;received=192.0.2.1
 Call-ID: 987asjd97y7atg

 16 200 OK r1.example.com -> Bob (SIMS)

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8
 ;received=192.0.2.1
 Call-ID: 987asjd97y7atg

13.4 relay fragmentation

 In this example, Alice sends a message to Bob in a single CHUNK
 request. The relay decides that it needs to fragment the message into
 two parts.

 Alice r.example.com Bob
 | | |
 |-------CHUNK (1)------>| |
 | | |
 |<-----200 OK (2)-------| |
 | | |
 | |-------CHUNK (3)----->|

Jennings, et al. Expires August 9, 2004 [Page 65]

Internet-Draft SIMS February 2004

 | | |
 | |<------200 OK (4)-----|
 | | |
 | |<------INFORM (5)-----|
 | | |
 |<-------INFORM (6)-----| |
 | | |
 |--------200 OK (7)---->| |
 | | |
 | |------200 OK (8)----->|
 | | |
 | |------CHUNK (9)------>|
 | | |
 | |<-----200 OK (10)-----|
 | | |
 | |<-----INFORM (11)-----|
 | | |
 |<------INFORM (12)-----| |
 | | |
 |-------200 OK (13)---->| |
 | | |
 | |-------200 OK (14)--->|
 | | |

 1 CHUNK Alice -> r1.example.com (SIMS) - Alice sends a message to
 Bob.

 CHUNK sims:bob@pc1.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS pc2.example.com;branch=hsruoghlweugho
 Route: saiulfywifucbscb@r1.example.com
 Call-ID: 987asjd97y7atg
 Message-ID: 34561345
 Max-Forwards: 70
 Content-Type: text/plain;boundary=-----bound123456

 -------bound123456
 This is the entire message which will be split into two by the relay
 -------bound123456

 2 200 OK r1.example.com -> Alice (SIMS)

Jennings, et al. Expires August 9, 2004 [Page 66]

Internet-Draft SIMS February 2004

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS pc2.example.com;branch=hsruoghlweugho
 ;received=192.0.2.3
 Call-ID: 987asjd97y7atg

 3 CHUNK r1.example.com -> Bob (SIMS) - Relay1 splits up the message
 body in the CHUNK message, and sends the first part to Bob.

 CHUNK sims:bob@pc1.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS r1.example.com;branch=scjbsdjfksbfsdj
 Call-ID: 987asjd97y7atg
 Message-ID: 34561345
 Max-Forwards: 70
 Content-Type: multipart/byteranges; boundary=-----bound123456

 -------bound123456
 Content-type: text/plain
 Content-range: bytes 0-32/68

 This is the entire message which
 -------bound123456

 4 200 OK Bob -> r1.example.com (SIMS)

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS r1.example.com;branch=scjbsdjfksbfsdj
 ;received=192.0.2.3
 Call-ID: 987asjd97y7atg

 5 INFORM Bob -> r1.example.com (SIMS) - Bob INFORMs Alice of the
 successful end-to-end delivery of the first 32 bytes of the message

 INFORM sims:alice@pc2.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8
 Route: sims:saiulfywifucbscb@r1.example.com
 Delivery-Status:ok;range=0-32
 Message-ID: 34561345
 Call-ID: 987asjd97y7atg

Jennings, et al. Expires August 9, 2004 [Page 67]

Internet-Draft SIMS February 2004

 6 INFORM r1.example.com -> Alice (SIMS)

 INFORM sims:alice@pc2.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS r1.example.com;branch=wsuefhwejhfwejfh
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8
 ;received=192.0.2.1
 Delivery-Status:ok;range=0-32
 Message-ID: 34561345
 Call-ID: 987asjd97y7atg

 7 200 OK Alice -> r1.example.com (SIMS) - Alice waits for the INFORM
 for the remaining bytes that it has already sent

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS r1.example.com;branch=wsuefhwejhfwejfh
 ;received=192.0.2.3
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8
 ;received=192.0.2.1
 Call-ID: 987asjd97y7atg

 8 200 OK r1.example.com -> Bob (SIMS)

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8
 ;received=192.0.2.1
 Call-ID: 987asjd97y7atg

 9 CHUNK r1.example.com -> Bob (SIMS) - Relay1 now sends the remaining
 message in a second CHUNK message to Bob

 CHUNK sims:bob@pc1.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS r1.example.com;branch=scjbsdjfksbfsdj
 Call-ID: 987asjd97y7atg
 Message-ID: 34561345
 Max-Forwards: 70
 Content-Type: multipart/byteranges; boundary=-----bound123456

 -------bound123456

Jennings, et al. Expires August 9, 2004 [Page 68]

Internet-Draft SIMS February 2004

 Content-type: text/plain
 Content-range: bytes 33-68/68

 will be split into two by the relay
 -------bound123456

 10 200 OK Bob -> r1.example.com (SIMS)

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS r1.example.com;branch=scjbsdjfksbfsdj
 ;received=192.0.2.3
 Call-ID: 987asjd97y7atg

 11 INFORM Bob -> r1.example.com (SIMS) - Bob INFORMs Alice about the
 successful end-to-end delivery of the entire message

 INFORM sims:alice@pc2.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8
 Route: sims:saiulfywifucbscb@r1.example.com
 Delivery-Status:ok
 Message-ID: 34561345
 Call-ID: 987asjd97y7atg

 12 INFORM r1.example.com -> Alice (SIMS)

 INFORM sims:alice@pc2.example.com SIMS/1.0
 Via: SIMS/1.0/TCP-TLS r1.example.com;branch=wsuefhwejhfwejfh
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8
 ;received=192.0.2.1
 Delivery-Status:ok
 Message-ID: 34561345
 Call-ID: 987asjd97y7atg

 13 200 OK Alice -> r1.example.com (SIMS)

 SIMS/1.0 200 OK

Jennings, et al. Expires August 9, 2004 [Page 69]

Internet-Draft SIMS February 2004

 Via: SIMS/1.0/TCP-TLS r1.example.com;branch=wsuefhwejhfwejfh
 ;received=192.0.2.3
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8
 ;received=192.0.2.1
 Call-ID: 987asjd97y7atg

 14 200 OK r1.example.com -> Bob (SIMS)

 SIMS/1.0 200 OK
 Via: SIMS/1.0/TCP-TLS pc1.example.com;branch=z9hG4bKnashds8
 ;received=192.0.2.1
 Call-ID: 987asjd97y7atg

14. Acknowledgments

 Many thanks to the following members of the SIMPLE WG for spirited
 discussions on session mode: Ben Campbell, Jonathan Rosenberg,
 Robert Sparks, Paul Kyzivat, Allison Mankin, Jon Peterson, Brian
 Rosen, Dean Willis, Adam Roach, Aki Niemi, Hisham Khartabil, Pekka
 Pessi, and Chris Boulton

Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [3] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message Bodies",

RFC 2045, November 1996.

 [4] Dierks, T., Allen, C., Treese, W., Karlton, P., Freier, A. and
 P. Kocher, "The TLS Protocol Version 1.0", RFC 2246, January
 1999.

 [5] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
 Leach, P. and T. Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

 [6] Burger, E., Candell, E., Eliot, C. and G. Klyne, "Message

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2616

Jennings, et al. Expires August 9, 2004 [Page 70]

Internet-Draft SIMS February 2004

 Context for Internet Mail", RFC 3458, January 2003.

 [7] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 [8] Gulbrandsen, A., Vixie, P. and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 February 2000.

 [9] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J. and
 T. Wright, "Transport Layer Security (TLS) Extensions", RFC

3546, June 2003.

 [10] Chown, P., "Advanced Encryption Standard (AES) Ciphersuites for
 Transport Layer Security (TLS)", RFC 3268, June 2002.

 [11] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A. and L. Stewart, "HTTP Authentication:
 Basic and Digest Access Authentication", RFC 2617, June 1999.

 [12] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046, November
 1996.

 [13] Ramsdell, B., "S/MIME Version 3 Message Specification", RFC
2633, June 1999.

 [14] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396, August
 1998.

 [15] Braden, R., "Requirements for Internet Hosts - Application and
 Support", STD 3, RFC 1123, October 1989.

 [16] Troost, R., Dorner, S. and K. Moore, "Communicating
 Presentation Information in Internet Messages: The
 Content-Disposition Header Field", RFC 2183, August 1997.

 [17] Handley, M. and V. Jacobson, "SDP: Session Description
 Protocol", RFC 2327, April 1998.

 [18] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with
 Session Description Protocol (SDP)", RFC 3264, June 2002.

Informative References

 [19] Campbell, B., "Instant Message Sessions in SIMPLE",
draft-ietf-simple-message-sessions-02 (work in progress), Oct

https://datatracker.ietf.org/doc/html/rfc3458
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc3546
https://datatracker.ietf.org/doc/html/rfc3546
https://datatracker.ietf.org/doc/html/rfc3268
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/rfc2633
https://datatracker.ietf.org/doc/html/rfc2633
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc2183
https://datatracker.ietf.org/doc/html/rfc2327
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/draft-ietf-simple-message-sessions-02

Jennings, et al. Expires August 9, 2004 [Page 71]

Internet-Draft SIMS February 2004

 2003.

 [20] Schulzrinne, H., Rao, A. and R. Lanphier, "Real Time Streaming
 Protocol (RTSP)", RFC 2326, April 1998.

 [21] Atkins, D. and G. Klyne, "Common Presence and Instant
 Messaging: Message Format", draft-ietf-impp-cpim-msgfmt-08
 (work in progress), January 2003.

 [22] Levinson, E., "Content-ID and Message-ID Uniform Resource
 Locators", RFC 2392, August 1998.

 [23] Day, M., Aggarwal, S. and J. Vincent, "Instant Messaging /
 Presence Protocol Requirements", RFC 2779, February 2000.

 [24] Resnick, P., "Internet Message Format", RFC 2822, April 2001.

 [25] Mahy, R., "Relay Requirements for Session-Mode Instant
 Messaging", draft-mahy-simple-session-relay-reqs-00.txt (work
 in progress), February 2004.

 [26] Mahy, R., "Benefits of Session-Mode Instant Messaging",
draft-mahy-simple-why-session-mode-00.txt (work in progress),

 February 2004.

URIs

 [27] <http://www.softarmor.com/simple/drafts/morgue/
draft-sparks-simple-jabber-sessions-00.txt>

 [28] <http://www.softarmor.com/simple/drafts/morgue/
draft-rosenberg-simple-message-session-00.txt>

 [29] <http://www.softarmor.com/simple/drafts/morgue/
draft-rosenberg-simple-im-transport-00.txt>

 [30] <http://www.softarmor.com/simple/drafts/morgue/
draft-mrose-simple-exchange-01.txt>

https://datatracker.ietf.org/doc/html/rfc2326
https://datatracker.ietf.org/doc/html/draft-ietf-impp-cpim-msgfmt-08
https://datatracker.ietf.org/doc/html/rfc2392
https://datatracker.ietf.org/doc/html/rfc2779
https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/draft-mahy-simple-session-relay-reqs-00.txt
https://datatracker.ietf.org/doc/html/draft-mahy-simple-why-session-mode-00.txt
http://www.softarmor.com/simple/drafts/morgue/draft-sparks-simple-jabber-sessions-00.txt
http://www.softarmor.com/simple/drafts/morgue/draft-sparks-simple-jabber-sessions-00.txt
http://www.softarmor.com/simple/drafts/morgue/draft-rosenberg-simple-message-session-00.txt
http://www.softarmor.com/simple/drafts/morgue/draft-rosenberg-simple-message-session-00.txt
http://www.softarmor.com/simple/drafts/morgue/draft-rosenberg-simple-im-transport-00.txt
http://www.softarmor.com/simple/drafts/morgue/draft-rosenberg-simple-im-transport-00.txt
http://www.softarmor.com/simple/drafts/morgue/draft-mrose-simple-exchange-01.txt
http://www.softarmor.com/simple/drafts/morgue/draft-mrose-simple-exchange-01.txt

Jennings, et al. Expires August 9, 2004 [Page 72]

Internet-Draft SIMS February 2004

Authors' Addresses

 Cullen Jennings
 Cisco Systems, Inc.
 170 West Tasman Dr.
 MS: SJC-21/3
 San Jose, CA 95134
 USA

 Phone: +1 408 527-9132
 EMail: fluffy@cisco.com

 Rohan Mahy
 Cisco Systems, Inc.
 5617 Scotts Valley Drive, Suite 200
 Scotts Valley, CA 95066
 USA

 EMail: rohan@cisco.com

 Juhee Garg
 Cisco Systems, Inc.
 170 West Tasman Dr, MS: SJC21/2/4
 San Jose, CA 95134
 USA

 EMail: juhee@cisco.com

Jennings, et al. Expires August 9, 2004 [Page 73]

Internet-Draft SIMS February 2004

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Full Copyright Statement

 Copyright (C) The Internet Society (2004). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

https://datatracker.ietf.org/doc/html/bcp11

Jennings, et al. Expires August 9, 2004 [Page 74]

Internet-Draft SIMS February 2004

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Jennings, et al. Expires August 9, 2004 [Page 75]

