
RTCWeb Working Group R. Jesup

Internet-Draft Mozilla

Intended status:

Informational
S. Loreto

Expires: May 03, 2012 Ericsson

M. Tuexen

Muenster University of Applied

Sciences

October 31, 2011

RTCWeb Datagram Connection 

draft-jesup-rtcweb-data-01.txt

Abstract

This document investigates the possibilities for designing a generic

transport service that allows Web Browser to exchange generic data in a

peer to peer way. Several, already standardized by IETF, transport

protocols and their properties are investigated in order to identify

the most appropriate one. 

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on May 03, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.



Table of Contents

1. Introduction

2. Requirements

3. Use cases.

3.1. Use cases for unreliable datagram based channel

3.2. Use cases for reliable channels (datagram or stream).

4. Protocol alternatives

4.1. Datagrams over DTLS over DCCP over UDP.

4.2. Datagrams over SCTP over DTLS over UDP.

4.3. A new protocol on top of UDP.

4.3.1. TCP over DTLS over UDP.

4.4. A RTP compatible protocol.

5. Datagrams over SCTP over DTLS over UDP.

5.1. User Space vs Kernel implementation.

5.2. The envisioned usage of SCTP in the RTCWeb context

5.3. SCTP/DTLS/UDP vs DTLS/SCTP/UDP

6. Message Format.

7. Security Considerations

8. IANA Considerations

9. Acknowledgments

10. References

Authors' Addresses

1. Introduction

The issue of how best to handle non-media data types in the context of

RTCWEB is still under discussion in the mailing list; there have been

several proposals on how to address this problem, but there is not yet

a clear consensus on the actual solution.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*



Req. 1

Req. 2

Req. 3

Req. 4

Req. 5

Req. 6

Req. 7

However it seems to be a general agreement that for NAT traversal

purpose it has to be:

FOO/UDP/IP

or most likely:

FOO/DTLS/UDP/IP (for confidentiality, source authenticated, integrity

protected transfers)

where FOO is a protocol that is supposed to provide congestion control

and possible some type of framing or stream concept.

Moreover there has been a clear interest for both an unreliable and a

reliable peer to peer datagram based channel.

This document provides Requirement and use cases for both unreliable

and reliable peer to peer datagram base channel, provide an overview of

the pro and cons of the different proposed solutions, and finally

analyze in more detail the SCTP based solution.

2. Requirements

This section lists the requirements for P2P data connections between

two browsers. 

Multiple simultaneous datagram streams must be supported. Note

that there may 0 or more media streams in parallel with the data

streams, and the number and state (active/inactive) of the media

streams may change at any time.

Both reliable and unreliable datagram streams must be

supported.

Data streams must be congestion controlled; either

individually, as a class, or in conjunction with the media streams,

to ensure that datagram exchanges don't cause congestion problems

for the media streams, and that the rtcweb PeerConnection as a whole

is fair with competing streams such as TCP.

The application should be able to provide guidance as to the

relative priority of each datagram stream relative to each other,

and relative to the media streams. [ TBD: how this is encoded and

what the impact of this is. ] This will interact with the congestion

control.

Datagram streams must be encrypted; allowing for

confidentiality, integrity and source authentication. See the

security spec [xxx] for detailed info.

Consent and NAT traversal mechanism: These are handled by the

PeerConnection's ICE [RFC5245] connectivity checks and optional TURN

servers.

Data streams MUST provide message fragmentation support such

that IP-layer fragmentation does not occur no matter how large a



Rec. 8

Req. 9

Req. 10

Req. 10

Req. 11

U-C 1

U-C 2

U-C 3

message/buffer the Javascript application passes down to the Browser

to be sent out.

The data stream transport protocol MUST NOT encode local IP

addresses inside its protocol fields; doing so reveals potentially

private information, and leads to failure if the address is depended

upon. 

The data stream protocol SHOULD support unbounded-length

"messages" (i.e., a virtual socket stream) at the application layer,

for such things as image-file-transfer; or else it MUST support at

least a maximum application-layer message size of 4GB.

The data stream packet format/encoding MUST be such that it is

impossible for a malicious Javascript to generate an application

message crafted such that it could be interpreted as a native

protocol over UDP - such as UPnP, RTP, SNMP, STUN, etc. 

The data stream transport protocol MUST start with the

assumption of a PMTU of 1280 [ *** need justification ***] bytes

until measured otherwise. 

The data stream transport protocol MUST NOT rely on ICMP being

generated or being passed back, such as for PMTU discovery. 

3. Use cases.

3.1. Use cases for unreliable datagram based channel

A real-time game where position and object state information is

sent via one or more unreliable data channels. Note that at any time

there may be no media channels, or all media channels may be

inactive.

Non-critical state updates about a user in a video chat or

conference, such as Mute state.

3.2. Use cases for reliable channels (datagram or stream).

Note that either reliable datagrams or streams are possible; reliable

streams would be fairly simple to layer on top of SCTP reliable

datagrams with in-order delivery.

A real-time game where critical state information needs to be

transferred, such as control information. Typically this would be

datagrams. Such a game may have no media channels, or they may be



U-C 4

U-C 5

U-C 6

inactive at any given time, or may only be added due to in-game

actions.

Non-realtime file transfers between people chatting. This could

be datagrams or streaming; streaming might be an easier fit

Realtime text chat while talking with an individual or with

multiple people in a conference. Typically this would be datagrams.

Renegotiation of the set of media streams in the PeerConnection.

Typically this would be datagrams

4. Protocol alternatives

4.1. Datagrams over DTLS over DCCP over UDP.

                 +------+

                 |WEBAPP|

                 +------+

                 | DTLS |

          +-------------+

          | STUN | DCCP |

          +-------------+

          |    ICE      | 

          +-------------+ 

          | UDP1 | UDP2 |...

          +-------------+              

DCCP [RFC4340] adds to a UDP-like foundation the minimum mechanisms

necessary to support congestion control. It is a unicast, connection-

oriented protocol with bidirectional data flow.

The main downside of DCCP is the uncertainty of the DCCP

implementations. Moreover DCCP only meets the requirements for the

unreliable data channel, so in order to satisfy the reliable data

channel requirements there is a need to build a new mechanism on top of

DCCP or use a different protocol for it.

The main advantage of DCCP is that the Congestion Control (CC) methods

are modularly separated from its core, that allows each application to

choose a different congestion control methods it prefers. Each

congestion control method is denoted by unique ID (CCID): a number from

0-255. CCIDs 2, 3 and 4 are current defined; CCIDs 0, 1, and 5-255 are

reserved. The end-points negotiate their CCIDs during connection

initiation and achieve agreement through the exchange of feature

negotiation options in DCCP headers.

CCID 2 [RFC4341] denotes Additive Increase, Multiplicative Decrease

congestion control with feature modelled directly on TCP. It achieves

the maximum bandwidth over the long term consistent with the use of



end-to-end congestion control but reduces the congestion window by half

upon congestion detection. Applications that prefer a large amount of

bandwidth as feasible over the longer terms should use CCID2. 

CCID 3 [RFC4342], TCP friendly rate control mechanism(TFRC), denotes an

equation-based and rate controlled congestion control mechanisms

designed to be reasonably fair when competing for bandwidth with TCP

like flows. It shows much lower variation of throughput over time

compared with TCP that makes CCID 3 more suitable than CCID 2 for

applications such as streaming media content that prefers to minimize

abrupt changes in the sending rate. 

CCID 4 [RFC5622] is a modified version of CCID 3 and designed for

applications that use a small fixed segment size, or change their

sending rate by varying the segment size. It denotes TFRC-SP (TCP

friendly rate control for small packets)

Both CCID 3 and 4 uses the TCP throughput equation for CC; the former

is based on the calculation of loss event rate but the later also

include nominal packet size of 1460 bytes, a round trip estimate in TCP

throughput calculation. In contrast to CCID 3, the CCID 4 sender

imposes a minimum interval of 10 ms between data packets regardless of

the allowed transmit rate.

4.2. Datagrams over SCTP over DTLS over UDP.

                 +------+

                 |WEBAPP|

                 +------+

                 | SCTP |

          +-------------+

          | STUN | DTLS |

          +-------------+

          |    ICE      | 

          +-------------+ 

          | UDP1 | UDP2 |...

          +-------------+              

An SCTP [RFC4960] based solution will provide several interesting

features among the others: Multistreaming, Ordered and Unordered

delivery, Reliability and partial-Reliability [RFC3758], and Dynamic

Address Reconfiguration [RFC5061].

Moreover SCTP provides the possibility to transport different

"protocols" over multiple streams and associations using the ppid

(Payload Protocol Identifier). An application can set a different PPID

with each send call. This allows the receiving application to look at

this information (as well as the stream id/seq) on receiving to know

what type of protocol the data payload has.



The SCTP feature so seems to satisfy all the requirements for both the

unreliable and the reliable scenario.

There are SCTP implementations for all the different OS: Linux

(mainline kernel 2.6.36), FreeBSD (release kernel 8.2), Mac OS X,

Windows (SctpDrv4) and Solaris (OpenSolaris 2009.06), as well as a

user-land SCTP implementation based on the FreeBSD implementation).

The SCTP solution is analyzed in more detail in Section 5.

4.3. A new protocol on top of UDP.

This option requires to at least build a congestion control (CC)

mechanism on top of the plain UDP.

In designing it we have to follow carefully the guidelines provided in 

[RFC5405].

                 +------+

                 |WEBAPP|

                 +------+

                 |  CC  |

          +-------------+

          | STUN | DTLS |

          +-------------+

          |    ICE      | 

          +-------------+ 

          | UDP1 | UDP2 |...

          +-------------+              

4.3.1. TCP over DTLS over UDP.

                    +------+

                    |WEBAPP|

                    +------+

                    |FRAME | 

                    +------+

                    | TCP  |

             +-------------+

             | STUN | DTLS |

             +-------------+

             |    ICE      | 

             +-------------+ 

             | UDP1 | UDP2 |...

             +-------------+



Layering TCP atop DTLS or UDP is an approach that has been suggested

several times in the past, including TCP-over-UDP [I-D.baset-tsvwg-tcp-

over-udp] and UDP-Encapsulated Transport Protocols [I-D.denis-udp-

transport].

A similar mechanism has also been used for Google Talk's peer-to-peer

file transfer protocol, implemented in the libjingle library as

"PseudoTcp" [http://code.google.com/p/libjingle/source/browse/trunk/

talk/p2p/base/pseudotcp.cc]. In this implementation, a lightweight

userspace TCP stack has been developed with support for a fairly

minimal set of TCP options, namely delayed acknowledgements, Nagle,

fast retransmit, fast recovery (NewReno), timestamps, and window

scaling. Some features have been removed, such as urgent data. And as

in the aforementioned drafts, the TCP header has been tweaked slightly

to remove fields redundant with the UDP header, namely source/

destination port and checksum.

The advantage of this approach is clear; TCP is well-known and

understood, and its congestion control is by definition TCP-fair. User-

space implementations of TCP exist, e.g. as PseudoTcp, which has

considerable deployment experience. It is also possible to support

multiplexing of datagram flows with this approach, either by adding a

stream identifier to the TCP header (in place of the port numbers,

perhaps), or doing the same in a higher-level framing layer.

This approach has some disadvantages as well; since TCP is a stream,

rather than datagram-oriented protocol, some framing needs to be added

on top of TCP to provide the necessary datagram interface to the

calling API. In addition, TCP only provides reliable delivery; there is

no provision for a unreliable channel. This deficiency could be

remedied by providing a separate protocol for unreliable channels.

Such a protocol could be a lightweight datagram protocol that

implements the sequence number and other fields necessary to run TFRC-

SP.

4.4. A RTP compatible protocol.

                       +------+

                       |WEBAPP|

             +----------------+

             |STUN|DTLS| SRTP |

             +----------------+

             |      ICE       | 

             +----------------+ 

             | UDP1 | UDP2 |...

             +----------------+

When sending RTP with DTLS, rather than encapsulating RTP in DTLS, SRTP

keys are extracted from the DTLS key material, allowing use of SRTP's



-

more efficient format. This same approach could be extended for sending

of application data as a RTP payload.

The benefits of this approach are centered around the ability to reuse

the existing mechanisms for audio/video data for application data, and

the resultant simplification that occurs. If everything ends up RTP,

and RTP provides information about loss and timing, we can have common

encryption, congestion control, and multiplexing mechanisms for all

types of data. For example, we could use RTP SSRC to demux different

application data streams, and RTCP NACK to faciliate reliable delivery.

On the other hand, RTP has a number of semantics associated with it

that aren't necessarily a good fit for arbitrary application data.

While the RTP timestamp, sequence number and SSRC fields are

meaningful, there are a number of other header fields that may not make

sense, and the applicability of RTP's notions of timing, media playout,

and control feedback is unclear.

5. Datagrams over SCTP over DTLS over UDP.

5.1. User Space vs Kernel implementation.

Even kernel implementation of SCTP are already available for all the

different platforms (see Section 4.2 ), there are compelling reasons

that incline towards for a SCTP stack that works well in user land.

The main reason is deployability.

There are many applications today that are expected to run on a wide

range of old and new operating systems. Web browsers are an excellent

example. They support operating systems 10 years old or more, they run

on mobile and desktop operating systems, and they are highly portable

to new operating systems. This is achieved by having a fairly narrow

portability layer to minimize what needs to be supported on old

operating systems and ported to new ones. This creates a strong desire

to implemented as much functionality as possible inside the application

instead of relying on the operating system for it.

This leads to a situation where there is a desire for the SCTP stack to

be implemented in the user space instead of the kernel space. For many

applications that require support of operating systems without SCTP

(insert whatever stack order is - UDP, DTLS - whatever), there is no

way to deploy this unless it can be implemented in the application. The

traditional reasons for kernel implementations, such as mux of many

application using transport port numbers, does not particularly apply

here where that level of multiplexing between application was provided

by the underling UDP that is tunneled over. The requirement is:

It MUST be possible to implement the SCTP and DTLS portion of the stack

in the user application space.

5.2. The envisioned usage of SCTP in the RTCWeb context

The appealing features of SCTP in the RTCWeb context are:



-

-

-

-

-

the congestion control which is TCP friendly.

the congestion control is modifiable for integration with media

stream congestion control.

support for multiple channels with different characteristics.

support for out-of-order delivery.

support for large datagrams and PMTU-discovery and fragmentation.

the reliable or partial reliability support.

Multi streaming is probably also of interest.

Multihoming will not be used in this scenario. The SCTP layer would

simply act as if it were running on a single-homed host, since that is

the abstraction that the lower layers (e.g. UDP) would expose.

5.3. SCTP/DTLS/UDP vs DTLS/SCTP/UDP

The two alternatives being discussed in this subsection are shown in

the following Figure 6.

                       +------+                    +------+

                       |WEBAPP|                    |WEBAPP|

                       +------+                    +------+

                       | DTLS |                    | SCTP |

                +-------------+             +-------------+

                | SRTP | SCTP |             | SRTP | DTLS |

                +-------------+             +-------------+

                |    ICE      |             |     ICE     |

                +-------------+             +-------------+

                | UDP1 | UDP2 |...          | UDP1 | UDP2 |...

                +-------------+             +-------------+

The UDP encapsulation of SCTP used in the protocol stack shown on the

left hand side of Figure 6 is specified in [I-D.ietf-tsvwg-sctp-udp-

encaps] and the usage of DTLS over SCTP is specified in [RFC6083].

Using the UDP encapsulation of SCTP allows SCTP implementations to run

in user-land without any special privileges, but still allows the

support of SCTP kernel implementations. This also requires no SCTP

specific support in middleboxes like firewalls and NATs. Multihoming

and failover support is implemented via the ICE layer, and SCTP

associations are single-homed at the SRTP layer. The SCTP payload is

protected by DTLS, which provides confidentiality, integrity and source

authentication. SCTP-AUTH as specified in [RFC4895] is used to provide

integrity of SCTP control information related to the user messages like

the SCTP stream identifier. Please note that the SCTP control

information (like the SCTP stream identifier) is sent unencrypted.



Considering the protocol stack on the right hand side of Figure 6, the

usage of DTLS over UDP is specified in [I-D.ietf-tls-rfc4347-bis].

Using SCTP on top of DTLS is currently unspecified. Since DTLS is

typically implemented in user-land, an SCTP user-land implementation

has also to be used. Kernel SCTP implementations can't be used. When

using DTLS as the lower layer, only single homed SCTP associations can

be used, since DTLS does not expose any any address management to its

upper layer. DTLS implementations used for this stack must support

controlling fields of the IP layer like the DF-bit in case of IPv4 and

the DSCP field. This is required for performing path MTU discovery. The

DTLS implementation must also support sending user messages exceeding

the path MTU. When supporting multiple SCTP associations over a single

DTLS connection, incoming ICMP or ICMPv6 messages can't be processed by

the SCTP layer, since there is no way to identify the corresponding

association. Therefore the number of SCTP associations should be

limited to one or ICMP and ICMPv6 messages should be ignored. In

general, the lower layer interface of an SCTP implementation has to be

adopted to address the differences between IPv4 or IPv6 (being

connection-less) or DTLS (being connection-oriented). When this stack

is used, DTLS protects the complete SCTP packet, so it provides

confidentiality, integrity and source authentication of the complete

SCTP packet.

It should be noted that both stack alternatives support the usage of

multiple SCTP streams. A user message can be sent ordered or unordered

and, if the SCTP implementations support [RFC3758], with partial

reliability. When using partial reliability, it might make sense to use

a policy limiting the number of retransmissions. Limiting the number of

retransmissions to zero provides a UDP like service where each user

messages is sent exactly once.

SCTP provides congestion control on a per-association base. This means

that all SCTP streams within a single SCTP association share the same

congestion window. Traffic not being sent over SCTP is not covered by

the SCTP congestion control.

6. Message Format.

TBD if we need also to design a framing or not.

At time of writing nobody has identified a real need for masking of

UDP, and DTLS is a much-preferred solution for encryption/

authentication.

More SCTP already provides sequence number information (e.g. stream

sequence numbers). However there could be a need to support different

kind of message (link in WebSocket where there is support to

distinguish between Unicode text and binary frames), since for SCTP

they are all user message. In the case there is this need a possibility

is to map types to streams.



7. Security Considerations

To be done. 

8. IANA Considerations

This document does not require any actions by the IANA. 

9. Acknowledgments

Many thanks for comments, ideas, and text from Cullen Jennings, Eric

Rescorla, Randall Stewart and Justin Uberti.

10. References

[RFC3758]

Stewart, R., Ramalho, M., Xie, Q., Tuexen, M. and 

P. Conrad, "Stream Control Transmission Protocol

(SCTP) Partial Reliability Extension", RFC 3758,

May 2004.

[RFC4340]

Kohler, E., Handley, M. and S. Floyd, "Datagram

Congestion Control Protocol (DCCP)", RFC 4340,

March 2006.

[RFC4341]

Floyd, S. and E. Kohler, "Profile for Datagram

Congestion Control Protocol (DCCP) Congestion

Control ID 2: TCP-like Congestion Control", RFC

4341, March 2006.

[RFC4342]

Floyd, S., Kohler, E. and J. Padhye, "Profile for

Datagram Congestion Control Protocol (DCCP)

Congestion Control ID 3: TCP-Friendly Rate Control

(TFRC)", RFC 4342, March 2006.

[RFC5622]

Floyd, S. and E. Kohler, "Profile for Datagram

Congestion Control Protocol (DCCP) Congestion ID

4: TCP-Friendly Rate Control for Small Packets

(TFRC-SP)", RFC 5622, August 2009.

[RFC4895]

Tuexen, M., Stewart, R., Lei, P. and E. Rescorla,

"Authenticated Chunks for the Stream Control

Transmission Protocol (SCTP)", RFC 4895, August

2007.

[RFC4960]
Stewart, R., "Stream Control Transmission

Protocol", RFC 4960, September 2007.

[RFC5061]

Stewart, R., Xie, Q., Tuexen, M., Maruyama, S. and 

M. Kozuka, "Stream Control Transmission Protocol

(SCTP) Dynamic Address Reconfiguration", RFC 5061,

September 2007.

[RFC5245]

Rosenberg, J., "Interactive Connectivity

Establishment (ICE): A Protocol for Network

Address Translator (NAT) Traversal for Offer/

Answer Protocols", RFC 5245, April 2010.

[RFC5389]

http://tools.ietf.org/html/rfc3758
http://tools.ietf.org/html/rfc3758
http://tools.ietf.org/html/rfc4340
http://tools.ietf.org/html/rfc4340
http://tools.ietf.org/html/rfc4341
http://tools.ietf.org/html/rfc4341
http://tools.ietf.org/html/rfc4341
http://tools.ietf.org/html/rfc4342
http://tools.ietf.org/html/rfc4342
http://tools.ietf.org/html/rfc4342
http://tools.ietf.org/html/rfc4342
http://tools.ietf.org/html/rfc5622
http://tools.ietf.org/html/rfc5622
http://tools.ietf.org/html/rfc5622
http://tools.ietf.org/html/rfc5622
http://tools.ietf.org/html/rfc4895
http://tools.ietf.org/html/rfc4895
http://tools.ietf.org/html/rfc4960
http://tools.ietf.org/html/rfc4960
http://tools.ietf.org/html/rfc5061
http://tools.ietf.org/html/rfc5061
http://tools.ietf.org/html/rfc5245
http://tools.ietf.org/html/rfc5245
http://tools.ietf.org/html/rfc5245
http://tools.ietf.org/html/rfc5245


Rosenberg, J., Mahy, R., Matthews, P. and D. Wing,

"Session Traversal Utilities for NAT (STUN)", RFC

5389, October 2008.

[RFC5405]

Eggert, L. and G. Fairhurst, "Unicast UDP Usage

Guidelines for Application Designers", BCP 145,

RFC 5405, November 2008.

[RFC6083]

Tuexen, M., Seggelmann, R. and E. Rescorla,

"Datagram Transport Layer Security (DTLS) for

Stream Control Transmission Protocol (SCTP)", RFC

6083, January 2011.

[I-D.ietf-tls-

rfc4347-bis]

Rescorla, E and N Modadugu, "Datagram Transport

Layer Security version 1.2", Internet-Draft draft-

ietf-tls-rfc4347-bis-06, July 2011.

[I-D.ietf-

tsvwg-sctp-

udp-encaps]

Tuexen, M and R Stewart, "UDP Encapsulation of

SCTP Packets", Internet-Draft draft-ietf-tsvwg-

sctp-udp-encaps-01, October 2011.

[I-D.baset-

tsvwg-tcp-

over-udp]

Baset, S and H Schulzrinne, "TCP-over-UDP",

Internet-Draft draft-baset-tsvwg-tcp-over-udp-01,

June 2009.

[I-D.denis-

udp-transport]

Denis-Courmont, R, "UDP-Encapsulated Transport

Protocols", Internet-Draft draft-denis-udp-

transport-00, July 2008.

Authors' Addresses

Randell Jesup Jesup Mozilla EMail: randell-ietf@jesup.org

Salvatore Loreto Loreto Ericsson Hirsalantie 11 Jorvas, 02420

Finland EMail: salvatore.loreto@ericsson.com

Michael Tuexen Tuexen Muenster University of Applied Sciences

Stegerwaldstrasse 39 Steinfurt, 48565 Germany EMail: tuexen@fh-

muenster.de

http://tools.ietf.org/html/rfc5389
http://tools.ietf.org/html/rfc5405
http://tools.ietf.org/html/rfc5405
http://tools.ietf.org/html/rfc6083
http://tools.ietf.org/html/rfc6083
http://tools.ietf.org/html/draft-ietf-tls-rfc4347-bis-06
http://tools.ietf.org/html/draft-ietf-tls-rfc4347-bis-06
http://tools.ietf.org/html/draft-ietf-tsvwg-sctp-udp-encaps-01
http://tools.ietf.org/html/draft-ietf-tsvwg-sctp-udp-encaps-01
http://tools.ietf.org/html/draft-baset-tsvwg-tcp-over-udp-01
http://tools.ietf.org/html/draft-denis-udp-transport-00
http://tools.ietf.org/html/draft-denis-udp-transport-00
mailto:randell-ietf@jesup.org
mailto:salvatore.loreto@ericsson.com
mailto:tuexen@fh-muenster.de
mailto:tuexen@fh-muenster.de

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Requirements
	3. Use cases.
	3.1. Use cases for unreliable datagram based channel
	3.2. Use cases for reliable channels (datagram or stream).
	4. Protocol alternatives
	4.1. Datagrams over DTLS over DCCP over UDP.
	4.2. Datagrams over SCTP over DTLS over UDP.
	4.3. A new protocol on top of UDP.
	4.3.1. TCP over DTLS over UDP.
	4.4. A RTP compatible protocol.
	5. Datagrams over SCTP over DTLS over UDP.
	5.1. User Space vs Kernel implementation.
	5.2. The envisioned usage of SCTP in the RTCWeb context
	5.3. SCTP/DTLS/UDP vs DTLS/SCTP/UDP
	6. Message Format.
	7. Security Considerations
	8. IANA Considerations
	9. Acknowledgments
	10. References
	Authors' Addresses

