
Workgroup: QUIC Working Group

Internet-Draft:

draft-jholland-quic-multicast-01

Published: 24 June 2022

Intended Status: Experimental

Expires: 26 December 2022

Authors: J. Holland

Akamai Technologies, Inc.

L. Pardue M. Franke

TU Berlin

Multicast Extension for QUIC

Abstract

This document defines a multicast extension to QUIC to enable the

efficient use of mullticast-capable networks to send identical data

streams to many clients at once, coordinated through individual

unicast QUIC connections.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://

GrumpyOldTroll.github.io/draft-jholland-quic-multicast/draft-

jholland-quic-multicast.html. Status information for this document

may be found at https://datatracker.ietf.org/doc/draft-jholland-

quic-multicast/.

Discussion of this document takes place on the QUIC Individual Draft

mailing list (mailto:quic@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/quic/.

Source for this draft and an issue tracker can be found at https://

github.com/GrumpyOldTroll/draft-jholland-quic-multicast.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

¶

¶

¶

¶

¶

¶

¶

¶

https://GrumpyOldTroll.github.io/draft-jholland-quic-multicast/draft-jholland-quic-multicast.html
https://GrumpyOldTroll.github.io/draft-jholland-quic-multicast/draft-jholland-quic-multicast.html
https://GrumpyOldTroll.github.io/draft-jholland-quic-multicast/draft-jholland-quic-multicast.html
https://datatracker.ietf.org/doc/draft-jholland-quic-multicast/
https://datatracker.ietf.org/doc/draft-jholland-quic-multicast/
mailto:quic@ietf.org
https://mailarchive.ietf.org/arch/browse/quic/
https://mailarchive.ietf.org/arch/browse/quic/
https://github.com/GrumpyOldTroll/draft-jholland-quic-multicast
https://github.com/GrumpyOldTroll/draft-jholland-quic-multicast
https://datatracker.ietf.org/drafts/current/

This Internet-Draft will expire on 26 December 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Conventions and Definitions

2. Multicast Channel

3. Transport Parameter

4. Extension Overview

4.1. Channel Management

4.2. Client Response

4.3. Data Carried in Channels

4.4. Stream Processing

5. Flow Control

6. Congestion Control

7. Data Integrity

7.1. Packet Hashes

8. Recovery

9. Connection Termination

9.1. Stateless Reset

10. New Frames

10.1. MC_ANNOUNCE

10.2. MC_KEY

10.3. MC_JOIN

10.4. MC_LEAVE

10.5. MC_INTEGRITY

10.6. MC_ACK

10.7. MC_LIMITS

10.8. MC_RETIRE

10.9. MC_STATE

11. Frames Carried in Channel Packets

12. Implementation and Operational Considerations

12.1. Use Cases

12.1.1. HTTP/3 Server Push

¶

¶

¶

https://trustee.ietf.org/license-info

12.1.2. HTTP/3 WebTransport

12.1.3. Non-web Applications

12.2. Graceful Degradation

12.2.1. Circuit Breakers

12.3. Server Scalability

12.4. Address Collisions

13. Security Considerations

14. IANA Considerations

15. References

15.1. Normative References

15.2. Informative References

Acknowledgments

Authors' Addresses

1. Introduction

This document specifies an extension to QUIC version 1 [RFC9000] to

enable the use of multicast IP transport of identical packets for

use in many individual QUIC connections.

The multicast data can only be consumed in conjunction with a

unicast QUIC connection. When the client has support for multicast

as described in Section 3, the server can tell the client about

multicast channels and ask the client to join and leave them as

described in Section 4.1.

The client reports its joins and leaves to the server and

acknowleges the packets received via multicast after verifying their

integrity.

The purpose of this multicast extension is to realize the large

scalability benefits for popular traffic over multicast-capable

networks without compromising on security, network safety, or

implementation reliabiliity. Thus, this specification has several

design goals:

Re-use as much as possible the mechanisms and packet formats of

QUIC version 1

Provide flow control and congestion control mechanisms that work

with multicast traffic

Maintain the confidentiality, integrity, and authentication

guarantees of QUIC as appropriate for multicast traffic, fully

meeting the security goals described in [I-D.draft-krose-

multicast-security]

Leverage the scalability of multicast IP for data that is

transmitted identically to many clients

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

This document does not define any multicast transport except server

to client and only includes semantics for source-specific multicast.

1.1. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Commonly used terms in this document are described below.

Term Definition

SSM Source-specific multicast, as described in [RFC4607]

ASM Any-source multicast, as distinguished from SSM in [RFC4607]

(S,G)
A tuple of IP addresses (Source IP, Group IP) identifying a

source-specific multicast channel as described in [RFC4607]

Table 1

2. Multicast Channel

A QUIC multicast channel (or just channel) is a one-way network path

that a server can use as an alternate path to send QUIC connection

data to a client.

Multicast channels are designed to leverage multicast IP and to be

shared by many different connections simultaneously for

unidirectional server-initiated data.

One or more servers can use the same QUIC multicast channel to send

the same data to many clients, as a supplement to the individual

QUIC connections between those servers and clients. (Note that QUIC

connections are defined in Section 5 of [RFC9000] and are not

changed in this document; each connection is a shared state between

a client and a server.)

Each QUIC multicast channel has exactly one associated (S,G) that is

used for the delivery of the multicast packets on the IP layer.

Channels do not support any-source multicast (ASM) semantics.

Channels carry only 1-RTT packets. Packets associated with a channel

contain a Channel ID in place of a Destination Connection ID. (A

Channel ID cannot be zero length.) This adds a layer of indirection

to the process described in Section 5.2 of [RFC9000] for matching

packets to connections upon receipt. Incoming packets received on

the network path associated with a channel use the Channel ID to

associate the packet with a joined channel.

¶

¶

¶

¶

¶

¶

¶

¶

A client with a matching joined channel always has at least one

connection associated with the channel. If a client has no matching

joined channel, the packet is discarded.

Each channel has an independent packet number space. Since the

network path for a channel is unidirectional and uses a different

packet number space than the unicast part of the connection, packets

associated with a channel are acknowledged with MC_ACK frames

Section 10.6 instead of ACK frames.

The use of any particular channel is OPTIONAL for both the server

and the client. It is recommended that applications designed to

leverage the multicast capabilities of this extension also provide

graceful degradation for endpoints that do not or cannot make use of

the multicast functionality (see Section 12.2).

The server has access to all data transmitted on any multicast

channel it uses, and could optionally send this data with unicast

instead.

No special handling of the data is required in a client application

that has enabled multicast. A datagram or any particular bytes from

a server-initiated unidirectional stream can be delivered over the

unicast connection or a multicast channel transparently to a client

application consuming the stream or datagram.

Client applications should have a mechanism that disables the use of

multicast on connections with enhanced privacy requirements for the

privacy-related reasons covered in [I-D.draft-krose-multicast-

security].

3. Transport Parameter

Support for multicast extensions in a client is advertised by means

of a QUIC transport parameter:

name: multicast_client_params (TBD - experiments use 0xff3e800)

If a multicast_client_params transport parameter is not included,

servers MUST NOT send any frames defined in this document. (Given

that a server never sends any MC_JOIN frames, the clients also will

never send any frames in this document so only the client-to-server

advertisement is necessary.)

The multicast_client_params parameter has the structure shown below

in Figure 1.

¶

¶

¶

¶

¶

¶

¶

* ¶

¶

¶

Figure 1: multicast_client_params Format

Capabilities Flags is a bit field structured as follows:

0x1 is set if IPv4 channels are permitted

0x2 is set if IPv6 channels are permitted

A server MUST NOT send MC_ANNOUNCE (Section 10.1) frames with

addresses using an IP Family that is not supported according to the

Capabilities in the multicast_client_params, unless and until a

later MC_LIMITS (Section 10.7) frame adds permission for a different

address family.

The Capabilities Field, Max Aggregate Rate, and Max Channel IDs are

the same as in MC_LIMITS frames (Section 10.7) and provide the

initial client values.

The AEAD Algorithms List field is in order of preference (most

preferred occuring first) using values from the TLS Cipher Suite

registry (https://www.iana.org/assignments/tls-parameters/tls-

parameters.xhtml#tls-parameters-4). It lists the algorithms the

client is willing to use to decrypt data in multicast channels, and

the server MUST NOT send an MC_ANNOUNCE to this client for any

channels using unsupported algorithms. If the server does send an

MC_ANNOUNCE with an unsupported cipher suite, the client SHOULD

treat it as a connection error of type PROTOCOL_VIOLATION.

The Hash Algorithms List field is in order of preference (most

preferred occurring first) using values from the registry below. It

lists the algorithms the client is willing to use to check integrity

of data in multicast channels, and the server MUST NOT send an

MC_ANNOUNCE to this client for any channels using unsupported

algorithms, or the client SHOULD treat it as a connection error of

type PROTOCOL_VIOLATION:

https://www.iana.org/assignments/named-information/named-

information.xhtml#hash-alg

multicast_client_params {

 Capabilities Field (i),

 Max Aggregate Rate (i),

 Max Channel IDs (i),

 Hash Algorithms Supported (i),

 AEAD Algorithms Supported (i),

 Hash Algorithms List (16 * Hash Algorithms Supported),

 AEAD Algorithms List (16 * AEAD Algorithms Supported)

}

¶

* ¶

* ¶

¶

¶

¶

¶

*

¶

https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4
https://www.iana.org/assignments/named-information/named-information.xhtml#hash-alg
https://www.iana.org/assignments/named-information/named-information.xhtml#hash-alg

4. Extension Overview

A client has the option of refusal and the power to impose upper

bound maxima on several resources (see Section 5), but otherwise its

join status for all multicast channels is entirely managed by the

server.

A client MUST NOT join a channel without receiving instructions

from a server to do so.

A client MUST leave joined channels when instructed by the server

to do so.

A client MAY leave channels or refuse to join channels,

regardless of instructions from the server.

4.1. Channel Management

The client tells its server about some restrictions on resources

that it is capable of processing with the initial values in the

multicast_client_params transport parameter (Section 3) and later

can update these limits with MC_LIMITS Section 10.7 frames. Servers

ensure the set of channels the client is currently requested to join

remains within these advertised client limits as covered in Section

5.

The server asks the client to join channels with MC_JOIN (Section

10.3) frames and to leave channels with MC_LEAVE (Section 10.4)

frames.

The server uses the MC_ANNOUNCE (Section 10.1) frame before any join

or leave frames for the channel to describe the channel properties

to the client, including values the client can use to ensure the

server's requests remain within the limits it has sent to the

server, as well as the secrets necessary to decode the headers of

packets in the channel. MC_KEY frames provide the secrets necessary

to decode the payload of packets in the channel. Figure 2 shows the

states a channel has from the clients point of view.

Joining a channel after receiving an MC_JOIN frame is OPTIONAL for

clients. If a client decides not to join after being asked to do so,

it can indicate this decision by sending an MC_STATE (Section 10.9)

frame with state Declined Join and an appropriate reason.

The server ensures that in aggregate, all channels that the client

has currently been asked to join and that the client has not left or

declined to join fit within the limits indicated by the initial

values in the transport parameter or last MC_LIMITS (Section 10.7)

frame the server received.

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

Figure 2: States a channel from the clients point of view.

When the server has asked the client to join a channel and has not

received any MC_STATE frames Section 10.9 with state Declined Join

or Left, it also sends MC_INTEGRITY frames (Section 10.5) to enable

the client to verify packet integrity before processing the packet.

A client MUST NOT decode packets for a channel for which it has not

received an applicable MC_ANNOUNCE (Section 10.1), or for which it

has not received a matching packet hash in an MC_INTEGRITY (Section

10.5) frame, or for which it has not received an applicable MC_KEY

frame Section 10.2.

Figure 3 shows the frames that are being exchanged about and over a

channel during the lifetime of an example channel.

 o

 |

----------------------->| | Receive MC_ANNOUNCE and/or MC_KEY

^ | |

| | |

| Receive MC_JOIN (and v v

| unable to join) +----------+

|<--------------------* |

 | unjoined | Receive MC_RETIRE

--------------------->| *------------------------>|

^ +----*-----+ |

| | Receive MC_JOIN |

| | (and able to join) |

| | |

| v v

| +----------+ +---------+

| Receive MC_LEAVE | | | |

| (or error case) | joined | Receive MC_RETIRE | retired |

|<--------------------* *------------------->| |

 +----------+ +---------+

*: Each transition except the initial receiving of MC_ANNOUNCE

 and MC_KEY frames causes the client to send an MC_STATE frame

 describing the state transition (for Left or Declined Join, this

 includes a reason for the transition).

"able to join" means:

- Both MC_KEY and MC_ANNOUNCE have been received

- Result will be within latest advertised client limits

- Nothing preventing a join is active (e.g. a hold-down timer,

 administrative blocking, etc.)

¶

¶

Figure 3: Example flow of frames for a channel. Frames in square

brackets are sent over multicast.

TODO: incorporate server-side state diagram and explanation, latest

proposed sketch at https://github.com/GrumpyOldTroll/draft-jholland-

quic-multicast/issues/62

4.2. Client Response

The client sends back information about how it has responded to the

server's requests to join and leave channels in MC_STATE (Section

10.9) frames. MC_STATE frames are only sent for channels after the

Client Server

MC_LIMITS/initial_limits --->

 MC_ANNOUNCE

 MC_KEY

 <---- MC_JOIN

MC_STATE(Joined) --->

 MC_INTEGRITY

 <---- [STREAM(...)]

MC_ACK ---> ...

... <---- MC_KEY

...

MC_LIMITS --->

 <---- MC_LEAVE

MC_STATE(Left) --->

 <---- MC_JOIN

MC_STATE(Joined) --->

 MC_INTEGRITY

 <---- [STREAM(...)]

MC_ACK ---> ...

...

 <---- MC_LEAVE

MC_STATE(Left) --->

 <---- MC_RETIRE

MC_STATE(Retired) --->

¶

https://github.com/GrumpyOldTroll/draft-jholland-quic-multicast/issues/62
https://github.com/GrumpyOldTroll/draft-jholland-quic-multicast/issues/62

server has requested the client to join the channel, and are

thereafter sent any time the state changes.

Clients that receive and decode data on a multicast channel send

acknowledgements for the data on the unicast connection using MC_ACK

(Section 10.6) frames.

A server can determine if a client receives packets for a multicast

channel if it receives MC_ACK frames associated with that channel.

As such, it is in general up to the server to decide on the time

after which it deems a client to be unable to receive packets on a

given channel and take appropriate steps, e.g. sending an MC_LEAVE

frame to the client. Note that clients willing to join a channel

SHOULD remain joined to the channel even if they receive no channel

data for an extended period, to enable multicast-capable networks to

perform popularity-based admission control for multicast channels.

4.3. Data Carried in Channels

Data transmitted in a multicast channel is encrypted with symmetric

keys so that on-path observers without access to these keys cannot

decode the data. However, since potentially many receivers receive

identical packets and identical keys for the multicast channel and

some receivers might be malicious, the packets are also protected by

MC_INTEGRITY (Section 10.5) frames transmitted over a separate

integrity-protected path.

A client MUST NOT decode packets on a multicast channel for which it

has not received a matching hash in an MC_INTEGRITY frame over a

different integrity-protected communication path. The different path

can be either the unicast connection or another multicast channel

with packets that were verified with an earlier MC_INTEGRITY frame.

See Section 7 for a more complete overview of the security issues

involved here.

4.4. Stream Processing

Stream IDs in channels are restricted to unidirectional server

initiated streams, or those with the least significant 2 bits of the

stream ID equal to 3 (see [RFC9000] Section 2.1).

When a channel contains streams with ids above the client's

unidirectional MAX_STREAMS, the server MUST NOT instruct the client

to join that channel and SHOULD send a STREAMS_BLOCKED frame, as

described in Sections 4.6 and 19.14 of [RFC9000].

If the client is already joined to a channel that carries streams

that exceed or will soon exceed the client's unidirectional

MAX_STREAMS, the server SHOULD send an MC_LEAVE frame.

¶

¶

¶

¶

¶

¶

¶

¶

¶

If a client receives a STREAM frame with an ID above its MAX_STREAMS

on a channel, the client MAY increase its unidirectional MAX_STREAMS

to a value greater than the new ID and send an update to the server,

otherwise it MUST drop the packet and leave the channel with reason

Max Streams Exceeded.

Since clients can join later than a channel began, it is RECOMMENDED

that clients supporting the multicast extensions to QUIC be prepared

to handle stream IDs that do not begin at early values, since by the

time a client joins a channel in progress the stream id count might

have been increasing for a long time. Clients should therefore begin

with a high initial_max_streams_uni or send an early MAX_STREAMS

type 0x13 value (see Section 19.11 of [RFC9000]) with a high limit.

Clients MAY use the maximum 2^60 for this high initial limit, but

the specific choice is implementation-dependent.

The same stream ID may be used in both one or more multicast

channels and the unicast connection. As described in Section 2.2 of

[RFC9000], stream data received multiple times for the same offset

MUST be identical, even across different network paths; if it's not

identical it MAY be treated as a connection error of type

PROTOCOL_VIOLATION.

5. Flow Control

The values used for unicast flow control cannot be used to limit the

transmission rate of a multicast channel because a single client

with a low MAX_STREAM_DATA or MAX_DATA value that did not

acknowledge receipt could block many other receivers if the servers

had to ensure that channels responded to each client's limits.

Instead, clients advertise resource limits via MC_LIMITS (Section

10.7) frames and their initial values from the transport parameter

(Section 3). The server is responsible for keeping the client within

its advertised limits, by ensuring via MC_JOIN and MC_LEAVE frames

that the set of channels the client is asked to be joined to will

not, in aggregate, exceed the client's advertised limits. The server

also advertises the expected maxima of the values that can

contribute toward client resource limits within a channel in an

MC_ANNOUNCE (Section 10.1) frame, and the client also ensures that

the set of channels it's joined to does not exceed its limits,

according to the advertised values. The client also monitors the

packets received to ensure that channels don't exceed their

advertised values, and leaves channels that do.

If the server asks the client to join a channel that would exceed

the client's limits with an up-to-date Client Limit Sequence Number,

the client should send back an MC_STATE frame (Section 10.9) with

"Declined Join" and reason "Property Violation". If the server asks

¶

¶

¶

¶

¶

the client to join a channel that would exceed the client's limits

with an out-of-date Client Limit Sequence Number or a Channel Key

Sequence Number that the client has not yet seen, the client should

instead send back a "Declined Join" with "Desynchronized Limit

Violation". If the actual contents sent in the channel exceed the

advertised limits from the MC_ANNOUNCE, clients SHOULD leave the

stream and send an MC_STATE(Left) frame, using the Limit Violated

reason.

6. Congestion Control

Both the server and the client perform congestion control

operations, so that according to the guidelines in Section 4.1 of

[RFC8085], mechanisms for both feedback-based and receiver-driven

styles of congestion control are present and operational.

The server maintains a full view of the traffic received by the

client via the MC_ACK (Section 10.6) frames and ACK frames it

receives, and can detect loss experienced by the client. Under

sustained persistent loss that exceeds server-configured thresholds,

the server SHOULD instruct the client to leave channels as

appropriate to avoid having the client continue to see sustained

persistent loss.

Under sustained persistent loss that exceeds client-configured

thresholds, the client SHOULD reduce its Max Rate and tell the

server via MC_LIMITS frames, which also will result in the server

instructing the client to leave channels until the clients aggregate

rate is below its advertised Max Rate. Under a higher threshold of

sustained persistent loss, the client also SHOULD leave channels,

using an MC_STATE(Left) frame with the High Loss reason, as well as

reducing the Max Rate in MC_LIMITS.

The unicast connection's congestion control is unaffected. However a

few potential interactions with the unicast connection are worth

highlighting:

if the client notices high loss on the unicast connection while

multicast channel packets are arriving, the client MAY leave

channels with reason High Loss.

if the client notices congestion from unicast this MAY also drive

reductions in the client's Max Rate, and a lack of unicast

congestion under unicast load MAY also drive increases to the

client's Max Rate (along with an updated MC_LIMITS frame).

Hybrid multicast-unicast congestion control is still an experimental

research topic. Implementations SHOULD follow the guidelines given

in Section 4.1.1 of [RFC8085] under the assumption that applications

using QUIC multicast will operate as Bulk-Transfer applications.

¶

¶

¶

¶

¶

*

¶

*

¶

¶

7. Data Integrity

TODO: import the [I-D.draft-krose-multicast-security] explanation

for why extra integrity protection is necessary (many client have

the shared key, so AEAD doesn't provide authentication against other

valid clients on its own, since the same key is given to multiple

clients and as the client count grows so does the chance that at

least one client is controlled by an attacker.)

7.1. Packet Hashes

TODO: explanation and example for how to calculate the packet hash.

Note that the hash is on the encrypted packet to avoid leaking data

about the encrypted contents to those who can see a hash but not the

key. (This approach also may help make better use of [I-D.draft-

ietf-mboned-ambi] by making it possible to generate the same hashes

for use in both AMBI and QUIC MC_INTEGRITY frames.)

8. Recovery

TODO: Articulate key differences with [RFC9002]. The main known

difference is that servers might not be running on the same devices

that are sending the channel packets, therefore the RTT for channel

packets might use an estimated send time that can vary according to

the clock synchronization among servers and the deployment and

implementation details of how the servers find out the sending

timestamps of channel packets. Experience-based guidance on the

recovery timing estimates is one anticipated outcome of

experimenting with deployments of this experimental extension.

All the new frames defined in this document except MC_ACK are ack-

eliciting and are retransmitted until acknowledged to provide

reliable, though possibly out of order, delivery.

Note that recovery MAY be achieved either by retransmitting frame

data that was lost and needs reliable transport either by sending

the frame data on the unicast connection or by coordinating to cause

an aggregated retransmission of widely dropped data on a multicast

channel, at the server's discretion. However, the server in each

connection is responsible for ensuring that any necessary server-to-

client frame data lost by a multicast channel packet loss ultimately

arrives at the client.

9. Connection Termination

Termination of the unicast connection behaves as described in

Section 10 of [RFC9000], with the following notable differences:

On the client side, termination of the unicast connection means

that it MUST leave all multicast channels and discard any state

¶

¶

¶

¶

¶

¶

*

associated with them. Servers MAY stop sending to multicast

channels if there are no unicast connections left that are

associated with them.

For determining the liveness of a connection, the client MUST

only consider packets received on the unicast connection. Any

packets received on a multicast channel MUST NOT be used to reset

a timer checking if a potentially specified max_idle_timeout has

been reached. If the unicast connection becomes idle and the

server does not respond to a liveness test, the client MUST

terminate the connection as described above.

9.1. Stateless Reset

As clients can unilaterally stop the delivery of multicast packets

by leaving the relevant (S,G), channels do not need stateless reset

tokens. Clients therefore do not share the stateless reset tokens of

channels with the server. Instead, if an endpoint receives packets

addressed to an (S,G) that it can not associate with any existing

channel, it MAY take the necessary steps to prevent the reception of

further such packets, without the need to signal to the server that

it should stop sending.

If a server or client detect a stateless reset for a channel, they

MUST ignore it.

10. New Frames

10.1. MC_ANNOUNCE

Once a server learns that a client supports multicast through its

transport parameters, it can send one or multiple MC_ANNOUNCE frames

(type=TBD-11..TBD-12) to share information about available channels

with the client. The MC_ANNOUNCE frame contains the properties of a

channel that do not change during its lifetime.

MC_ANNOUNCE frames are formatted as shown in Figure 4.

¶

*

¶

¶

¶

¶

¶

Figure 4: MC_ANNOUNCE Frame Format

Frames of type TBD-11 are used for IPv4 and both Source and Group

address are 32 bits long. Frames of type TBD-12 are used for IPv6

and both Source and Group address are 128 bits long.

MC_ANNOUNCE frames contain the following fields:

ID Length: The length in bytes of the Channel ID field.

Channel ID: The channel ID of the channel that is getting

announced.

Source IP: The IP Address of the source of the (S,G) for the

channel. Either a 32-bit IPv4 address or a 128-bit IPv6 address,

as indicated by the frame type (TBD-11 indicates IPv4, TBD-12

indicates IPv6).

Group IP: The IP Address of the group of the (S,G) for the

channel. Either a 32-bit IPv4 address or a 128-bit IPv6 address,

as indicated by the frame type (TBD-11 indicates IPv4, TBD-12

indicates IPv6).

UDP Port: The 16-bit UDP Port of traffic for the channel.

Header AEAD Algorithm: A value from the TLS Cipher Suite registry

(https://www.iana.org/assignments/tls-parameters/tls-

parameters.xhtml#tls-parameters-4), used to protect the header

fields in the channel packets. The value MUST match a value

provided in the "AEAD Algorithms List" of the transport parameter

(see Section 3).

Header Secret Length: Provides the length of the Secret field.

MC_ANNOUNCE Frame {

 Type (i) = TBD-11..TBD-12 (experiments use 0xff3e811/0xff3e812),

 ID Length (8),

 Channel ID (8..160),

 Source IP (32..128),

 Group IP (32..128),

 UDP Port (16),

 Header AEAD Algorithm (16),

 Header Secret Length (i),

 Header Secret (..),

 AEAD Algorithm (16),

 Integrity Hash Algorithm (16),

 Max Rate (i),

 Max ACK Delay (i)

}

¶

¶

* ¶

*

¶

*

¶

*

¶

* ¶

*

¶

* ¶

https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4

Header Secret: A secret for use with the Header AEAD Algorithm

for protecting the header fields of 1-RTT packets in the channel

as described in [RFC9001]. The Key and Initial Vector for the

application data carried in the 1-RTT packet header fields are

derived from this secret as described in Section 7.3 of

[RFC8446].

AEAD Algorithm: A value from the TLS Cipher Suite registry

(https://www.iana.org/assignments/tls-parameters/tls-

parameters.xhtml#tls-parameters-4), used to protect the payloads

in the channel packets. The value MUST match a value provided in

the "AEAD Algorithms List" of the transport parameter (see

Section 3).

Integrity Hash Algorithm: The hash algorithm used in integrity

frames.

Author's Note: Several candidate IANA registries, not sure

which one to use? Some have only text for some possibly useful

values. For now we use the first of these:

https://www.iana.org/assignments/named-information/named-

information.xhtml#hash-alg

https://www.iana.org/assignments/tls-parameters/tls-

parameters.xhtml#tls-parameters-18

(text-only): https://www.iana.org/assignments/hash-

function-text-names/hash-function-text-names.xhtml

Max Rate: The maximum rate in Kibps of the payload data for this

channel. Channel data MUST NOT exceed this rate over any 5s

window, if it does clients SHOULD leave the channel with reason

Max Rate Exceeded.

Max ACK Delay: A value used similarly to max_ack_delay (Section

18.2 of [RFC9000]}) that applies to traffic in this channel.

Clients SHOULD NOT intentionally add delay to MC_ACK frames for

traffic in this channel beyond this value, in milliseconds, and

SHOULD NOT add any delay to the first MC_ACK of data packets for

a channel. As long as they stay inside these limits, clients can

improve efficiency and network load for the uplink by aggregating

MC_ACK frames whenever possible.

A client MUST NOT use the channel ID included in an MC_ANNOUNCE

frame as a connection ID for the unicast connection. If it is

already in use, the client should retire it as soon as possible. As

the server knows which connection IDs are in use by the client, it

MUST wait with the sending of an MC_JOIN frame until the channel ID

associated with it has been retired by the client.

*

¶

*

¶

*

¶

-

¶

o

¶

o

¶

o

¶

*

¶

*

¶

¶

https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4
https://www.iana.org/assignments/named-information/named-information.xhtml#hash-alg
https://www.iana.org/assignments/named-information/named-information.xhtml#hash-alg
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-18
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-18
https://www.iana.org/assignments/hash-function-text-names/hash-function-text-names.xhtml
https://www.iana.org/assignments/hash-function-text-names/hash-function-text-names.xhtml

As all the properties in MC_ANNOUNCE frames are immutable during the

lifetime of a channel, a server SHOULD NOT send an MC_ANNOUNCE frame

for the same channel more than once to each client except as needed

for recovery.

A server SHOULD send an MC_ANNOUNCE frame for a channel before

sending an MC_KEY and SHOULD send an MC_KEY frame for a channel

before sending an MC_JOIN frame for it. Each of these recommended

orderings MAY occur within the same packet.

10.2. MC_KEY

An MC_KEY frame (type=TBD-01) is sent from server to client, either

with the unicast connection or in an existing joined multicast

channel. The MC_KEY frame contains an updated secret that is used to

generate the keying material for the payload of 1-RTT packets

received on the multicast channel.

A server can send a new MC_KEY frame with a sequence number

increased by one. A server MUST generate continuous sequence

numbers, and MAY start at a value higher than 0. Note that while not

joined, a client will not receive updates to channel secrets, and

thus may see jumps in the Key Sequence Number values between MC_KEY

frames. However, while joined the Key Sequence Numbers in the MC_KEY

frames MUST increment by 1 for each new secret.

Secrets with even-valued Key Sequence Numbers have a Key Phase of 0

in the 1-RTT packet, and secrets with odd-valued Key Seqence Numbers

have a Key Phase of 1 in the 1-RTT packet. Secrets with a Key Phase

indicating an unknown key SHOULD be discarded without attempting to

decrypt them. (An unknown key might happen after loss of the latest

MC_KEY frame, so that packets on a channel have an updated Key Phase

starting at a particular packet number, but the client does not yet

know about the key change.)

It is RECOMMENDED that servers send regular secret updates.

MC_KEY frames are formatted as shown in Figure 5.

¶

¶

¶

¶

¶

¶

¶

MC_KEY Frame {

 Type (i) = TBD-01 (experiments use 0xff3e801),

 ID Length (8),

 Channel ID (8..160),

 Key Sequence Number (i),

 From Packet Number (i),

 Secret Length (i),

 Secret (..)

}

Figure 5: MC_KEY Frame Format

MC_KEY frames contain the following fields:

ID Length: The length in bytes of the Channel ID field.

Channel ID: The channel ID for the channel associated with this

frame.

Key Sequence Number: Increases by 1 each time the secret for the

channel is changed by the server. If there is a gap in sequence

numbers due to reordering or retransmission of packets, on

receipt of the older MC_KEY frame, the client MUST apply the

secret contained and the packet numbers on which it applies as if

they arrived in order.

From Packet Number: The values in this MC_KEY frame apply only to

packets starting at From Packet Number and continuing until they

are overwritten by a new MC_KEY frame with a higher From Packet

Number. The Packet Number MUST never decrease with an increased

Key Sequence Number.

Secret Length: Provides the length of the secret field.

Secret: Used to protect the packet contents of 1-RTT packets for

the channel as described in [RFC9001]. The Key and Initial Vector

for the application data carried in the 1-RTT packet payloads are

derived from the secret as described in Section 7.3 of [RFC8446].

To maintain forward secrecy and prevent malicious clients from

decrypting packets long after they have left or were removed from

the unicast connection, servers SHOULD periodically send key

updates using only unicast.

Clients MUST delete old secrets within 10 seconds after receiving a

new key, and within 3 seconds after receiving a new key and not

receiving any data traffic decrypted with the old key.

The From Packet Number is used to indicate the starting packet

number (Section 17.1 of [RFC9000]) of the 1-RTT packets for which

the secret contained in an MC_KEY frame is applicable. This secret

is applicable to all future packets until it is updated by a new

MC_KEY frame.

A server SHOULD NOT send MC_KEY frames for channels except those the

client has joined or will be imminently asked to join.

10.3. MC_JOIN

An MC_JOIN frame (type TBD-02) is sent from server to client and

requests that a client join the given transport addresses and ports

¶

* ¶

*

¶

*

¶

*

¶

* ¶

*

¶

¶

¶

¶

and process packets with the given Channel ID according to the

corresponding MC_ANNOUNCE frame and the latest MC_KEY frame for the

channel.

A client cannot join a multicast channel without first receiving an

MC_ANNOUNCE frame and an MC_KEY frame, which together set all the

values necessary to process the channel.

If a client receives an MC_JOIN for a channel for which it has not

received both an MC_ANNOUNCE frame and an MC_KEY frame, it MUST

respond with an MC_STATE with State "Declined Join" and reason

"Missing Properties". The server MAY send another MC_JOIN after

receiving an acknowledgement indicating receipt of the MC_ANNOUNCE

frame and the MC_KEY frame.

MC_JOIN frames are formatted as shown in Figure 6.

Figure 6: MC_JOIN Frame Format

The sequence numbers are the most recently processed sequence number

by the server from the respective frame type. They are present to

allow the client to distinguish between a broken server that has

performed an illegal action and an instruction that's based on

updates that are out of sync (either one or more missing updates to

MC_KEY not yet received by the client or one or more missing updates

to MC_LIMITS or MC_STATE not yet received by the server).

A client MAY perform the join if it has the sequence number of the

corresponding channel properties and the client's limits will not be

exceeded, even if the client sequence numbers are not up-to-date.

If the client does not join, it MUST send an MC_STATE frame with

"Declined Join" and a reason.

If the client does join, it MUST send an MC_STATE frame with

"Joined".

¶

¶

¶

¶

MC_JOIN Frame {

 Type (i) = TBD-02 (experiments use 0xff3e802),

 MC_LIMITS Sequence Number (i),

 MC_STATE Sequence Number (i),

 MC_KEY Sequence Number (i),

 ID Length (8),

 Channel ID (8..160)

}

¶

¶

¶

¶

10.4. MC_LEAVE

An MC_LEAVE frame (type=TBD-03) is sent from server to client, and

requests that a client leave the given channel.

If the client has already left or declined to join the channel, the

MC_LEAVE is ignored.

If an MC_JOIN or an MC_LEAVE with the same Channel ID and a higher

MC_STATE Sequence number has previously been received, the MC_LEAVE

is ignored.

Otherwise, the client MUST leave the channel and send a new MC_STATE

frame with reason Left as requested by server.

MC_LEAVE frames are formatted as shown in Figure 7.

Figure 7: MC_LEAVE Frame Format

If After Packet Number is nonzero, wait until receiving that packet

or a higher valued number before leaving.

10.5. MC_INTEGRITY

MC_INTEGRITY frames are sent from server to client and are used to

convey packet hashes for validating the integrity of packets

received over the multicast channel as described in Section 7.1.

MC_INTEGRITY frames are formatted as shown in Figure 8.

Figure 8: MC_INTEGRITY Frame Format

¶

¶

¶

¶

¶

MC_LEAVE Frame {

 Type (i) = TBD-03 (experiments use 0xff3e803),

 ID Length (8),

 Channel ID (8..160),

 MC_STATE Sequence Number (i),

 After Packet Number (i)

}

¶

¶

¶

MC_INTEGRITY Frame {

 Type (i) = TBD-04..TBD-05 (experiments use 0xff3e804/0xff3e805),

 ID Length (8),

 Channel ID (8..160),

 Packet Number Start (i),

 [Length (i)],

 Packet Hashes (..)

}

For type TBD-05, Length is present and is a count of packet hashes.

For TBD-04, Length is not present and the packet hashes extend to

the end of the packet.

The first hash in the Packet Hashes list is a hash of a 1-RTT packet

with the Channel ID equal to the Channel ID in the MC_INTEGRITY

frame and packet number equal to the Packet Number Start field.

Subsequent hashes refer to the packets for the channel with packet

numbers increasing by 1.

Packet hashes MUST have length with an integer multiple of the

length indicated by the Hash Algorithm from the MC_ANNOUNCE frame.

See Section 7.1 for a description of the packet hash calculation.

10.6. MC_ACK

The MC_ACK frame (types TBD-06 and TBD-07; experiments use

0xff3e806..0xff3e807) is an extension of the ACK frame defined by

[RFC9000]. It is used to acknowledge packets that were sent on

multicast channels. If the frame type is TBD-07, MC_ACK frames also

contain the sum of QUIC packets with associated ECN marks received

on the connection up to this point.

(TODO: Would there be value in reusing the multiple packet number

space version of ACK_MP from Section 12.2 of [I-D.draft-ietf-quic-

multipath], defining channel id as the packet number space? at

2022-05 they're identical except the Channel ID and types.)

MC_ACK frames are formatted as shown in Figure 9.

Figure 9: MC_ACK Frame Format

10.7. MC_LIMITS

MC_LIMITS frames are formatted as shown in Figure 10.

¶

¶

¶

¶

¶

¶

¶

MC_ACK Frame {

 Type (i) = TBD-06..TBD-07 (experiments use 0xff3e806, 0xff3e807),

 ID Length (8),

 Channel ID (8..160),

 Largest Acknowledged (i),

 ACK Delay (i),

 ACK Range Count (i),

 First ACK Range (i),

 ACK Range (..) ...,

 [ECN Counts (..)],

}

¶

Figure 10: MC_LIMITS Frame Format

The sequence number is implicitly 0 before the first MC_LIMITS frame

from the client, and increases by 1 each new frame that's sent.

Newer frames override older ones.

Capabilities Flags is a bit field structured as follows:

0x1 is set if IPv4 channels are permitted

0x2 is set if IPv6 channels are permitted

For example, a Capabilities Flags value of 3 (0x11) indicates that

both IPv4 and IPv6 channels are permitted.

Max Aggregate Rate allowed across all joined channels is in Kibps.

Max Channel IDs is the count of channel IDs that can be announced to

this client and have keys. Retired Channel IDs don't count against

this value.

Max Joined Count is the count of channels that are allowed to be

joined concurrently.

10.8. MC_RETIRE

MC_RETIRE frames are formatted as shown in Figure 11.

Figure 11: MC_RETIRE Frame Format

Retires a channel by id, discarding any state associated with it.

(Author comment: We can't use RETIRE_CONNECTION_ID because we don't

have a coherent sequence number.) If After Packet Number is nonzero

MC_LIMITS Frame {

 Type (i) = TBD-09 (experiments use 0xff3e809),

 Client Limits Sequence Number (i),

 Capabilities Flags(i),

 Max Aggregate Rate (i),

 Max Channel IDs (i),

 Max Joined Count (i),

}

¶

¶

* ¶

* ¶

¶

¶

¶

¶

¶

MC_RETIRE Frame {

 Type (i) = TBD-0a (experiments use 0xff3e80a),

 ID Length (8),

 Channel ID (8..160),

 After Packet Number (i)

}

and the channel is joined and has received any data, the channel

will be retired after receiving that packet or a higher valued

number, otherwise it will be retired immediately.

After retiring a channel, the client MUST send a new MC_STATE frame

with reason Retired to the server.

If the client is still joined in the channel that is being retired,

it MUST also leave it. If a channel is left this way, it does not

need to send an additional MC_STATE frame with reason Left, as

reason Retired also implies the channel was left.

10.9. MC_STATE

MC_STATE frames are sent from client to server to report changes in

the client's channel state. Each time the channel state changes, the

Client Channel State Sequence number is increased by one. It is a

state change to the channel if the server requests that a client

join a channel and the client declines the join, even though no join

occurs on the network.

MC_STATE frames are formatted as shown in Figure 12.

Figure 12: MC_STATE Frame Format

State has these defined values:

0x1: Left

0x2: Declined Join

0x3: Joined

0x4: Retired

If State is Joined or Retired, the Reason field is absent.

¶

¶

¶

¶

¶

MC_STATE Frame {

 Type (i) = TBD-0b (experiments use 0xff3e80b),

 Client Channel State Sequence Number (i),

 ID Length (8),

 Channel ID (8..160),

 State (i),

 Reason (0..i)

}

¶

* ¶

* ¶

* ¶

* ¶

¶

If State is Left or Declined Join, the Reason field is set to one

of:

0x0: Unspecified Other

0x1: Left as requested by server

0x2: Administrative Block

0x3: Protocol Error

0x4: Property Violation

0x5: Unsynchronized Properties

0x6: ID Collision

0x10: Held Down

0x12: Max Rate Exceeded

0x13: High Loss

0x14: Excessive Spurious Traffic

0x15: Max Streams Exceeded

0x1000000-0x3fffffff: Application-defined Reason

A client might receive multicast packets that it can not associate

with any channel ID, or that cannot be verified as matching hashes

from MC_INTEGRITY frames, or cannot be decrypted. This traffic is

presumed either to have been corrupted in transit or to have been

sent by someone other than the legitimate sender of traffic for the

channel, possibly by an attacker or a misconfigured sender. If these

packets are addressed to an (S,G) that is used for reception in one

or more known channels, the client MAY leave these channels with

reason "Excessive Spurious traffic".

11. Frames Carried in Channel Packets

Multicast channels will contain normal QUIC 1-RTT data packets (see

Section 17.3.1 of [RFC9000]) except using the Channel ID instead of

a Connection ID. The packets are protected with the keys derived

from the secrets in MC_KEY frames for the corresponding channel.

Data packet hashes will also be sent in MC_INTEGRITY frames, as keys

cannot be trusted for integrity due to giving them to too many

receivers, as described in [I-D.draft-krose-multicast-security].

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

The 1-RTT packets in multicast channels will have a restricted set

of frames. Since the channel is strictly 1-way server to client, the

general principle is that broadcastable shared server->client data

frames can be sent, but frames that make sense only for

individualized connections or that are sent client-to-server cannot.

Permitted:

PADDING Frames ([RFC9000] Section 19.1)

PING Frames ([RFC9000] Section 19.2)

RESET_STREAM Frames ([RFC9000] Section 19.4)

STREAM Frames ([RFC9000] Section 19.8)

DATAGRAM Frames (both types) ([RFC9221] Section 4)

MC_KEY

MC_LEAVE (however, join must come over unicast?)

MC_INTEGRITY (not for this channel, only for another)

MC_RETIRE

Not permitted:

19.3. ACK Frames

19.6. CRYPTO Frames (crypto handshake does not happen on mc

channels)

19.7. NEW_TOKEN Frames

Flow control is different:

19.5. STOP_SENDING Frames

19.9. MAX_DATA Frames (flow control for mc channels is by

rate)

19.10. MAX_STREAM_DATA Frames

19.11. MAX_STREAMS Frames

19.12. DATA_BLOCKED Frames

19.13. STREAM_DATA_BLOCKED Frames

19.14. STREAMS_BLOCKED Frames

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

*

¶

* ¶

* ¶

- ¶

-

¶

- ¶

- ¶

- ¶

- ¶

- ¶

Channel ID Migration can't use the "prior to" concept within a

channel, not 0-starting

19.15. NEW_CONNECTION_ID Frames

19.16. RETIRE_CONNECTION_ID Frames

Channels don't have the same kind of path validation, as there's

a unicast anchor with acks for the multicast packets:

19.17. PATH_CHALLENGE Frames

19.18. PATH_RESPONSE Frames

19.19. CONNECTION_CLOSE Frames

19.20. HANDSHAKE_DONE Frames

MC_ANNOUNCE

MC_LIMITS

MC_STATE

MC_ACK

12. Implementation and Operational Considerations

12.1. Use Cases

This section outlines considerations for some known transport

mechanisms that are worth highlighting as potentially useful with

multicast QUIC.

12.1.1. HTTP/3 Server Push

HTTP/3 Server Push is defined in Section 4.6 of [RFC9114].

Server push is a good use case for multicast transport because the

same data can be pushed to many different receivers on a multicast

channel. Applications designed to work well with server push can

leverage multicast QUIC very effectively with only a few extra

considerations.

A QUIC connection using HTTP/3 can use multicast channels to deliver

server-initiated streams that implement HTTP/3 Server Push.

Applications expecting to use server push with multicast SHOULD use

a high MAX_PUSH_ID in order to work with channels that have been

active for a long time already when the connection is first

*

¶

- ¶

- ¶

*

¶

- ¶

- ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

established. Servers SHOULD NOT allow clients to remain joined to

channels if their MAX_PUSH_ID will be exceeded by push streams that

are to be sent imminently.

If a client receives data from a push ID that exceeds its

MAX_PUSH_ID causing an H3_ID_ERROR on a multicast channel, it SHOULD

leave the channel with reason 0x1000108 (computed by adding the

H3_ID_ERROR value 0x0108 to the Application-defined Reason start

value 0x1000000). This SHOULD NOT cause a close of the whole

connection but MAY cause a stream error and reset of the stream.

TODO: flesh out this principle for application-level error code

assignment in general for known error code values, and specifically

all HTTP/3 ones? (And is it useful?)

12.1.2. HTTP/3 WebTransport

WebTransport over HTTP/3 is defined in [I-D.draft-ietf-webtrans-

http3].

Popular data that can be sent with server-initiated streams or

server-sent datagrams and carried over WebTransport are good use

cases for multicast transport because the same server-to-client data

can be pushed to many different receivers on a multicast channel.

A QUIC connection using HTTP/3 and WebTransport can use multicast

channels to deliver WebTransport server-initiated streams. At the

time of this writing (version -02 of [I-D.draft-ietf-webtrans-

http3]) this comes with the significant penalty that in order to do

so, servers would have to run up to 4 multicast channels per shared

set of data to send, one for each possible size of the client-chosen

Session ID.

Servers can achieve this by sending the initial few bytes of the

server-initiated stream containing the Session ID (currently defined

as the Stream ID of the QUIC stream containing the original HTTP/3

request for the WebTransport extended CONNECT request), then sending

the rest of the stream data over a multicast channel.

However, since the client-initiated Stream ID used for the Session

ID is a variable-length integer with 4 possible sizes (1, 2, 4, or 8

octets), clients will need the shared data in the stream to be at

one of 4 different possible stream offsets in order to process it.

Hence, for WebTransport as currently specified servers would need to

run up to 4 separate channels instead of a single channel in order

to send the same WebTransport data to many different clients.

WebTransport Datagrams are delivered over HTTP/3 Datagrams as

defined in [I-D.draft-ietf-masque-h3-datagram] and in version -04

¶

¶

¶

¶

¶

¶

¶

¶

have the same characteristic of relying on the client-chosen Quarter

Stream ID value.

While using 4 multicast channels instead of 1 still represents a

potentially vast scalability improvement over unicast delivery for

popular content, it causes other scalability problems, especially in

networks that have small limits on the number of multicast channels

that are allowed to be provisioned at the same time. The total

channel count limits have a surprisingly low bound in many

multicast-capable networking devices designed for TV services that

were expected to support only up to a few tens of very popular

channels at the same time.

It is therefore hoped that an extension or revision to WebTransport

and HTTP/3 Datagrams can be adopted in a future version of their

specifications that make it possible to use a single channel for all

the shared data.

For example, an extension that permits a server-chosen value to be

used as a Session ID. Such a value could for instance be sent in an

HTTP/3 response header, and as long as it is unique within the

connection and avoided collision with any client-initiated stream ID

values, could still be used to multiplex data associated with

different HTTP/3 traffic and different WebTransport sessions carried

on the same connection. Then by choosing the same server-chosen

session ID for all the connections, it would allow the server to use

the same channel to carry the identical data, including the Session

ID, to be received by multiple receivers. Such a change could either

replace the current client-chosen definition for Session ID, or

could add new frame types that allow a server-chosen Session ID when

the client has advertised support for this extended functionality.

As an alternate example of an extension, a mechanism that allows

padding at the beginning of the WebTransport stream before the

Session ID, for example with 0 bytes, would at least allow the

server to align the client-chosen ID value to end at the same QUIC

stream offset, which would allow the shared portion of the stream

data (all or most of the data following the Session ID) to be

transmitted via the same multicast channel, since it would then be

the same at the same stream offset.

12.1.3. Non-web Applications

There are also several non-web application protocols that could

benefit from using multicast QUIC. A few examples include:

Existing multicast-capable applications that are modified to use

QUIC datagrams instead of UDP payloads can potentially get

¶

¶

¶

¶

¶

¶

*

improved encryption and congestion feedback, while keeping its

existing FEC/error recovery techniques.

An external tunnel could supply this kind of encapsulation

without modification to the sender or receiver for some

applications, while retaining the benefits of multicast

scalability

This could usefully support existing implementations of file-

transfer protocols like FLUTE [RFC6726] or FCAST [RFC6968] to

enable file downloads such as operating system updates or

popular game downloads with encryption and packet-level

authentication.

Conferencing systems, especially within an enterprise that can

deploy multicast network support, often can save significantly on

server costs by using multicast

The traditional multicast use case of broadcasting of live sports

with a set-top box would benefit from a system that uses the same

QUIC receiver code even for customers who installed a non-

multicast-capable home router.

Smart TVs or other video playing in-home devices could

interoperate with a standard sender using multicast QUIC, rather

than requiring proprietary integrations with TV operators.

12.2. Graceful Degradation

Clients with multicast QUIC support can stop accepting multicast for

a variety of reasons.

Applications like live broadcast-scale video that rely on multicast

QUIC may benefit from anticipating that clients might stop using

multicast and providing data feeds with similar content that can

scale even if many clients stop using multicast, for example by

ensuring that a lower-bitrate rendition can still be delivered over

unicast to all or most of the clients simultaneously, and ensuring

that the server has a way to make the client start using the low-

bitrate version when it switches to unicast.

While some existing Adaptive Bitrate video players might have an

easy way to provide this, other video players might need specialized

logic to provide the server a way to control what bitrate individual

clients consume. Although under ideal conditions it may often be

possible using features like server push (Section 12.1.1) to use

unmodified existing HTTP-based video players with multicast QUIC, in

practice it may require extra devlopment at the application level to

make a player that robustly delivers a good user experience under

variable network conditions, depending on the scalability gains that

¶

-

¶

-

¶

*

¶

*

¶

*

¶

¶

¶

multicast transport is providing and the Adaptive Bitrate algorithms

the player is using.

12.2.1. Circuit Breakers

Operators of multicast QUIC services should consider that some

networks may implement circuit breakers such as the one described in

[I-D.draft-ietf-mboned-cbacc], or similar network-level safety

features that might cut off previously operational multicast

transport under certain conditions.

The servers will notice the transport loss from the lack of MC_ACK

frames from receivers in a network that cut off multicast transport,

but it may be beneficial when possible in a transport cutoff event

correlated across many clients to pace the recovery response

according to aggregations of the affected clients so that a sudden

unicast storm doesn't overload the network further.

12.3. Server Scalability

Use of QUIC multicast channels can provide large scalability gains,

but there still will be significant scaling requiremnts on server

operators to support a large client footprint.

Servers, possibly many of them, still will be required to maintain

unicast connections with all the clients and provide for handling

MC_ACK frames from the clients, delivering MC_INTEGRITY frames,

managing the clients' channel join states, and providing recovery

for lost packets.

Further, the use of multicast channels likely requires increased

coordination between the different servers, relative to services

that operate completely independently.

For large deployments, server implementations will often need to

operate on separate devices from the ones generating the multicast

channel packets, and will need to be designed accordingly.

12.4. Address Collisions

Multicast channels at the network layer are addressed with a source

IP, a destination group IP address, and a destination UDP port.

These offers a number of potential address collision considerations

that are worth mentioning:

If properties change for the data being used in a channel (for

example, new video encoding settings might result in a change

to the expected max rate for a video feed), a server might

reuse the same network addresses in a new QUIC multicast

¶

¶

¶

¶

¶

¶

¶

¶

¶

1.

channel, and might send a join for the new channel and a leave

for the old channel to clients that can support the new max

rate. If they arrive together, this could be handled by the

client without making a change to the IGMP or MLD membership

state, as an optimization that can prevent the need for some

recovery, or even by reusing the same UDP socket. Doing so does

not change any requirements for the channel state management at

the QUIC layer, and as long as the situation is transient,

should not result in leaving due to Excessive Spurious Traffic

even if some packets were reordered or may still be in flight.

As described in Section 6 of [RFC4607], link-layer addresses

can be linked to the low-order bits of multicast addresses, and

may be the same for different group destinations. Collisions in

the link-layer addressing, even with traffic that comes from

other sources, can cause congestion or receiver CPU load for

colliding channels that might be different from that seen with

other channels that were delivered with apparently the same

network paths.

Even though multicast QUIC uses only source-specific multicast,

older networks with devices that don't have IGMPv3 or MLDv2

support can propagate the joins as any-source multicast. If

there are active senders sending to that destination, this can

cause network congestion and CPU load due to discarding packets

from the wrong source, even though at the application layer the

UDP socket won't receive those packets from the wrong source.

If different channels use the same (S,G) but different UDP

ports, they will share the same multicast forwarding tree in an

IP network. This is often useful when the data in the channels

are linked, for example if MC_INTEGRITY frames are carried on

one channel for packets carried on another channel, because it

provides some fate-sharing for the linked data. However, for

data that is not so linked, it would generally be a

disadvantage to share the (S,G) because the network link of any

receiver joined to one of those channels but not the other

would receive both packets and throw away the data for the un-

joined port, causing extra congestion and CPU load for the

receiving device.

13. Security Considerations

(Authors comment: Mostly incorporate [I-D.draft-krose-multicast-

security]. Anything else?

e.g. if a different legitimate quic connection says someone else's

quic multicast stream is theirs, that's maybe a problem worth

protecting against. Maybe we need a periodic asymmetric challenge?

¶

2.

¶

3.

¶

4.

¶

¶

[I-D.draft-ietf-mboned-ambi]

[I-D.draft-ietf-mboned-cbacc]

[I-D.draft-ietf-quic-multipath]

[I-D.draft-krose-multicast-security]

I'm thinking send a public key on the multicast channel and in the

unicast channels send an individualized MAC signed with the private

key and verify it with the public key, so that in addition to

validating that the unicast server knows the contents of the

multicast packets via the hashes it supplies, the multicast stream

provides a way for the client to validate that the unicast stream is

authorized to use it for data transport via proof they know the

private key corresponding to the public key that arrived on the

multicast channel. Note this doesn't prevent unauthorized receipt of

multicast data packts, but does prevent a quic server from lying

when claiming a multicast data channel belongs to it, preventing

legit receivers from consuming it.

alternatively, can the multicast channel just periodically say what

domain name is expected for the quic connection and get the same

crypto guarantee of a proper sender via the domain's cert, which was

already checked on the unicast channel?)

14. IANA Considerations

TODO: lots

15. References

15.1. Normative References

Holland, J. and K. Rose, "Asymmetric

Manifest Based Integrity", Work in Progress, Internet-

Draft, draft-ietf-mboned-ambi-03, 7 March 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-mboned-ambi-03>.

Holland, J., "Circuit Breaker Assisted Congestion

Control", Work in Progress, Internet-Draft, draft-ietf-

mboned-cbacc-04, 7 March 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-mboned-

cbacc-04>.

Liu, Y., Ma, Y., Coninck, Q. D., Bonaventure, O.,

Huitema, C., and M. Kuehlewind, "Multipath Extension for

QUIC", Work in Progress, Internet-Draft, draft-ietf-quic-

multipath-01, 7 March 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-quic-

multipath-01>.

Rose, K. and J. Holland,

"Security and Privacy Considerations for Multicast

Transports", Work in Progress, Internet-Draft, draft-

krose-multicast-security-02, 31 January 2022, <https://

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-mboned-ambi-03
https://datatracker.ietf.org/doc/html/draft-ietf-mboned-ambi-03
https://datatracker.ietf.org/doc/html/draft-ietf-mboned-cbacc-04
https://datatracker.ietf.org/doc/html/draft-ietf-mboned-cbacc-04
https://datatracker.ietf.org/doc/html/draft-ietf-mboned-cbacc-04
https://datatracker.ietf.org/doc/html/draft-ietf-quic-multipath-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-multipath-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-multipath-01
https://datatracker.ietf.org/doc/html/draft-krose-multicast-security-02

[RFC2119]

[RFC8085]

[RFC8174]

[RFC8446]

[RFC9000]

[RFC9001]

[RFC9002]

[RFC9221]

[I-D.draft-ietf-masque-h3-datagram]

[I-D.draft-ietf-webtrans-http3]

datatracker.ietf.org/doc/html/draft-krose-multicast-

security-02>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage

Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,

March 2017, <https://www.rfc-editor.org/rfc/rfc8085>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure

QUIC", RFC 9001, DOI 10.17487/RFC9001, May 2021,

<https://www.rfc-editor.org/rfc/rfc9001>.

Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection

and Congestion Control", RFC 9002, DOI 10.17487/RFC9002,

May 2021, <https://www.rfc-editor.org/rfc/rfc9002>.

Pauly, T., Kinnear, E., and D. Schinazi, "An Unreliable

Datagram Extension to QUIC", RFC 9221, DOI 10.17487/

RFC9221, March 2022, <https://www.rfc-editor.org/rfc/

rfc9221>.

15.2. Informative References

Schinazi, D. and L. Pardue,

"HTTP Datagrams and the Capsule Protocol", Work in

Progress, Internet-Draft, draft-ietf-masque-h3-

datagram-11, 17 June 2022, <https://datatracker.ietf.org/

doc/html/draft-ietf-masque-h3-datagram-11>.

Frindell, A., Kinnear, E., and V.

Vasiliev, "WebTransport over HTTP/3", Work in Progress,

Internet-Draft, draft-ietf-webtrans-http3-02, 25 October

https://datatracker.ietf.org/doc/html/draft-krose-multicast-security-02
https://datatracker.ietf.org/doc/html/draft-krose-multicast-security-02
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8085
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9001
https://www.rfc-editor.org/rfc/rfc9002
https://www.rfc-editor.org/rfc/rfc9221
https://www.rfc-editor.org/rfc/rfc9221
https://datatracker.ietf.org/doc/html/draft-ietf-masque-h3-datagram-11
https://datatracker.ietf.org/doc/html/draft-ietf-masque-h3-datagram-11

[RFC4607]

[RFC6726]

[RFC6968]

[RFC9114]

2021, <https://datatracker.ietf.org/doc/html/draft-ietf-

webtrans-http3-02>.

Holbrook, H. and B. Cain, "Source-Specific Multicast for

IP", RFC 4607, DOI 10.17487/RFC4607, August 2006,

<https://www.rfc-editor.org/rfc/rfc4607>.

Paila, T., Walsh, R., Luby, M., Roca, V., and R.

Lehtonen, "FLUTE - File Delivery over Unidirectional

Transport", RFC 6726, DOI 10.17487/RFC6726, November

2012, <https://www.rfc-editor.org/rfc/rfc6726>.

Roca, V. and B. Adamson, "FCAST: Object Delivery for the

Asynchronous Layered Coding (ALC) and NACK-Oriented

Reliable Multicast (NORM) Protocols", RFC 6968, DOI

10.17487/RFC6968, July 2013, <https://www.rfc-editor.org/

rfc/rfc6968>.

Bishop, M., Ed., "HTTP/3", RFC 9114, DOI 10.17487/

RFC9114, June 2022, <https://www.rfc-editor.org/rfc/

rfc9114>.

Acknowledgments

TODO acknowledge.

Authors' Addresses

Jake Holland

Akamai Technologies, Inc.

Email: jakeholland.net@gmail.com

Lucas Pardue

Email: lucaspardue.24.7@gmail.com

Max Franke

TU Berlin

Email: mfranke@inet.tu-berlin.de

¶

https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-http3-02
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-http3-02
https://www.rfc-editor.org/rfc/rfc4607
https://www.rfc-editor.org/rfc/rfc6726
https://www.rfc-editor.org/rfc/rfc6968
https://www.rfc-editor.org/rfc/rfc6968
https://www.rfc-editor.org/rfc/rfc9114
https://www.rfc-editor.org/rfc/rfc9114
mailto:jakeholland.net@gmail.com
mailto:lucaspardue.24.7@gmail.com
mailto:mfranke@inet.tu-berlin.de

	Multicast Extension for QUIC
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Definitions

	2. Multicast Channel
	3. Transport Parameter
	4. Extension Overview
	4.1. Channel Management
	4.2. Client Response
	4.3. Data Carried in Channels
	4.4. Stream Processing

	5. Flow Control
	6. Congestion Control
	7. Data Integrity
	7.1. Packet Hashes

	8. Recovery
	9. Connection Termination
	9.1. Stateless Reset

	10. New Frames
	10.1. MC_ANNOUNCE
	10.2. MC_KEY
	10.3. MC_JOIN
	10.4. MC_LEAVE
	10.5. MC_INTEGRITY
	10.6. MC_ACK
	10.7. MC_LIMITS
	10.8. MC_RETIRE
	10.9. MC_STATE

	11. Frames Carried in Channel Packets
	12. Implementation and Operational Considerations
	12.1. Use Cases
	12.1.1. HTTP/3 Server Push
	12.1.2. HTTP/3 WebTransport
	12.1.3. Non-web Applications

	12.2. Graceful Degradation
	12.2.1. Circuit Breakers

	12.3. Server Scalability
	12.4. Address Collisions

	13. Security Considerations
	14. IANA Considerations
	15. References
	15.1. Normative References
	15.2. Informative References

	Acknowledgments
	Authors' Addresses

