
jhoyla J. Hoyland
Internet-Draft Cloudflare Ltd.
Intended status: Standards Track C. Wood
Expires: May 7, 2020 Apple, Inc.
 November 04, 2019

TLS 1.3 Extended Key Schedule
draft-jhoyla-tls-extended-key-schedule-00

Abstract

 TLS 1.3 is sometimes used in situations where it is necessary to
 inject extra key material into the handshake. This draft aims to
 describe methods for doing so securely. This key material must be
 injected in such a way that both parties agree on what is being
 injected and why, and further, in what order.

Note to Readers

 Discussion of this document takes place on the TLS Working Group
 mailing list (tls@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/browse/tls/ [1].

 Source for this draft and an issue tracker can be found at
https://github.com/jhoyla/draft-jhoyla-tls-key-injection [2].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2020.

Hoyland & Wood Expires May 7, 2020 [Page 1]

https://mailarchive.ietf.org/arch/browse/tls/
https://github.com/jhoyla/draft-jhoyla-tls-key-injection
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft TLS 1.3 Extended Key Schedule November 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Conventions and Definitions 3
3. Key Schedule Extension 3
3.1. Early Secret Injection 3
3.2. Handshake Secret Injection 4

4. Key Schedule Extension Structure 5
5. Security Considerations 5
6. IANA Considerations . 6
7. References . 6
7.1. Normative References 6
7.2. Informative References 6
7.3. URIs . 6

 Acknowledgments . 6
 Authors' Addresses . 6

1. Introduction

 Introducing additional key material into the TLS handshake is a non-
 trivial process because both parties need to agree on the injection
 content and context. If the two parties do not agree then an
 attacker may exploit the mismatch in so-called channel
 synchronization attacks.

 Injecting key material into the TLS handshake allows other protocols
 to be bound to the handshake. For example, it may provide additional
 protections to the ClientHello message, which in the standard TLS
 handshake only receives protections after the server's Finished
 message has been received. It may also permit the use of combined
 shared secrets, possibly from multiple key exchange algorithms, to be
 included in the key schedule. This pattern is common for Post

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Hoyland & Wood Expires May 7, 2020 [Page 2]

Internet-Draft TLS 1.3 Extended Key Schedule November 2019

 Quantum key exchange algorithms, as discussed in
 [I-D.stebila-tls-hybrid-design].

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Key Schedule Extension

 This section describes two ways in which additional secrets can be
 injected into the TLS 1.3 key schedule.

3.1. Early Secret Injection

 TLS provides exporter keys that allow for other protocols to provide
 data authenticated by the TLS channel. This can be used to bind a
 protocol to a specific TLS handshake, giving joint authentication
 guarantees. In a similar way, one may wish to introduce externally
 authenticated and pre-shared data to the early secret derivation.
 This can be used to bind TLS to an external protocol.

 To achieve this, pre-shared keys modify the binder key computation.
 This is needed since it ensures that both parties agree on both the
 authenticated data and the context in which it was used.

 The binder key computation change is as follows:

 0
 |
 v
 PSK -> HKDF-Extract = Early Secret
 |
 +-----> Derive-Secret(., "ext binder"
 | | "res binder"
 | | "imp ext binder"
 | | "imp res binder", "")
 | = binder_key
 v

 Use of the "imp ext binder" label implies that both parties agree
 that there is some context that has been agreed, and that they are
 using an external PSK. Use of the "imp res binder" label implies
 that both parties agree that there is some context that has been
 agreed, and that they are using an resumption PSK. This assumes the

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Hoyland & Wood Expires May 7, 2020 [Page 3]

Internet-Draft TLS 1.3 Extended Key Schedule November 2019

 PSK has some mechanism by which additional context is included.
 [I-D.ietf-tls-external-psk-importer] describes one way by which such
 context may be included.

 struct {
 opaque external_identity<1...2^16-1>;
 opaque context<0...2^16>;
 } PSKIDWithAdditionalData;

 external_identity is the "PSK_ID" that would have been used if the
 additional data were not agreed upon.

 context is an opaque value that is bound to the agreed upon
 additional data.

 Those using the "imp ext binder" or "imp res binder" label MUST
 include a "context" field, to allow the additional data.

 Note that this structure is recursive. If this mechanism is used
 multiple times then the "external_identity" field will contain
 previous contexts in sequential order. If the client does not know
 in advance which pieces of additional data the server will be willing
 to agree on, it can provide multiple binders with different subsets
 of the additional data. The server can then select a binder with
 which it is willing to proceed. The binders MUST be verified in an
 all-or-nothing manner, and only one binder SHOULD be checked. A
 server MUST NOT accept a binder for which it only agrees upon some of
 the data.

3.2. Handshake Secret Injection

 To inject key material into the Handshake Secret it is recommended to
 use an extra derive secret.

 |
 v
 Derive-Secret(., "derived early", "")
 |
 v
 Input -> HKDF-Extract
 |
 v
 Derive-Secret(., "derived", "")
 |
 v
 (EC)DHE -> HKDF-Extract = Handshake Secret
 |
 v

Hoyland & Wood Expires May 7, 2020 [Page 4]

Internet-Draft TLS 1.3 Extended Key Schedule November 2019

 As shown in the figure above, the key schedule has an extra derive
 secret and HKDF-Extract step. This extra step isolates the Input
 material from the rest of the handshake secret, such that even
 maliciously chosen values cannot weaken the security of the key
 schedule overall.

 The additional Derive-Secret with the "derived early" label enforces
 the separation of the key schedule from vanilla TLS handshakes,
 because HKDFs can be assumed to ensure that keys derived with
 different labels are independent.

4. Key Schedule Extension Structure

 In some cases, protocols may require more than one secret to be
 injected at a particular stage in the key schedule. Thus, we require
 a generic and extensible way of doing so. To accomplish this, we use
 a structure - KeyScheduleInput - that encodes well-ordered sequences
 of secret material to inject into the key schedule. KeyScheduleInput
 is defined as follows:

 struct {
 KeyScheduleSecretType type;
 opaque secret_data<0..2^16-1>;
 } KeyScheduleSecret;

 enum {
 (65535)
 } KeyScheduleSecretType;

 struct {
 KeyScheduleSecret secrets<0..2^16-1>;
 } KeyScheduleInput;

 Each secret included in a KeyScheduleInput structure has a type and
 corresponding secret data. Each secret MUST have a unique
 KeyScheduleSecretType. When encoding KeyScheduleInput as the key
 schedule Input value, the KeyScheduleSecret values MUST be in
 ascending sorted order. This ensures that endpoints always encode
 the same KeyScheduleInput value when using the same secret keying
 material.

5. Security Considerations

 [[OPEN ISSUE: This draft has not seen any security analysis.]]

Hoyland & Wood Expires May 7, 2020 [Page 5]

Internet-Draft TLS 1.3 Extended Key Schedule November 2019

6. IANA Considerations

 [[TODO: define secret registry structure]]

7. References

7.1. Normative References

 [I-D.ietf-tls-external-psk-importer]
 Benjamin, D. and C. Wood, "Importing External PSKs for
 TLS", draft-ietf-tls-external-psk-importer-01 (work in
 progress), October 2019.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

 [I-D.stebila-tls-hybrid-design]
 Steblia, D., Fluhrer, S., and S. Gueron, "Design issues
 for hybrid key exchange in TLS 1.3", draft-stebila-tls-

hybrid-design-01 (work in progress), July 2019.

7.3. URIs

 [1] https://mailarchive.ietf.org/arch/browse/tls/

 [2] https://github.com/jhoyla/draft-jhoyla-tls-key-injection

Acknowledgments

 We thank Karthik Bhargavan for his comments.

Authors' Addresses

 Jonathan Hoyland
 Cloudflare Ltd.

 Email: jonathan.hoyland@gmail.com

https://datatracker.ietf.org/doc/html/draft-ietf-tls-external-psk-importer-01
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-stebila-tls-hybrid-design-01
https://datatracker.ietf.org/doc/html/draft-stebila-tls-hybrid-design-01
https://mailarchive.ietf.org/arch/browse/tls/
https://github.com/jhoyla/draft-jhoyla-tls-key-injection

Hoyland & Wood Expires May 7, 2020 [Page 6]

Internet-Draft TLS 1.3 Extended Key Schedule November 2019

 Christopher A. Wood
 Apple, Inc.

 Email: cawood@apple.com

Hoyland & Wood Expires May 7, 2020 [Page 7]

