
Workgroup: jhoyla

Internet-Draft:

draft-jhoyla-tls-extended-key-schedule-03

Published: 4 December 2020

Intended Status: Standards Track

Expires: 7 June 2021

Authors: J. Hoyland

Cloudflare Ltd.

C.A. Wood

Cloudflare

TLS 1.3 Extended Key Schedule

Abstract

TLS 1.3 is sometimes used in situations where it is necessary to

inject extra key material into the handshake. This draft aims to

describe methods for doing so securely. This key material must be

injected in such a way that both parties agree on what is being

injected and why, and further, in what order.

Note to Readers

Discussion of this document takes place on the TLS Working Group

mailing list (tls@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/tls/.

Source for this draft and an issue tracker can be found at https://

github.com/jhoyla/draft-jhoyla-tls-key-injection.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 7 June 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/tls/
https://mailarchive.ietf.org/arch/browse/tls/
https://github.com/jhoyla/draft-jhoyla-tls-key-injection
https://github.com/jhoyla/draft-jhoyla-tls-key-injection
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Conventions and Definitions

3. Key Schedule Extension

3.1. Handshake Secret Injection

3.2. Main Secret Injection

4. Key Schedule Injection Negotiation

5. Key Schedule Extension Structure

6. Security Considerations

7. IANA Considerations

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Potential Use Cases

Acknowledgments

Authors' Addresses

1. Introduction

Introducing additional key material into the TLS handshake is a non-

trivial process because both parties need to agree on the injection

content and context. If the two parties do not agree then an

attacker may exploit the mismatch in so-called channel

synchronization attacks, such as those described by [SLOTH].

Injecting key material into the TLS handshake allows other protocols

to be bound to the handshake. For example, it may provide additional

protections to the ClientHello message, which in the standard TLS

handshake only receives protections after the server's Finished

message has been received. It may also permit the use of combined

shared secrets, possibly from multiple key exchange algorithms, to

be included in the key schedule. This pattern is common for Post

Quantum key exchange algorithms, as discussed in [I-D.ietf-tls-

hybrid-design]. In particular, [I-D.ietf-tls-hybrid-design] uses the

concatenation pattern described in this draft, but does not add the

requisite framing.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

The goal of this document is to provide a standardised way for

binding extra context into TLS 1.3 handshakes in a way that is easy

to analyse from a security perspective, reducing the need for

security analysis of extensions that affect the key schedule. It

separates the concerns of whether an extension achieves its goals

from the concerns of whether an extension reduces the security of a

TLS handshake, either directly or through some unforseen interaction

with another extension.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Key Schedule Extension

This section describes two places in which additional secrets can be

injected into the TLS 1.3 key schedule.

3.1. Handshake Secret Injection

To inject extra key material into the Handshake Secret it is

recommended to prefix it, inside an appropriate frame, to the

(EC)DHE input, where || represents concatenation.

3.2. Main Secret Injection

To inject key material into the Main Secret it is recommended to

prefix it, inside an appropriate frame, to the 0 input.

¶

¶

¶

¶

 |

 v

 Derive-Secret(., "derived", "")

 |

 v

 KeyScheduleInput || (EC)DHE -> HKDF-Extract = Handshake Secret

 |

 v

¶

¶

 |

 v

 Derive-Secret(., "derived", "")

 |

 v

 KeyScheduleInput || 0 -> HKDF-Extract = Main Secret

 |

 v

¶

This structure mirrors the Handshake Injection point.

4. Key Schedule Injection Negotiation

Applications which make use of additional key schedule inputs MUST

define a mechanism for negotiating the content and type of that

input. This input MUST be framed in a KeyScheduleSecret struct, as

defined in Section 5. Applications must take care that any

negotiation that takes place unambiguously agrees a secret. It must

be impossible, even under adversarial conditions, that a client and

server agree on the transcript of the negotiation, but disagree on

the secret that was negotiated.

5. Key Schedule Extension Structure

In some cases, protocols may require more than one secret to be

injected at a particular stage in the key schedule. Thus, we require

a generic and extensible way of doing so. To accomplish this, we use

a structure - KeyScheduleInput - that encodes well-ordered sequences

of secret material to inject into the key schedule. KeyScheduleInput

is defined as follows:

Each secret included in a KeyScheduleInput structure has a type and

corresponding secret data. Each secret MUST have a unique

KeyScheduleSecretType. When encoding KeyScheduleInput as the key

schedule Input value, the KeyScheduleSecret values MUST be in

ascending sorted order. This ensures that endpoints always encode

the same KeyScheduleInput value when using the same secret keying

material.

6. Security Considerations

[BINDEL] provides a proof that the concatenation approach in Section

3 is secure as long as either the concatenated secret is secure or

the existing KDF input is secure.

¶

¶

¶

struct {

 KeyScheduleSecretType type;

 opaque secret_data<0..2^16-1>;

} KeyScheduleSecret;

enum {

 (65535)

} KeyScheduleSecretType;

struct {

 KeyScheduleSecret secrets<0..2^16-1>;

} KeyScheduleInput;

¶

¶

¶

[RFC2119]

[RFC8126]

[RFC8174]

[BINDEL]

[I-D.friel-tls-eap-dpp]

[[OPEN ISSUE: Is this guarantee sufficient? Do we also need to

guarantee that a malicious prefix can't weaken the resulting PRF

output?]]

7. IANA Considerations

This document requests the creation of a new IANA registry: TLS

KeyScheduleInput Types. This registry should be under the existing

Transport Layer Security (TLS) Parameters heading. It should be

administered under a Specification Required policy [RFC8126].

[[OPEN ISSUE: specify initial registry values]]

Value Description DTLS-OK Reference

TBD TBD TBD TBD

Table 1

8. References

8.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/info/rfc8126>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

8.2. Informative References

Bindel, N., Brendel, J., Fischlin, M., Goncalves, B., and

D. Stebila, "Hybrid Key Encapsulation Mechanisms and

Authenticated Key Exchange", Post-Quantum Cryptography

pp. 206-226, DOI 10.1007/978-3-030-25510-7_12, 2019,

<https://doi.org/10.1007/978-3-030-25510-7_12>.

Friel, O. and D. Harkins, "Bootstrapped TLS

Authentication", Work in Progress, Internet-Draft, draft-

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://doi.org/10.1007/978-3-030-25510-7_12

[I-D.ietf-tls-hybrid-design]

[I-D.ietf-tls-semistatic-dh]

[SLOTH]

friel-tls-eap-dpp-01, 13 July 2020, <http://www.ietf.org/

internet-drafts/draft-friel-tls-eap-dpp-01.txt>.

Steblia, D., Fluhrer, S., and S. Gueron, "Hybrid key

exchange in TLS 1.3", Work in Progress, Internet-Draft,

draft-ietf-tls-hybrid-design-01, 15 October 2020,

<http://www.ietf.org/internet-drafts/draft-ietf-tls-

hybrid-design-01.txt>.

Rescorla, E., Sullivan, N., and C. Wood, "Semi-Static

Diffie-Hellman Key Establishment for TLS 1.3", Work in

Progress, Internet-Draft, draft-ietf-tls-semistatic-

dh-01, 7 March 2020, <http://www.ietf.org/internet-

drafts/draft-ietf-tls-semistatic-dh-01.txt>.

Bhargavan, K. and G. Leurent, "Transcript Collision

Attacks: Breaking Authentication in TLS, IKE, and SSH",

Proceedings 2016 Network and Distributed System Security

Symposium, DOI 10.14722/ndss.2016.23418, 2016, <https://

doi.org/10.14722/ndss.2016.23418>.

Appendix A. Potential Use Cases

The draft provides a mechanism for importing additional information

into the TLS key schedule. Future applications and specifications

can use this mechanism to layer TLS on to other protocols, as

opposed to layering other protocols over TLS. For example, as

discussed in Section 1, this can be used for hybrid key exchange,

which, in effect, is layering TLS over a secondary AKE. Although the

key exchanges are interleaved, the post-quantum AKE completes first,

as demonstrated by its output key being used as an input for

computing TLS's master secret.

This can also be used in more direct ways, such as bootstrapping

EAP-TLS as in [I-D.friel-tls-eap-dpp]. This draft also allows for

more direct implementations of things such as semi-static DH [I-

D.ietf-tls-semistatic-dh]. The aim of this draft is to be

sufficiently flexible that it can be used as the basis for layering

TLS on top of any protocol that outputs a secure channel binding,

where secure is defined by the goals of the overall layered

protocol. This draft does not provide security itself, it simply

provides a standard format for layering.

Acknowledgments

We thank Karthik Bhargavan for his comments.

¶

¶

¶

http://www.ietf.org/internet-drafts/draft-friel-tls-eap-dpp-01.txt
http://www.ietf.org/internet-drafts/draft-friel-tls-eap-dpp-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-hybrid-design-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-hybrid-design-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-semistatic-dh-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-semistatic-dh-01.txt
https://doi.org/10.14722/ndss.2016.23418
https://doi.org/10.14722/ndss.2016.23418

Authors' Addresses

Jonathan Hoyland

Cloudflare Ltd.

Email: jonathan.hoyland@gmail.com

Christopher A. Wood

Cloudflare

Email: caw@heapingbits.net

mailto:jonathan.hoyland@gmail.com
mailto:caw@heapingbits.net

	TLS 1.3 Extended Key Schedule
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. Key Schedule Extension
	3.1. Handshake Secret Injection
	3.2. Main Secret Injection

	4. Key Schedule Injection Negotiation
	5. Key Schedule Extension Structure
	6. Security Considerations
	7. IANA Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Potential Use Cases
	Acknowledgments
	Authors' Addresses

