
Network Workign Group A. Jivsov
Internet-Draft Symantec Corporation
Intended status: Informational May 31, 2013
Expires: December 2, 2013

Compact representation of an elliptic curve point
draft-jivsov-ecc-compact-01

Abstract

 This document defines a format for efficient storage representation
 of an elliptic curve point over prime fields, suitable for use with
 any IETF format or protocol.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 2, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Jivsov Expires December 2, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Compact representation of an EC point May 2013

Table of Contents

1. Introduction . 3
2. Conventions used in this document 3
3. Overview of the compact representation in IETF protocols . . . 3
4. The definition of the compact representation 4
4.1. Encoding and decoding of an elliptic curve point 5
4.2. The algorithms to generate a key pair 5
4.2.1. The black box key generation algorithm 6
4.2.2. The deterministic key generation algorithm 6

4.3. The efficient square root algorithm for p=4*k+3 7
5. Interoperability considerations 7
6. IANA Considerations . 8
7. Security Considerations 8
8. References . 10
8.1. Normative References 10
8.2. Informative References 10

Appendix A. Sample code change to add compliant key
 generation to libgcrypt 11
 Author's Address . 12

Jivsov Expires December 2, 2013 [Page 2]

Internet-Draft Compact representation of an EC point May 2013

1. Introduction

 The National Security Agency (NSA) of the United States specifies
 elliptic curve cryptography (ECC) for use in its [SuiteB] set of
 algorithms. The NIST elliptic curves over the prime fields
 [FIPS-186], which include [SuiteB] curves, or the Brainpool curves
 [RFC5639] are the examples of curves over prime fields.

 This document provides an efficient format for compact representation
 of a point on an elliptic curve over a prime field. It is intended
 as an open format that other IETF protocols can rely on to minimize
 space required to store an ECC point. This document complements the
 [RFC6090] with the on-the-wire definition of an ECC point.

 One of the benefits of the ECC is the small size of field elements.
 The compact representation reduces the encoded size of an ECC element
 in half, which can be a substantial saving in cases such as
 encryption of a short message sent to multiple recipients.

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Overview of the compact representation in IETF protocols

 IETF protocols often use the [SEC1] representation of a point on an
 elliptic curve, which is a sequence of the following fields:

 Field Description
 ------ --
 B0 {02, 03, 04}, where 02 or 03 represent a compressed point (x
 only), while 04 represents a complete point (x,y)
 X x coordinate of a point
 Y y coordinate of a point, optional (present only for B0=04)

 SEC1 point representation

 The [SEC1] is an example of a general-purpose elliptic curve point
 compression. The idea behind these methods is the following:

 o For the given point P=(x,y) the y coordinate can be derived from x
 by solving the corresponding equation of the ECC.

https://datatracker.ietf.org/doc/html/rfc5639
https://datatracker.ietf.org/doc/html/rfc6090
https://datatracker.ietf.org/doc/html/rfc2119

Jivsov Expires December 2, 2013 [Page 3]

Internet-Draft Compact representation of an EC point May 2013

 o There are two possible y coordinates for any x of a given P

 o The either of the two possibilities for y is encoded in some way
 in the compressed representation

 There are a few undesirable properties of the above representation:

 o The requirement to store one bit to identify the 'y' means that
 the whole byte is required.

 o For most well-known elliptic curves the extra byte removes the
 power of two alignment for the encoded point.

 o The requirement for the balanced security calls for the ECC curve
 size to be equal the hash output size, yet the storage length of
 the ECC point is equal to the hash output size + 1.

 o The encoded point is not a multi-precision integer, but a
 structured sequence of bytes. For example, special wording is
 required to define the encoding of the [FIPS-186] P-521 to clarify
 how odd number of bits for x and y, or a bit representing y, are
 packed into bytes.

 o Some protocols, such as ECDH, don't depend on the exact value of
 the y. It is unnecessary to track the precise point P=(x,y) in
 such protocols.

4. The definition of the compact representation

 This document is an improvement to the idea by [Miller] to not
 transmit the y coordinate of an ECC point in the elliptic curve
 Diffie-Hellman (ECDH) protocol.

 We will use the following notations for the ECC point Q and the
 features of the corresponding elliptic curve:

 Q = k*G, where

 Q = (x,y) is the point on an elliptic curve (the canonical
 represenation)

 k - the private key (a scalar)

 G - the elliptic curve generator point

 y^2 = x^3 + a*x + b is the standard Weierstrass equation linking x
 and y

Jivsov Expires December 2, 2013 [Page 4]

Internet-Draft Compact representation of an EC point May 2013

 p - the order of the underlying finite field to which x and y
 belong

 Ord - the order of the elliptic curve field, i.e. the number of
 points on the curve (Ord*G = O, where O is the identity element)

 Q is a point that we need to represent in the compact form. The
 integer operations considered in this document are performed modulo
 prime p and "(mod p)" is assumed in every formula with x and y.

 The steps to create and interpret the compact representation of a
 point are described next. A special key generation algorithm is
 needed to make them possible, defined later in Section 4.2.

4.1. Encoding and decoding of an elliptic curve point

 Encoding: Given the canonical representation of Q=(x,y), return the
 x as the compact representation.

 Decoding: Given the compact representation of Q, return canonical
 representation of Q=(x,y) as follows:

 1. y' = sqrt(x^3 + a*x + b), where y'>0

 2. y = min(y',p-y')

 3. Q=(x,y) is the canonical representation of the point

 Recall that the x is an element in the underlying finite field,
 represented by an integer. Its precise encoding SHOULD be consistent
 with encoding of other multi-precision integers in the application,
 for example, it would be the same encoding as used for the r or s
 integer that is a part of the DSA signature and it is typically a
 sequence of big-endian bytes.

 The efficient algorithm to recover y for [SuiteB] or the Brainpool
 curves [RFC5639], among others, is given in Section 4.3.

 min(y,p-y) can be calculated with the help of the pre-calculated
 value p2=(p-1)/2. min(y,p-y) is y if y<p2 and p-y otherwise.

 The efficient encoding and decoding algorithms are possible with the
 special key generation algorithm, defined next.

4.2. The algorithms to generate a key pair

 This document specifies two algorithms, called the "black box" and
 the "deterministic" key generation algorithms, to generate a key pair

https://datatracker.ietf.org/doc/html/rfc5639

Jivsov Expires December 2, 2013 [Page 5]

Internet-Draft Compact representation of an EC point May 2013

 {k, Q=k*G=(x,y)}, where k is the private key and Q=(x,y) is the
 public key. A key pair generated according to the requirements in
 this section is called a compliant key pair, and the public key of
 such a key pair -- a compliant public key. A compliant public key
 Q=(x,y) allows compact representation as x, as defined in

Section 4.1.

 Both key generation algorithms can be built with any general purpose
 key generation algorithm which would be needed in any ECC
 implementation that generates keys, regardless of the support for any
 method defined in this document. Such a general purpose key
 generation algorithm is referred in this section as "KG".

 The black box algorithm works in scenarios when the KG doesn't allow
 any adjustments to the private key. The disadvantage of this
 algorithm is that multiple KGs may be needed to generate a single key
 pair {k, Q}. The deterministic algorithm is similar, except that it
 is allowed to perform a simple and fast modification to the private
 key after the KG. The advantage of the second algorithm is
 performance, in particular, the guarantee that only a single KG is
 needed.

4.2.1. The black box key generation algorithm

 The following algorithm calculates a key pair {k, Q=k*G=(x,y)}, where
 k is the private key and Q=(x,y) is the public key.

 Black box generation:

 1. Generate a key pair {k, Q=k*G=(x,y)} with KG

 2. if(y != min(y,p-y)) goto step 1

 3. output {k, Q=(x,y)} as a key pair

 Note that the step 1 is a general purpose key generation algorithm,
 such as an algorithm compliant with [NIST-SP800-133]. Step 1 assumes
 neither changes to existing key generation methods nor access to the
 private key in clear.

 The expected number of iterations in the loop in the above algorithm
 is 2. The step 2 is not needed for the ECDH keys.

4.2.2. The deterministic key generation algorithm

 The following algorithm calculates a key pair {k, Q=k*G=(x,y)}, where
 k is the private key and Q=(x,y) is the public key.

Jivsov Expires December 2, 2013 [Page 6]

Internet-Draft Compact representation of an EC point May 2013

 Deterministic generation:

 1. Generate a key pair {k, Q=k*G=(x,y)} with KG

 2. if(y != min(y,p-y)) k = Ord - k; y = p - y

 3. output {k, Q=(x,y)} as a key pair

 The step 2 is not needed for the ECDH keys.

4.3. The efficient square root algorithm for p=4*k+3

 When p mod 4 = 3, as is the case of [SuiteB] and the Brainpool curves
 [RFC5639], there is an efficient square root algorithm to recover the
 y, as follows:

 Given the compact representation of Q as x,

 y2 = x^3 + a*x + b

 y' = y2^((p+1)/4)

 y = min(y',p-y')

 Q=(x,y) is the canonical representation of the point

 See [Lehmer] for details.

5. Interoperability considerations

 The compact representation described in this document allows two-
 phase introduction.

 First, key pairs must be generated as defined in Section 4.2 to allow
 compact representation. No accompanied changes are needed elsewhere
 to use these keys. This allows safe deployment of the new key
 generation, which, in turn, allows encoding and decoding of in
 compact representation, possibly at a later time.

 Finally, the encoding of public keys in the new compact
 representation format can be enabled after there is confidence in the
 universal support of new compact representation. This event would
 not need to change any private key material, only public key
 representation.

 The above two phases can be implemented at once for new formats.

https://datatracker.ietf.org/doc/html/rfc5639

Jivsov Expires December 2, 2013 [Page 7]

Internet-Draft Compact representation of an EC point May 2013

 Most ECC cryptographic protocols, such as ECDSA [FIPS-186], are
 intended to work with persistently stored public keys that are
 generated as fresh key pairs, as opposed to some derivation function
 that transforms an ECC point. The algorithm described in Section 4.2
 is possible in all these cases. Furthermore, the typical
 instantiation of the ECDH protocol, as in [NIST-SP800-56A], makes
 |*any| ECC key compliant (description Section 4.2 notes this
 simplification). The algorithm in Section 4.2 will even work for
 secure devices that never reveal the private key, such as smartcards
 or Hardware Security Modules. A public key that is generated
 according to the Section 4.2 can be used without limitations in
 existing protocols that use ECC points encoded in other ways, such as
 [SEC1], with compression or not, with the added advantage that the
 keys generated according to the method in Section 4.2 will allow the

Section 4.1 encoding.

6. IANA Considerations

 This document defines the low-level format that may be suitable for a
 wide range of applications. However, it is responsibility of the
 application that adopts this format to define the IDs that will
 enable the ECC compact point representation in that application.

 A new ID may not be always necessary. For example, an application
 that currently allows the [SEC1] encoding may allow the compact
 representation defined in this document as an extension to the [SEC1]
 as follows. Consider the encoding of a compressed [FIPS-186] P-256
 point, for example. The [SEC1] compressed representation of a P-256
 point will always occupy exactly 33 bytes. On the other hand, the
 compact representation defined in this document will never exceed 32
 bytes (it may occupy fewer that 32 bytes when the most significant
 byte has happened to be zero). This size will allow reliable
 discrimination between two encoding formats.

7. Security Considerations

 The key pair generation process in Section 4.2 excludes exactly half
 of the points on the elliptic curve. What is left is the subset of
 points suitable for compact representation. The filtering of points
 is based on a public criteria that are applied to the public output
 of the ECC one-way function.

 The set of Ord points on the elliptic curve can be subdivided as
 follows. First, remove the point O, which leaves Ord-1 points. Of
 these points there are exactly (Ord-1)/2 points that have unique x
 coordinate. This document specifies a method to form the (Ord-1)/2

Jivsov Expires December 2, 2013 [Page 8]

Internet-Draft Compact representation of an EC point May 2013

 of points, each having a unique x coordinate. These points are
 called compliant public keys in Section 4.2.

 For any two public keys P=(x,y) and P=(x,y') there is up to one bit
 of entropy in y' v.s. y and this information is public. This bit of
 entropy doesn't contribute to the difficulty of the underlying hard
 problem of the ECC: the elliptic curve discrete logarithm problem
 (ECDLP).

 It will be shown next that breaking the ECDLP with a key generated
 according to Section 4.2 is not easier than breaking the ECDLP with a
 key obtained through a standard key generation algorithm, referred to
 as the KG algorithm in the Section 4.2.

 Let us assume that there is an algorithm A that solves the ECDLP for
 the KG. The algorithm A can be transformed into the algorithm A' as
 follows.

 o If P=(x,y) is a compliant public key, the ECDLP is solved with A
 for the point (x,y): the result is k, such that k*G=(x,y)

 o If P=(x,y) is not a compliant public key, the ECDLP is solved with
 A for the point (x,p-y); assuming the result produced by A is k,
 the result produced by A' is set to (Ord-k). Note that (Ord-k)*G
 = (x,p).

 A' is equivalent to A. The complexity of one additional substraction
 in the prime field is negligible even to the complexity of a single
 elliptic curve addition. Observe that A' works on all public keys by
 performing the actual work only on compliant public keys.

 If we now consider only the compliant public keys, which cuts the
 number of points in half, we observe that the ECDLP solving algorithm
 A' doesn't get to break fewer public keys. This concludes the proof.

 The same result can be observed based on the details of the current
 state of the art attacks on the ECDLP. These attacks use Pollard's
 rho algorithm, which uses the collision search in the sequence(s) of
 generated points with the goal to produce the points P1=(x1,y1) and
 P2=(x2,y2), such that x1=x2 and y1=y2. The match in the x coordinate
 is the sufficient event for the successful attack. After this event
 has ocurred, the sequence(s) that led to x1=x2 collision can be
 adjusted in a constant number of steps to ensure that y1=y2, if this
 is not already the case. Furthermore, collision search requires the
 storage of candidates for the collision. It's wasteful to store
 (x,y) v.s. storing x and only calculating y when the collision in x
 is detected. Thus, the ECDLP attack does not benefit from the
 unpredictability of the y.

Jivsov Expires December 2, 2013 [Page 9]

Internet-Draft Compact representation of an EC point May 2013

 Finally, note that a common design feature of an ECDH-based system is
 not to depend on the y coordinate, such as the one defined in the
 [NIST-SP800-56A]. Thus, the security of the system is unaffected if
 we fix either of the two possibilities for the point with the given x
 coordinate.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

8.2. Informative References

 [FIPS-186]
 National Institute of Standards and Technology, "Digital
 Signature Standard (DSS)", FIPS 186-3, June 2009,
 <http://csrc.nist.gov/publications/PubsSPs.html>.

 [Lehmer] Lehmer, D., "Computer technology applied to the theory of
 numbers", 1969.

 [Miller] Miller, V., "Use of elliptic curves in cryptography",
 Proceedings Lecture notes in computer sciences; 218 on
 Advances in cryptology -- CRYPTO 85, June 1986.

 [NIST-SP800-133]
 National Institute of Standards and Technology,
 "Recommendation for Cryptographic Key Generation", SP 800-
 133, November 2012,
 <http://csrc.nist.gov/publications/PubsSPs.html>.

 [NIST-SP800-56A]
 National Institute of Standards and Technology,
 "Recommendation for Pair-Wise Key Establishment Schemes
 Using Discrete Logarithm Cryptography", SP 800-56A
 Revision 1, March 2007,
 <http://csrc.nist.gov/publications/PubsSPs.html>.

 [RFC5639] Lochter, M. and J. Merkle, "Elliptic Curve Cryptography
 (ECC) Brainpool Standard Curves and Curve Generation",

RFC 5639, March 2010.

 [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
 Curve Cryptography Algorithms", RFC 6090, February 2011.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://csrc.nist.gov/publications/PubsSPs.html
http://csrc.nist.gov/publications/PubsSPs.html
http://csrc.nist.gov/publications/PubsSPs.html
https://datatracker.ietf.org/doc/html/rfc5639
https://datatracker.ietf.org/doc/html/rfc6090

Jivsov Expires December 2, 2013 [Page 10]

Internet-Draft Compact representation of an EC point May 2013

 [SEC1] STANDARDS FOR EFFICIENT CRYPTOGRAPHY, "SEC 1: Elliptic
 Curve Cryptography", September 2000, <www.secg.org/
 collateral/sec1_final.pdf>.

 [SuiteB] National Security Agency, "NSA Suite B Cryptography",
 March 2010,
 <http://www.nsa.gov/ia/programs/suiteb_cryptography/>.

Appendix A. Sample code change to add compliant key generation to
 libgcrypt

 This section shows complete changes that were needed to make
 libgcrypt library generate a compliant key. Note that Q is the
 initial public key, G generator, and d is the corresponding private
 key. "-" prefix marks the two lines that were replaced with the lines
 starting with "+". Lines starting with "+" represent the code that
 adds compliant key generation to libgcrypt.

 @@ generate_key (ECC_secret_key *sk,
 unsigned int nbits,
 const char *name,
 point_set (&sk->E.G, &E.G);
 sk->E.n = mpi_copy (E.n);
 point_init (&sk->Q);
 - point_set (&sk->Q, &Q);
 - sk->d = mpi_copy (d);
 +
 + /* We want the Q=(x,y) be a "compliant key" in terms of the
 + * http://tools.ietf.org/html/draft-jivsov-ecc-compact,
 + * which simply means that we choose either Q=(x,y) or -Q=(x,p-y)
 + * such that we end up with the min(y,p-y) as the y coordinate.
 + * Such a public key allows the most efficient compression: y can
 + * simply be dropped because we know that it's a minimum of
 + * the two possibilities without any loss of security.
 + */
 + {
 + gcry_mpi_t x, p_y, y;
 + const unsigned int nbits = mpi_get_nbits (E.p);
 +
 + x = mpi_new (nbits);
 + p_y = mpi_new (nbits);
 + y = mpi_new (nbits);
 +
 + if (_gcry_mpi_ec_get_affine (x, y, &Q, ctx))
 + log_fatal ("ecgen: Failed to get affine coordinates for Q\n");
 +
 + mpi_sub(p_y, E.p, y); /* p_y = p-y */

http://www.nsa.gov/ia/programs/suiteb_cryptography/
http://tools.ietf.org/html/draft-jivsov-ecc-compact

Jivsov Expires December 2, 2013 [Page 11]

Internet-Draft Compact representation of an EC point May 2013

 +
 + if(mpi_cmp(p_y /*p-y*/, y) < 0) { /* is p-y < p ? */
 + gcry_mpi_t z = mpi_copy(mpi_const (MPI_C_ONE));
 + /* we need to end up with -Q; this assures that new Q's y
 + * is the smallest one */
 + sk->d = mpi_new (nbits);
 + mpi_sub(sk->d, E.n, d); /* d = order-d */
 + /* log_mpidump ("ecgen d after ", sk->d); */
 + gcry_mpi_point_set (&sk->Q, x, p_y/*p-y*/, z); /* Q = -Q */
 + if (DBG_CIPHER)
 + {
 + log_debug ("ecgen converted Q to a compliant point\n");
 + }
 + mpi_free (z);
 + }
 + else
 + {
 + /* no change is needed exactly 50% of the time: just copy */
 + sk->d = mpi_copy (d);
 + point_set (&sk->Q, &Q);
 + if (DBG_CIPHER)
 + {
 + log_debug ("ecgen didn't need to convert Q to "
 + "a compliant point\n");
 + }
 + }
 + mpi_free (x);
 + mpi_free (p_y);
 + mpi_free (y);
 + }

Author's Address

 Andrey Jivsov
 Symantec Corporation

 Email: openpgp@brainhub.org

Jivsov Expires December 2, 2013 [Page 12]

