Abstract

The JSON Web Signature JSON Serialization (JWS-JS) is a means of representing content secured with digital signatures or Hash-based Message Authentication Codes (HMACs) using JavaScript Object Notation (JSON) data structures. This specification describes a means of representing secured content as a JSON data object (as opposed to the JWS specification, which uses a compact serialization with a URL-safe representation). It enables multiple digital signatures and/or HMACs to be applied to the same content (unlike JWS). Cryptographic algorithms and identifiers used with this specification are described in the separate JSON Web Algorithms (JWA) specification. The JSON Serialization for related encryption functionality is described in the separate JSON Web Encryption JSON Serialization (JWE-JS) specification.
Table of Contents

1. Introduction ... 3
 1.1. Notational Conventions 3
2. Terminology .. 3
3. JSON Serialization ... 3
4. Example JWS-JS .. 4
5. IANA Considerations 5
6. Security Considerations 5
7. Open Issues .. 5
8. References .. 5
 8.1. Normative References 5
 8.2. Informative References 6
Appendix A. Acknowledgements 6
Appendix B. Document History 6
Authors' Addresses .. 6
1. Introduction

The JSON Web Signature JSON Serialization (JWS-JS) is a format for representing content secured with digital signatures or Hash-based Message Authentication Codes (HMACs) as a JavaScript Object Notation (JSON) [RFC4627] object. It enables multiple digital signatures and/or HMACs to be applied to the same content (unlike JWS [JWS]). The digital signature and HMAC mechanisms used are independent of the type of content being secured, allowing arbitrary content to be secured. Cryptographic algorithms and identifiers used with this specification are described in the separate JSON Web Algorithms (JWA) [JWA] specification. The JSON Serialization for related encryption functionaility is described in the separate JSON Web Encryption JSON Serialization (JWE-JS) [JWE-JS] specification.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in Key words for use in RFCs to Indicate Requirement Levels [RFC2119].

2. Terminology

This specification uses the same terminology as the JSON Web Signature (JWS) [JWS] specification.

3. JSON Serialization

The JSON Serialization represents secured content as a JSON object with members for each of three constituent parts: a "headers" member whose value is a non-empty array of Encoded JWS Header values, a "payload" member whose value is an Encoded JWS Payload value, and a "signatures" member whose value is a non-empty array of Encoded JWS Signature values, where the number of elements in both arrays is the same.

Unlike the compact serialization used by JWSs, content using the JSON Serialization MAY be secured with more than one digital signature and/or HMAC value. Each is represented as an Encoded JWS Signature in the "signatures" member array. For each, there is a corresponding "headers" member array element that is an Encoded JWS Header specifying the digital signature or HMAC applied to the Encoded JWS Header value and the Encoded JWS Payload value to create the JWS Signature value. Therefore, the syntax is:
The contents of the Encoded JWS Header, Encoded JWS Payload, and Encoded JWS Signature values are exactly as specified in JSON Web Signature (JWS) [JWS]. They are interpreted and validated in the same manner, with each corresponding "headers" and "signatures" value being created or validated together. The arrays MUST have the same number of elements.

The i'th JWS Signature value is computed on the JWS Secured Input corresponding to the concatenation of the i'th Encoded JWS Header, a period (\.') character, and the Encoded JWS Payload in the same manner described in the JWS specification. This has the desirable result that each Encoded JWS signature value in the "signatures" array is identical to the value that would be used for the same header and payload in a JWS.

4. Example JWS-JS

This section contains an example using the JWS JSON Serialization. This example demonstrates the capability for conveying multiple digital signatures and/or HMACs for the same payload.

The Encoded JWS Payload used in this example is the same as used in the examples in Appendix A of JWS (with line breaks for display purposes only):

eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

Two digital signatures are used in this example: an RSA SHA-256 signature, for which the header and signature values are the same as in Appendix A.2 of JWS, and an ECDSA P-256 SHA-256 signature, for which the header and signature values are the same as in Appendix A.3 of JWS. The two Decoded JWS Header Segments used are:

{"alg":"RS256"}

and:

{"alg":"ES256"}

Since the computations of the JWS Header and JWS Signature values are the same as in Appendix A.2 and Appendix A.3 of JWS, they are not repeated here.

The complete JSON Web Signature JSON Serialization (JWS-JS) for these
values is as follows (with line breaks for display purposes only):
{"headers": ["eyJhbGciOiJSUzI1NiJ9", "eyJhbGciOiJFUzI1NiJ9"],
"payload": "eyJpc3MiOiJqb2UiLA0KICJleHAiOiJtZmVjdGlvbiI6IkpuczVzIiwgInN\n"signatures": ["cC4hiUPoj9Eetdgtv3hfF80EGrhuB__dzERat0XF9g2VtQgr9PJbu3XOiZj5RZ\nmh7AAuH1m4Bh-0Qc_1F5YKt_08W2Fp5juj6bds9uJdbF9CUAr7t1dnZcAcQjbKB\nNX4BAynRFdiuB--f_nZLgrnbyTyWz075vRK5h6xBAr1IARNPvkSjtQBMMH1b1L07Q\ne7K0GarZrmB_eSN9383LcOln6_dO--xii2jzDwusc-e0KhWEsqtFZESC6BFif7no0\nPqvhJ1phCnvWh6IeYI2w9Q0YEUiipUTI86p6LbgFY9Fs98rqVtX5AXLlWkWyw1Vmt\nVrBp0igcN_Ioyp6IUPQGe77Rw", "DtEhU3ljbEg8L38VWAFUaqoYKAM6-Xx-F4GawxaempXFCgF7jDxw5djxLa8IS1SApmWQxfKTUJqPP3-Kg6NU1Q"]
}

5. IANA Considerations

This specification makes no requests of IANA.

6. Security Considerations

The security considerations for this specification are the same as those for the JSON Web Signature (JWS) [JWS] specification.

7. Open Issues

[[to be removed by the RFC editor before publication as an RFC]]
The following items remain to be considered or done in this draft:

- Track changes that occur in the JWS spec.

8. References

8.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
8.2. Informative References

Appendix A. Acknowledgements

JSON serializations for secured content were previously explored by Magic Signatures [MagicSignatures] and JSON Simple Sign [RSS].

Appendix B. Document History

[[to be removed by the RFC editor before publication as an RFC]]

-02

-01

-00

o Created the initial version incorporating JOSE working group input and drawing from the JSON Serialization previously proposed in draft-jones-json-web-token-01.
Authors' Addresses

Michael B. Jones
Microsoft

Email: mbj@microsoft.com
URI: http://self-issued.info/

John Bradley
independent

Email: ve7jtb@ve7jtb.com

Nat Sakimura
Nomura Research Institute

Email: n-sakimura@nri.co.jp