Network Working Group M. Jones _T0C
Internet-Draft Microsoft

Intended status:
Standards Track

D. Balfanz
Expires: July 8, 2011 Google

J. Bradley

independent

Y. Goland

Microsoft

J. Panzer

Google

N. Sakimura

Nomura Research
Institute

P. Tarjan
Facebook

January 04, 2011

JSON Web Token (JWT) - Claims and Signing
draft-jones-json-web-token-01

Abstract

JSON Web Token (JWT) is a means of representing signed content using
JSON data structures, including claims to be transferred between two
parties. The claims in a JWT are encoded as a JSON object that is
digitally signed and optionally encrypted. Encryption for JWTs is
described in a separate companion specification.

The suggested pronunciation of JWT is the same as the English word
"jot".

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.) [RFC2119].

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

This Internet-Draft will expire on July 8, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as
described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the Simplified BSD License.

Table of Contents

Introduction

Terminology

JSON Web Token (JWT) Overview

3.1. Example JWT

JWT Claims

4.1. Reserved Claim Names

4.2. Public Claim Names

4.3. Private Claim Names

JWT Header

5.1. Reserved Header Parameter Names

5.2. Public Header Parameter Names

5.3. Private Header Parameter Names

Rules for Creating and Validating a JWT
Base64url encoding as used by JWTs

Signing JWTs with Cryptographic Algorithms
8.1. Signing a JWT with HMAC SHA-256
8.2. Signing a JWT with RSA SHA-256

8.3. Signing a JWT with ECDSA P-256 SHA-256

[>

>

o

[

8.4. Additional Algorithms
9. JWT Serialization Formats
9.1. JWT Compact Serialization
9.2. JWT JSON Serialization
10. TIANA Considerations

11. Security Considerations

11.1. Unicode Comparison Security Issues
12. Open Issues and Things To Be Done (TBD)
13. References

13.1. Normative References
13.2. Informative References

Appendix A. JWT Examples
A.1. JWT using HMAC SHA-256

A.1.1. Encoding

A.1.2. Decoding

A.1.3. Validating

A.2. JWT using RSA SHA-256

A.2.1. Encoding

A.2.2. Decoding

A.2.3. Validating

A.3. JWT using ECDSA P-256 SHA-256

A.3.1. Encoding

A.3.2. Decoding

A.3.3. Validating

A.4. JWT using JSON Serialization

A.4.1. Encoding

A.4.2. Decoding

A.4.3. Validating
Appendix B. Notes on implementing base64url encoding without padding
Appendix C. Relationship of JWTs to SAML Tokens

Appendix D. Relationship of JWTs to Simple Web Tokens (SWTs)
Appendix E. Acknowledgements

Appendix F. Document History

8 Authors' Addresses

1. Introduction TOC

JSON Web Token (JWT) is a compact token format intended for space
constrained environments such as HTTP Authorization headers and URI
query parameters. JWTs encode claims to be transmitted as a JSON object
(as defined in RFC 4627 (Crockford, D., “The application/json Media
Type for JavaScript Object Notation (JSON),” July 2006.) [RFC4627])
that is base64url encoded and digitally signed. The JWT signature
mechanisms are independent of the type of content being signed,

allowing arbitrary content to be signed. Encryption for JWTs is
described in a separate companion specification.
The suggested pronunciation of JWT is the same as the English word

lljotll .

2. Terminology TOC

JSON Web Token (JWT) A data structure containing three JWT Token

Segments: the JWT Header Segment, the JWT Payload Segment, and
the JWT Crypto Segment. The JWT Payload Segment typically
represents a set of claims convened by the JWT as a JSON object,
but in the general case, may represent arbitrary signed content.

JWT Compact Serialization A data structure representing a JWT as a

string consisting of three JWT Token Segments: the JWT Header
Segment, the JWT Payload Segment, and the JWT Crypto Segment, in
that order, with the segments being separated by period ('.'")
characters.

JWT JSON Serialization A data structure representing a JWT as a

JSON object with members for each of three kinds of JWT Token

Segments: a "header" member whose value is a non-empty array of
JWT Header Segments, a "payload" member whose value is the JWT
Payload Segment, and a "signature" member whose value is a non-

empty array of JWT Crypto Segments, where the cardinality of both
arrays is the same.

JWT Token Segment One of the three parts that make up a JSON Web
Token (JWT). JWT Token Segments are always base64url encoded
values.

JWT Header Segment A JWT Token Segment containing a base64url
encoded JSON object that describes the signature applied to the
JWT Header Segment and the JWT Payload Segment.

JWT Payload Segment A JWT Token Segment containing base64url
encoded content. This may be a JWT Claims Object.

JWT Crypto Segment A JWT Token Segment containing base64url encoded
cryptographic signature material that secures the JWT Header
Segment's and the JWT Payload Segment's contents.

Decoded JWT Header Segment A JWT Header Segment that has been
base64url decoded back into a JSON object.

Decoded JWT Payload Segment A JWT Payload Segment that has been
base64url decoded. If the corresponding JWT Payload Segment is a
JWT Claims Object, this will be a Decoded JWT Claims Object.

Decoded JWT Crypto Segment A JWT Crypto Segment that has been
base64url decoded back into cryptographic material.

JWT Claims Object A base64url encoded JSON object that represents
the claims contained in the JWT.

Decoded JWT Claims Object A JSON object that represents the claims
contained in the JWT.

JWT Signing Input The concatenation of the JWT Header Segment, a
period ('.') character, and the JWT Payload Segment.

Digital Signature For the purposes of this specification, we use
this term to encompass both Hash-based Message Authentication
Codes (HMACs), which can provide authenticity but not non-
repudiation, and digital signatures using public key algorithms,
which can provide both. Readers should be aware of this
distinction, despite the decision to use a single term for both
concepts to improve readability of the specification.

Base64url Encoding For the purposes of this specification, this
term always refers to the he URL- and filename-safe Base64
encoding described in RFC 4648 (Josefsson, S., “The Basel6,
Base32, and Base64 Data Encodings,” October 2006.) [RFC4648],
Section 5, with the '=' padding characters omitted, as permitted

by Section 3.2; see Section 7 (Base64url encoding as used by
JWTs) for more details.

Header Parameter Names The names of the members within the JSON
object represented in a JWT Header Segment.

Header Parameter Values The values of the members within the JSON
object represented in a JWT Header Segment.

Claim Names The names of the members of the JSON object represented
in a JWT Claims Object.

Claim Values The values of the members of the JSON object
represented in a JWT Claims Object.

3. JSON Web Token (JWT) Overview TOC

JWTs represent content that is base64url encoded and digitally signed,
and optionally encrypted, using JSON data structures; this content is
typically a set of claims represented as a JSON object.

When the JWT payload is a set of claims, the claims are represented as
name/value pairs that are members of a JSON object. The JSON object is
base64url encoded to produce the JWT Claims Object, which is used as
the JWT Payload Segment. An accompanying base64url encoded JSON header
- the JWT Header Segment - describes the signature method used.

The names within the header object MUST be unique. The names within the
header object are referred to as Header Parameter Names. The
corresponding values are referred to as Header Parameter Values.
Likewise, if the payload represents a JWT Claims Object, the names
within the claims object MUST be unique. The names within the claims
object are referred to as Claim Names. The corresponding values are
referred to as Claim Values.

JWTs contain a signature that ensures the integrity of the content of
the JWT Header Segment and the JWT Payload Segment. This signature
value is carried in the JWT Crypto Segment. The JSON Header object MUST
contain an "alg" parameter, the value of which is a string that
unambiguously identifies the algorithm used to sign the JWT Header
Segment and the JWT Payload Segment to produce the JWT Crypto Segment.

3.1. Example JWT TOC

The following is an example of a JSON object that can be encoded to
produce a JWT Claims Object:

{IIiSSII : I|j0ell,
"exp":1300819380,
"http://example.com/is_root":true}

Base64url encoding the UTF-8 representation of the JSON object yields
this JWT Claims Object, which is used as the JWT Payload Segment:

eyJpc3Mi0iJqb2UiLAGKICJI1eHA10jEzMDA4MTkzODASDQogImhOdHAGLY91eGFtcGX1LmMNVbS9pc19yb290T jpl

The following example JSON header object declares that the encoded
object is a JSON Web Token (JWT) and the JWT Header Segment and the JWT
Payload Segment are signed using the HMAC SHA-256 algorithm:

{Iltyp" : llJWTII,
"alg":"HS256"}

Base64url encoding the UTF-8 representation of the JSON header object
yields this JWT Header Segment value:

eyJOeXAi01JKV1QiLAOKICIhbGci0iJIUZzI1INiJ9

Signing the UTF-8 representation of the JWT Signing Input (the
concatenation of the JWT Header Segment, a period ('.') character, and
the JWT Payload Segment) with the HMAC SHA-256 algorithm and base64url
encoding the result, as per Section 8.1 (Signing a JWT with HMAC
SHA-256), yields this JWT Crypto Segment value:

dBjftJezZ4CVP-mB92K27uhbUJUlplr_wW1lgFWFOE]jXk

Concatenating these segments in the order Header.Payload.Signature with

period characters between the segments yields this complete JWT using

the JWT Compact Serialization (with line breaks for display purposes

only):
eyJOeXAi0iJKV1QiLAOKICIhbGci0iJIUzIINiJ9
eyJpc3Mi0iJqb2UiLAGKICJI1eHA10jEzMDA4MTkzODASDQogImhO@dHAGLY91eGFtcGXx1LmNVvbS9pc19yb290T jpl

dBjftJez4CVP-mB92K27uhbUJUipir_wWigFWFOEjXk

This computation is illustrated in more detail in Appendix A.1 (JWT
using HMAC SHA-256).

TOC

4. JWT Claims

If the JWT contains a set of claims represented as a JSON object, then
the members of the JSON object represented by the Decoded JWT Claims
Object decoded from the JWT Payload Segment contain the claims. Note
however, that the set of claims a JWT must contain to be considered
valid is context-dependent and is outside the scope of this
specification. When used in a security-related context, implementations
MUST understand and support all of the claims present; otherwise, the
JWT MUST be rejected for processing.

There are three classes of JWT Claim Names: Reserved Claim Names,
Public Claim Names, and Private Claim Names.

4.1. Reserved Claim Names TOC

The following claim names are reserved. None of the claims defined in
the table below are intended to be mandatory, but rather, provide a
starting point for a set of useful, interoperable claims. All the names
are short because a core goal of JWTs is for the tokens themselves to
be short.

JSON
Clai . . .
Name Value Claim Syntax Claim Semantics
Type

The "exp" (expiration time) claim identifies
the expiration time on or after which the
token MUST NOT be accepted for processing.
The processing of the "exp" claim requires
that the current date/time MUST be before
the expiration date/time listed in the "exp"
claim. Implementers MAY provide for some
small leeway, usually no more than a few
minutes, to account for clock skew. This
claim is OPTIONAL.

exp integer IntDate

The "iss" (issuer) claim identifies the
principal that issued the JWT. The

iss string StringAndURI processing of this claim is generally
application specific. This claim is
OPTIONAL.

The "aud" (audience) claim identifies the

audience that the JWT is intended for. The
principal intended to process the JWT MUST
be identified by the value of the audience

aud string StringAndURI

claim. If the principal processing the claim
does not identify itself with the identifier
in the "aud" claim value then the JWT MUST
be rejected. The interpretation of the
contents of the audience value is generally
application specific. This claim is
OPTIONAL.

The "typ" (type) claim is used to declare a

typ string String type for the contents of this JWT. This

claim is OPTIONAL.

Table 1: Reserved Claim Definitions

Additional reserved claim names MAY be defined via the IANA JSON Web

Token Claims

registry, as per Section 10 (IANA Considerations). The

syntax values used above and in Table 3 (Reserved Header Parameter

Definitions)

Syntax Name

IntDate

String

StringAndURI

URI

URL

are defined as follows:

Syntax Definition

The number of seconds from 1970-01-01T0:0:0Z as measured
in UTC until the desired date/time. See RFC 3339 (Klyne,
G., Ed. and C. Newman, “Date and Time on the Internet:
Timestamps,” July 2002.) [RFC3339] for details regarding
date/times in general and UTC in particular.

Any string value MAY be used.

Any string value MAY be used but a value containing a ":"
character MUST be a URI as defined in RFC 3986 (Berners-
Lee, T., Fielding, R., and L. Masinter, “Uniform Resource
Identifier (URI): Generic Syntax,” January 2005.)
[RFC3986].

A URI as defined in RFC 3986 (Berners-Lee, T., Fielding,
R., and L. Masinter, “Uniform Resource Identifier (URI):
Generic Syntax,” January 2005.) [RFC3986].

A URL as defined in RFC 1738 (Berners-Lee, T., Masinter,
L., and M. McCahill, “Uniform Resource Locators (URL),”
December 1994.) [RFC1738].

Table 2

4.2. Public Claim Names TOC

Claim names can be defined at will by those using JWTs. However, in
order to prevent collisions, any new claim name SHOULD either be
defined in the IANA JSON Web Token Claims registry or be defined as a
URI that contains a collision resistant namespace. Examples of
collision resistant namespaces include:

*Domain Names,

*Object Identifiers (0IDs) as defined in the ITU-T X 660 and X 670
Recommendation series or

*Universally Unique IDentifier (UUID) as defined in RFC 4122
(Leach, P., Mealling, M., and R. Salz, “A Universally Unigue
IDentifier (UUID) URN Namespace,” July 2005.) [RFC4122].

In each case, the definer of the name or value MUST take reasonable
precautions to make sure they are in control of the part of the
namespace they use to define the claim name.

4.3. Private Claim Names TOC

A producer and consumer of a JWT may agree to any claim name that is
not a Reserved Name Section 4.1 (Reserved Claim Names) or a Public Name
Section 4.2 (Public Claim Names). Unlike Public Names, these private
names are subject to collision and should be used with caution.

5. JWT Header TOC

The members of the JSON object represented by the Decoded JWT Header
Segment describe the signature applied to the JWT Header Segment and
the JWT Payload Segment and optionally additional properties of the
JWT. Implementations MUST understand the entire contents of the header;
otherwise, the JWT MUST be rejected for processing.

5.1. Reserved Header Parameter Names TOC

The following header parameter names are reserved. All the names are
short because a core goal of JWTs is for the tokens themselves to be
short.

Header

JSON Header

Parameter Value Parameter

Name

alg

typ

jku

kid

X5u

Type Syntax

string StringAndURI

string String

string URL

string String

string URL

Header Parameter Semantics

The "alg" (algorithm) header parameter
identifies the cryptographic algorithm
used to secure the JWT. A list of
reserved alg values is in Table 4 (JSON
Web Token Reserved Algorithm Values).
The processing of the "alg" (algorithm)
header parameter, if present, requires
that the value of the "alg" header
parameter MUST be one that is both
supported and for which there exists a
key for use with that algorithm
associated with the issuer of the JWT.
This header parameter is REQUIRED.

The "typ" (type) header parameter is
used to declare that this data structure
is a JWT. If a "typ" parameter is
present, it is RECOMMENDED that its
value be "JWT". This header parameter is
OPTIONAL.

The "jku" (JSON Key URL) header
parameter is a URL that points to JSON-
encoded public key certificates that can
be used to validate the signature. The
specification for this encoding is TBD.
This header parameter is OPTIONAL.

The "kid" (key ID) header parameter is a
hint indicating which specific key owned
by the signer should be used to validate
the signature. This allows signers to
explicitly signal a change of key to
recipients. Omitting this parameter is
equivalent to setting it to an empty
string. The interpretation of the
contents of the "kid" parameter is
unspecified. This header parameter 1is
OPTIONAL.

The "x5u" (X.509 URL) header parameter
is a URL that points to an X.509 public
key certificate that can be used to
validate the signature. This certificate
MUST conform to RFC 5280 (Cooper, D.,

Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, “Internet X.
509 Public Key Infrastructure
Certificate and Certificate Revocation
List (CRL) Profile,” May 2008.)
[RFC5280]. This header parameter is
OPTIONAL.

The "x5t" (x.509 certificate thumbprint)
header parameter provides a base64url
encoded SHA-256 thumbprint (a.k.a.

x5t string String digest) of the DER encoding of an X.509
certificate that can be used to match a
certificate. This header parameter 1is
OPTIONAL.

Table 3: Reserved Header Parameter Definitions

Additional reserved header parameter names MAY be defined via the IANA
JSON Web Token Header Parameters registry, as per Section 10 (IANA
Considerations). The syntax values used above and in Table 1 (Reserved
Claim Definitions) are defined in Table 2.

5.2. Public Header Parameter Names TOC

Additional header parameter names can be defined by those using JWTs.
However, in order to prevent collisions, any new header parameter name
or algorithm value SHOULD either be defined in the IANA JSON Web Token
Header Parameters registry or be defined as a URI that contains a
collision resistant namespace. In each case, the definer of the name or
value MUST take reasonable precautions to make sure they are in control
of the part of the namespace they use to define the header parameter
name.

New header parameters should be introduced sparingly, as they can
result in non-interoperable JWTs. Nonetheless, some extensions needed
for some use cases may require them, such as an extension to enable the
inclusion of multiple signatures.

5.3. Private Header Parameter Names TOC

A producer and consumer of a JWT may agree to any header parameter name
that is not a Reserved Name Section 5.1 (Reserved Header Parameter
Names) or a Public Name Section 5.2 (Public Header Parameter Names).

Unlike Public Names, these private names are subject to collision and
should be used with caution.

New header parameters should be introduced sparingly, as they can
result in non-interoperable JWTs.

6. Rules for Creating and Validating a JWT TOC

To create a JWT one MUST follow these steps:

1.

Create the payload content to be encoded as the Decoded JWT
Payload Segment. If the payload represents a JWT Claims Object,
then these steps for creating the Decoded JWT Payload Segment
also apply:

*Create a JSON object containing the desired claims. Note
that white space is explicitly allowed in the representation
and no canonicalization is performed before encoding.

*Translate this JSON object's Unicode code points into UTF-8,
as defined in RFC 3629 (Yergeau, F., “UTF-8, a
transformation format of ISO 10646,” November 2003.)
[RFC3629]. This is the Decoded JWT Payload Segment.

Base64url encode the Decoded JWT Payload Segment. This encoding
becomes the JWT Payload Segment.

Create a JSON object containing a set of desired header
parameters. Note that white space is explicitly allowed in the
representation and no canonicalization is performed before
encoding.

Translate this JSON object's Unicode code points into UTF-8, as
defined in RFC 3629 (Yergeau, F., “UTF-8, a transformation
format of ISO 10646,” November 2003.) [RFC3629].

Base64url encode the UTF-8 representation of this JSON object
as defined in this specification (without padding). This
encoding becomes a JWT Header Segment.

Construct a JWT Crypto Segment as defined for the particular
algorithm being used. The JWT Signing Input is always the
concatenation of a JWT Header Segment, a period ('.')
character, and the JWT Payload Segment. The "alg" header
parameter MUST be present in the JSON Header Segment, with the
algorithm value accurately representing the algorithm used to
construct the JWT Crypto Segment.

7. If the JWT Compact Serialization is being used, then:

*Concatenate the JWT Header Segment, the JWT Payload Segment
and then the JWT Crypto Segment in that order, separating
each by period characters, to create the JWT.

Else if the JWT JSON Serialization is being used, then:

*Create a JSON object with these three members: a "header"
member whose value is an array of JWT Header Segments, a
"payload" member whose value is the JWT Payload Segment, and
a "signature" member whose value is an array of JWT Crypto
Segments.

*If more than one signature is present, then repeat steps 3
through 6 for each header and crypto segment to produce
additional values for the header and signature arrays.

*The header and signature arrays must have the same number of
values, with each header value and corresponding signature
value being located at the same array index.

When validating a JWT the following steps MUST be taken. If any of the
listed steps fails then the token MUST be rejected for processing.

1. If the JWT Compact Serialization is being used, then:
*The JWT MUST contain two period characters.

*The JWT MUST be split on the two period characters resulting
in three non-empty segments. The first segment is the JWT
Header Segment; the second is the JWT Payload Segment; the
third is the JWT Crypto Segment.

Else if the JWT JSON Serialization is being used, then:

*The JSON MUST contain the three members "header", '"payload",
and "signature" and MAY contain others, which MUST be
ignored. The payload member MUST be a string and the header
and signature members MUST be non-empty arrays of strings
with equal cardinality.

*Use a "header" member array value as the JWT Header Segment;
use the "payload" member value as the JWT Payload Segment;
use a "signature" member array value with the same index as
the "header" member array value used as the JWT Crypto
Segment.

2. The JWT Payload Segment MUST be successfully base64url decoded
following the restriction given in this spec that no padding
characters have been used.

3. If the payload represents a JWT Claims Object, then these steps
for validating the Decoded JWT Payload Segment also apply:

*The Decoded JWT Payload Segment, which is the Decoded JWT
Claims Object, MUST be completely valid JSON syntax
conforming to RFC 4627 (Crockford, D., “The application/json
Media Type for JavaScript Object Notation (JSON),”

July 2006.) [RFC4627].

*When used in a security-related context, the Decoded JWT
Claims Object MUST be validated to only include claims whose
syntax and semantics are both understood and supported.

4. The JWT Header Segment MUST be successfully base64url decoded
following the restriction given in this spec that no padding
characters have been used.

5. The Decoded JWT Header Segment MUST be completely valid JSON
syntax conforming to RFC 4627 (Crockford, D., “The application/
json Media Type for JavaScript Object Notation (JSON),”

July 2006.) [RFC4627].

6. The JWT Crypto Segment MUST be successfully base64url decoded
following the restriction given in this spec that no padding
characters have been used.

7. The JWT Header Segment MUST be validated to only include
parameters and values whose syntax and semantics are both
understood and supported.

8. The JWT Crypto Segment MUST be successfully validated against
the JWT Header Segment and JWT Payload Segment in the manner
defined for the algorithm being used, which MUST be accurately
represented by the value of the "alg" header parameter, which
MUST be present.

9. If the JWT JSON Serialization is being used, then repeat steps
4 to 8 for each element of the header and signature arrays.

Processing a JWT inevitably requires comparing known strings to values
in the token. For example, in checking what the algorithm is, the
Unicode string encoding "alg" will be checked against the member names
in the Decoded JWT Header Segment to see if there is a matching header
parameter name. A similar process occurs when determining if the value
of the "alg" header parameter represents a supported algorithm.

Comparing Unicode strings, however, has significant security
implications, as per Section 11 (Security Considerations).
Comparisons between JSON strings and other Unicode strings MUST be
performed as specified below:

1. Remove any JSON applied escaping to produce an array of Unicode
code points.

2. Unicode Normalization (Davis, M., Whistler, K., and M. Dirst,
“Unicode Normalization Forms,” 09 2009.) [USA15] MUST NOT be
applied at any point to either the JSON string or to the string
it is to be compared against.

3. Comparisons between the two strings MUST be performed as a
Unicode code point to code point equality comparison.

7. Base64url encoding as used by JWTs TOC

JWTs make use of the base64url encoding as defined in RFC 4648
(Josefsson, S., “The Basel6, Base32, and Base64 Data Encodings,”
October 2006.) [RFC4648]. As allowed by Section 3.2 of the RFC, this
specification mandates that base64url encoding when used with JWTs MUST
NOT use padding. The reason for this restriction is that the padding
character ('=') is not URL safe.

For notes on implementing base64url encoding without padding, see
Appendix B (Notes on implementing base64url encoding without padding).

8. Signing JWTs with Cryptographic Algorithms TOC

JWTs use specific cryptographic algorithms to sign the contents of the
JWT Header Segment and the JWT Payload Segment. The use of the
following algorithms for producing JWTs is defined in this section. The
table below is the list of "alg" header parameter values reserved by
this specification, each of which is explained in more detail in the
following sections:

Alg Parameter Value Algorithm
HS256 HMAC using SHA-256 hash algorithm
HS384 HMAC using SHA-384 hash algorithm

HS512 HMAC using SHA-512 hash algorithm

RS256 RSA using SHA-256 hash algorithm
RS384 RSA using SHA-384 hash algorithm
RS512 RSA using SHA-512 hash algorithm
ES256 ECDSA using P-256 curve and SHA-256 hash algorithm
ES384 ECDSA using P-384 curve and SHA-384 hash algorithm
ES512 ECDSA using P-521 curve and SHA-512 hash algorithm

Table 4: JSON Web Token Reserved Algorithm Values

Of these algorithms, only HMAC SHA-256 and RSA SHA-256 MUST be
implemented by conforming implementations. It is RECOMMENDED that
implementations also support the ECDSA P-256 SHA-256 algorithm. Support
for other algorithms is OPTIONAL.

The portion of a JWT that is signed is the same for all algorithms: the
concatenation of the JWT Header Segment, a period ('.') character, and
the JWT Payload Segment. This character sequence is referred to as the
JWT Signing Input. Note that in the JWT Compact Serialization, this
corresponds to the portion of the JWT representation preceding the
second period character. The UTF-8 representation of the JWT Signing
Input is passed to the respective signing algorithms.

8.1. Signing a JWT with HMAC SHA-256 T0C

Hash based Message Authentication Codes (HMACs) enable one to use a
secret plus a cryptographic hash function to generate a Message
Authentication Code (MAC). This can be used to demonstrate that the MAC
matches the hashed content, in this case the JWT Signing Input, which
therefore demonstrates that whoever generated the MAC was in possession
of the secret.

The algorithm for implementing and validating HMACs is provided in RFC
2104 (Krawczyk, H., Bellare, M., and R. Canetti, “HMAC: Keyed-Hashing
for Message Authentication,” February 1997.) [RFC2104]. Although any
HMAC can be used with JWTs, this section defines the use of the SHA-256
cryptographic hash function as defined in FIPS 180-3 (National
Institute of Standards and Technology, “Secure Hash Standard (SHS),”
October 2008.) [FIPS.180-3]. The reserved "alg" header parameter value
"HS256" is used in the JWT Header Segment to indicate that the JWT
Crypto Segment contains a base64url encoded HMAC SHA-256 HMAC value.
The HMAC SHA-256 MAC is generated as follows:

1. Apply the HMAC SHA-256 algorithm to the UTF-8 representation of
the JWT Signing Input using the shared key to produce an HMAC.

2. Base64url encode the HMAC as defined in this document.

The output is placed in the JWT Crypto Segment for that JWT.
The HMAC SHA-256 MAC on a JWT is validated as follows:

1. Apply the HMAC SHA-256 algorithm to the UTF-8 representation of
the JWT Signing Input of the JWT using the shared key.

2. Base64url encode the previously generated HMAC as defined in
this document.

3. If the JWT Crypto Segment and the previously calculated value
exactly match, then one has confirmation that the key was used
to generate the HMAC on the JWT and that the contents of the
JWT have not be tampered with.

4, If the validation fails, the token MUST be rejected.

Signing with the HMAC SHA-384 and HMAC SHA-512 algorithms is performed
identically to the procedure for HMAC SHA-256 - just with
correspondingly longer key and result values.

8.2. Signing a JWT with RSA SHA-256 TOC

This section defines the use of the RSASSA-PKCS1-vl_5 signature
algorithm as defined in RFC 3447 (Jonsson, J. and B. Kaliski, “Public-
Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications
Version 2.1,"” February 2003.) [RFC3447], Section 8.2 (commonly known as
PKCS#1), using SHA-256 as the hash function. Note that the use of the
RSASSA-PKCS1-v1_5 algorithm is described in FIPS 186-3 (National
Institute of Standards and Technology, “Digital Signature Standard
(DSS),” June 2009.) [FIPS.186-3], Section 5.5, as is the SHA-256
cryptographic hash function, which is defined in FIPS 180-3 (National
Institute of Standards and Technology, “Secure Hash Standard (SHS),”
October 2008.) [FIPS.180-3]. The reserved "alg" header parameter value
"RS256" is used in the JWT Header Segment to indicate that the JWT
Crypto Segment contains an RSA SHA-256 signature.

A 2048-bit or longer key length MUST be used with this algorithm.

The RSA SHA-256 signature is generated as follows:

1. Let K be the signer's RSA private key and let M be the UTF-8
representation of the JWT Signing Input.

2. Compute the octet string S = RSASSA-PKCS1-V1_5-SIGN (K, M)
using SHA-256 as the hash function.

3. Base64url encode the octet string S, as defined in this
document.

The output is placed in the JWT Crypto Segment for that JWT.
The RSA SHA-256 signature on a JWT is validated as follows:

1. Take the JWT Crypto Segment and base64url decode it into an
octet string S. If decoding fails, then the token MUST be
rejected.

2. Let M be the UTF-8 representation of the JWT Signing Input and
let (n, e) be the public key corresponding to the private key
used by the signer.

3. Validate the signature with RSASSA-PKCS1-V1_5-VERIFY ((n, e),
M, S) using SHA-256 as the hash function.

4. If the validation fails, the token MUST be rejected.

Signing with the RSA SHA-384 and RSA SHA-512 algorithms is performed
identically to the procedure for RSA SHA-256 - just with
correspondingly longer key and result values.

8.3. Signing a JWT with ECDSA P-256 SHA-256 TOC

The Elliptic Curve Digital Signature Algorithm (ECDSA) is defined by
FIPS 186-3 (National Institute of Standards and Technology, “Digital
Signature Standard (DSS),” June 2009.) [FIPS.186-3]. ECDSA provides for
the use of Elliptic Curve cryptography, which is able to provide
equivalent security to RSA cryptography but using shorter key lengths
and with greater processing speed. This means that ECDSA signatures
will be substantially smaller in terms of length than equivalently
strong RSA Digital Signatures.

This specification defines the use of ECDSA with the P-256 curve and
the SHA-256 cryptographic hash function. The P-256 curve is also
defined in FIPS 186-3. The reserved "alg" header parameter value
"ES256" is used in the JWT Header Segment to indicate that the JWT
Crypto Segment contains an ECDSA P-256 SHA-256 signature.

A JWT is signed with an ECDSA P-256 SHA-256 signature as follows:

1. Generate a digital signature of the UTF-8 representation of the
JWT Signing Input using ECDSA P-256 SHA-256 with the desired
private key. The output will be the EC point (R, S), where R
and S are unsigned integers.

2. Turn R and S into byte arrays in big endian order. Each array
will be 32 bytes long.

3. Concatenate the two byte arrays in the order R and then S.

4. Base64url encode the 64 byte array as defined in this
specification.

The output becomes the JWT Crypto Segment for the JWT.
The following procedure is used to validate the ECDSA signature of a
JWT:

1. Take the JWT Crypto Segment and base64url decode it into a byte
array. If decoding fails, the token MUST be rejected.

2. The output of the base64url decoding MUST be a 64 byte array.

3. Split the 64 byte array into two 32 byte arrays. The first
array will be R and the second S. Remember that the byte arrays
are in big endian byte order; please check the ECDSA validator
in use to see what byte order it requires.

4. Submit the UTF-8 representation of the JWT Signing Input, R, S
and the public key (x, y) to the ECDSA P-256 SHA-256 validator.

5. If the validation fails, the token MUST be rejected.

The ECDSA validator will then determine if the digital signature is
valid, given the inputs. Note that ECDSA digital signature contains a
value referred to as K, which is a random number generated for each
digital signature instance. This means that two ECDSA digital
signatures using exactly the same input parameters will output
different signatures because their K values will be different. The
consequence of this is that one must validate an ECDSA signature by
submitting the previously specified inputs to an ECDSA validator.
Signing with the ECDSA P-384 SHA-384 and ECDSA P-521 SHA-512 algorithms
is performed identically to the procedure for ECDSA P-256 SHA-256 -
just with correspondingly longer key and result values.

8.4. Additional Algorithms TOC

Additional algorithms MAY be used to protect JWTs with corresponding
"alg" header parameter values being defined to refer to them. Like
claim names, new "alg" header parameter values SHOULD either be defined
in the IANA JSON Web Token Algorithms registry or be a URI that
contains a collision resistant namespace. In particular, the use of
algorithm identifiers defined in XML DSIG (Eastlake, D., Reagle, J.,
and D. Solo, “(Extensible Markup Language) XML-Signature Syntax and
Processing,” March 2002.) [RFC3275] and related specifications is
permitted.

9. JWT Serialization Formats TOC

JSON Web Tokens (JWTs) support two serialization formats: the JWT
Compact Serialization, which is more space efficient and intended for
uses where the token is passed as a simple string-valued parameter, and
the JWT JSON Serialization, which is more general, being able to
contain multiple signatures over the same content. The two
serialization formats are intended for use in different contexts.

9.1. JWT Compact Serialization TOC

The JWT Compact Serialization represents a JWT as a string consisting
of three JWT Token Segments: the JWT Header Segment, the JWT Payload
Segment, and the JWT Crypto Segment, in that order, with the segments
being separated by period ('.') characters. It is intended for uses
where the token is passed as a simple string-valued parameter,
including in URLs.

The Compact Serialization contains only one signature to keep this
format simple. The example JWT in Section 3.1 (Example JWT) uses the
Compact Serialization.

9.2. JWT JSON Serialization TOC

The JWT JSON Serialization represents a JWT as a JSON object with
members for each of three kinds of JWT Token Segments: a "header"
member whose value is a non-empty array of JWT Header Segments, a
"payload" member whose value is the JWT Payload Segment, and a
"signature" member whose value is a non-empty array of JWT Crypto
Segments, where the cardinality of both arrays is the same.

Unlike the Compact Serialization, JWTs using the JSON Serialization MAY
contain multiple signatures. Each signature is represented as a JWT
Crypto Segment in the "signature" member array. For each signature,
there is a corresponding "header" member array element that specifies
the signature algorithm for that signature, and potentially other
information as well. Therefore, the syntax is:

{"header":["<header 1 contents>",...,"<header N contents>"],
"payload":'"<payload contents>",
"signature":["<signature 1 contents>",...,"<signature N contents>"]

}

The i'th signature is computed on the concatenation of <header i
contents>.<payload contents>.
Appendix A.4 (JWT using JSON Serialization) contains an example JWT

using the JSON Serialization.

IANA Considerations TOC

This specification calls for:

*A new IANA registry entitled "JSON Web Token Claims" for reserved
claim names is defined in Section 4.1 (Reserved Claim Names).
Inclusion in the registry is RFC Required in the RFC 5226
(Narten, T. and H. Alvestrand, “Guidelines for Writing an TANA
Considerations Section in RFCs,” May 2008.) [RFC5226] sense for
reserved JWT claim names that are intended to be interoperable
between implementations. The registry will just record the
reserved claim name and a pointer to the RFC that defines it.
This specification defines inclusion of the claim names defined
in Table 1 (Reserved Claim Definitions).

*A new IANA registry entitled "JSON Web Token Header Parameters"
for reserved header parameter names is defined in Section 5.1
(Reserved Header Parameter Names). Inclusion in the registry is
RFC Required in the RFC 5226 (Narten, T. and H. Alvestrand,
“Guidelines for Writing an IANA Considerations Section in RFCs,”
May 2008.) [RFC5226] sense for reserved JWT header parameter
names that are intended to be interoperable between
implementations. The registry will just record the reserved
header parameter name and a pointer to the RFC that defines it.
This specification defines inclusion of the header parameter
names defined in Table 3 (Reserved Header Parameter Definitions).

*A new IANA registry entitled "JSON Web Token Algorithms" for
reserved values used with the "alg" header parameter values 1is
defined in Section 8.4 (Additional Algorithms). Inclusion in the
registry is RFC Required in the RFC 5226 (Narten, T. and H.
Alvestrand, “Guidelines for Writing an IANA Considerations
Section in RFCs,” May 2008.) [RFC5226] sense. The registry will
just record the "alg" value and a pointer to the RFC that defines
it. This specification defines inclusion of the algorithm values
defined in Table 4 (JSON Web Token Reserved Algorithm Values).

11. Security Considerations TOC

TBD: Lots of work to do here. We need to remember to look into any
issues relating to security and JSON parsing. One wonders just how
secure most JSON parsing libraries are. Were they ever hardened for
security scenarios? If not, what kind of holes does that open up? Also,
we need to walk through the JSON standard and see what kind of issues
we have especially around comparison of names. For instance,
comparisons of claim names and other parameters must occur after they
are unescaped. Need to also put in text about: Importance of keeping
secrets secret. Rotating keys. Strengths and weaknesses of the
different algorithms.

TBD: Need to put in text about why strict JSON validation is necessary.
Basically, that if malformed JSON is received then the intent of the
sender is impossible to reliably discern. While in non-security
contexts it's o.k. to be generous in what one accepts, in security
contexts this can lead to serious security holes. For example,
malformed JSON might indicate that someone has managed to find a
security hole in the issuer's code and is leveraging it to get the
issuer to issue "bad" tokens whose content the attacker can control.

11.1. Unicode Comparison Security Issues TOC

Claim names in JWTs are Unicode strings. For security reasons, the
representations of these names must be compared verbatim after
performing any escape processing (as per RFC 4627 (Crockford, D., “The
application/json Media Type for JavaScript Object Notation (JSON),”
July 2006.) [RFC4627], Section 2.5).

This means, for instance, that these JSON strings must compare as being
equal ("JWT", "\u@GO4aWT"), whereas these must all compare as being not
equal to the first set or to each other ("jwt", "Jwt", "JW\uG074").
JSON strings MAY contain characters outside the Unicode Basic
Multilingual Plane. For instance, the G clef character (U+1D11E) may be
represented in a JSON string as "\uD834\uDD1E". Ideally, JWT
implementations SHOULD ensure that characters outside the Basic
Multilingual Plane are preserved and compared correctly; alternatively,
if this is not possible due to these characters exercising limitations
present in the underlying JSON implementation, then input containing
them MUST be rejected.

T0C

12. Open Issues and Things To Be Done (TBD)

The following items remain to be done in this draft (and related
drafts):

*The specification will be a lot clearer if the signature portions
are cleanly separated from the claims token format and
serialization portions. Having tried it this way and being
dissatisfied with the sometimes unwieldy readability of the
result, I plan to perform the separation in the next draft.

*Consider whether there is a better term than "Digital Signature"
for the concept that includes both HMACs and digital signatures
using public keys.

*Consider whether we really want to allow private claim names and
header parameters that are not registered with IANA and are not
in collision-resistant namespaces. Eventually this could result
in interop nightmares where you need to have different code to
talk to different endpoints that "knows" about each endpoints'
private parameters.

*Clarify the optional ability to provide type information JWTs
and/or their segments. Specifically, clarify the intended use of
the "typ" Header Parameter and the "typ" claim, whether they
convey syntax or semantics, and indeed, whether this is the right
approach. Also clarify the relationship between these type values
and MIME (Freed, N. and N. Borenstein, “Multipurpose Internet
Mail Extensions (MIME) Part One: Format of Internet Message
Bodies,” November 1996.) [RFC2045] types.

*Clarify the semantics of the "kid" (key ID) header parameter.
Open issues include: What happens if a kid header is received
with an unrecognized value? Is that an error? Should it be
treated as if it's empty? What happens if the header has a
recognized value but the value doesn't match the key associated
with that value, but it does match another key that is associated
with the issuer? Is that an error?

*The "x5t" parameter is currently specified as "a base64url
encoded SHA-256 thumbprint of the DER encoding of an X.509
certificate". SHA-1 was traditionally used for certificate
digests but collisions are possible to create and can be used for
denial of service attacks within multi-tenant services. We need
to understand the compatibility issues of using SHA-256
thumbprints instead. We also likely want to specify the digest
algorithm explicitly.

*Several people have objected to the requirement for implementing
RSA SHA-256, some because they will only be using HMACs and

13.

symmetric keys, and others because they only want to use ECDSA
when using asymmetric keys, either for security or key length
reasons, or both. I believe therefore, that we should consider
changing the MUST for RSA SHA-256 to RECOMMENDED.

*Since RFC 3447 Section 8 explicitly calls for people NOT to adopt
RSASSA-PKCS1 for new applications and instead requests that
people transition to RSASSA-PSS, we probably need some Security
Considerations text explaining why RSASSA-PKCS1 is being used
(it's what's commonly implemented) and what the potential
consequences are.

*Generalize the normative text on signing algorithms so that the
descriptions apply equally to the use of various key lengths -
not just HMAC SHA-256, RSA SHA-256, and ECDSA P-256 SHA-256.

*Add a table cross-referencing the algorithm name strings used in
standard software packages and specifications.

*Add Security Considerations text on timing attacks.
*Finish the Security Considerations section.

*Sort out what to do with the IANA registries if this is first
standardized as an OpenID specification.

*Write the related specification for encoding public keys using
JSON, as per the agreement documented at http://self-
issued.info/?p=390. This will be used by the "jku" (JSON Key URL)
header parameter.

*Write the companion encryption specification, per the agreements
documented at http://self-issued.info/?p=378.

References TOC

13.1. Normative References

TOC
[FIPS. National Institute of Standards and Technology, “Secure
180-3] Hash Standard (SHS),” FIPS PUB 180-3, October 2008.
[FIPS. National Institute of Standards and Technology, “Digital
186-3] Signature Standard (DSS),” FIPS PUB 186-3, June 2009.

[RFC1738]

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

[RFC2045]

[RFC2104]

[RFC2119]

[RFC3339]

[RFC3447]

[RFC3629]

[RFC3986]

[RFC4627]

[RFC4648]

[RFC5226]

[RFC5280]

[USA15]

Berners-Lee, T., Masinter, L., and M. McCahill, “Uniform
Resource Locators (URL),” RFC 1738, December 1994 (TXT).
Freed, N. and N. Borenstein, “Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message
Bodies,” RFC 2045, November 1996 (TXT).

Krawczyk, H., Bellare, M., and R. Canetti, “HMAC: Keyed-
Hashing for Message Authentication,” RFC 2104,

February 1997 (TXT).

Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” BCP 14, RFC 2119, March 1997 (TXT,
HTML, XML).

Klyne, G., Ed. and C. Newman, “Date and Time on the
Internet: Timestamps,” RFC 3339, July 2002 (TXT, HTML,
XML) .

Jonsson, J. and B. Kaliski, “Public-Key Cryptography
Standards (PKCS) #1: RSA Cryptography Specifications
Version 2.1,” RFC 3447, February 2003 (TXT).

Yergeau, F., “UTE-8, a transformation format of ISO
10646,"” STD 63, RFC 3629, November 2003 (TXT).
Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform
Resource Identifier (URI): Generic Syntax,” STD 66,

RFC 3986, January 2005 (TXT, HTML, XML).

Crockford, D., “The application/json Media Type for
JavaScript Object Notation (JSON),” RFC 4627, July 2006
(TXT).

Josefsson, S., “The Basel6, Base32, and Base64 Data
Encodings,” RFC 4648, October 2006 (TXT).

Narten, T. and H. Alvestrand, “Guidelines for Writing an
IANA Considerations Section in RFCs,” BCP 26, RFC 5226,
May 2008 (TXT).

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, “Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation
List (CRL) Profile,” RFC 5280, May 2008 (TXT).

Davis, M., Whistler, K., and M. Dirst, “Unicode
Normalization Forms,” Unicode Standard Annex 15, 09 2009.

mailto:timbl@info.cern.ch
mailto:masinter@parc.xerox.com
mailto:mpm@boombox.micro.umn.edu
http://tools.ietf.org/html/rfc1738
http://tools.ietf.org/html/rfc1738
http://www.rfc-editor.org/rfc/rfc1738.txt
mailto:ned@innosoft.com
mailto:nsb@nsb.fv.com
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
http://www.rfc-editor.org/rfc/rfc2045.txt
mailto:hugo@watson.ibm.com
mailto:mihir@cs.ucsd.edu
mailto:canetti@watson.ibm.com
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc2104
http://www.rfc-editor.org/rfc/rfc2104.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:GK@ACM.ORG
mailto:chris.newman@sun.com
http://tools.ietf.org/html/rfc3339
http://tools.ietf.org/html/rfc3339
http://www.rfc-editor.org/rfc/rfc3339.txt
http://xml.resource.org/public/rfc/html/rfc3339.html
http://xml.resource.org/public/rfc/xml/rfc3339.xml
http://tools.ietf.org/html/rfc3447
http://tools.ietf.org/html/rfc3447
http://tools.ietf.org/html/rfc3447
http://www.rfc-editor.org/rfc/rfc3447.txt
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc3629
http://www.rfc-editor.org/rfc/rfc3629.txt
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://www.rfc-editor.org/rfc/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627
http://www.rfc-editor.org/rfc/rfc4627.txt
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc4648
http://www.rfc-editor.org/rfc/rfc4648.txt
http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc5226
http://www.rfc-editor.org/rfc/rfc5226.txt
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://www.rfc-editor.org/rfc/rfc5280.txt
mailto:markdavis@google.com
mailto:ken@unicode.org

13.2. Informative References TOC

[CanvasApp] Facebook, “Canvas Applications,” 2010.

[JSS] Bradley, J. and N. Sakimura (editor), “JSON
Simple Sign,” September 2010.

[MagicSignatures] Panzer (editor), J., Laurie, B., and D. Balfanz,
“Magic Signatures,” August 2010.

[OASIS.saml- Cantor, S., Kemp, J., Philpott, R., and E.

core-2.0-0s] Maler, “Assertions and Protocol for the OASIS

Security Assertion Markup Language (SAML) V2.0,”
OASIS Standard saml-core-2.0-0s, March 2005.

[RFC3275] Eastlake, D., Reagle, J., and D. Solo,
“(Extensible Markup Language) XML-Signature
Syntax and Processing,” RFC 3275, March 2002
(IXT).

[RFC4122] Leach, P., Mealling, M., and R. Salz, *“A
Universally Unique IDentifier (UUID) URN
Namespace,” RFC 4122, July 2005 (TXT, HTML,

XML) .
[SWT] Hardt, D. and Y. Goland, “Simple Web Token
(SWT),"” Version 0.9.5.1, November 2009.
[W3C.CR- Cowan, J., “Extensible Markup Language (XML)
xmll1-20021015] 1.1,” W3C CR CR-xml11-20021015, October 2002.
Appendix A. JWT Examples TOC
A.1. JWT using HMAC SHA-256 TOC
A.1.1. Encoding TOC

The Decoded JWT Payload Segment used in this example is:

{Ilissll : lljoell,
"exp":1300819380,
"http://example.com/is_root":true}

Note that white space is explicitly allowed in Decoded JWT Claims
Objects and no canonicalization is performed before encoding. The

http://developers.facebook.com/docs/authentication/canvas
http://jsonenc.info/jss/1.0/
http://jsonenc.info/jss/1.0/
http://salmon-protocol.googlecode.com/svn/trunk/draft-panzer-magicsig-experimental-00.html
mailto:cantor.2@osu.edu
mailto:John.Kemp@nokia.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
mailto:eve.maler@sun.com
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://tools.ietf.org/html/rfc3275
http://tools.ietf.org/html/rfc3275
http://www.rfc-editor.org/rfc/rfc3275.txt
mailto:paulle@microsoft.com
mailto:michael@refactored-networks.com
mailto:rsalz@datapower.com
http://tools.ietf.org/html/rfc4122
http://tools.ietf.org/html/rfc4122
http://tools.ietf.org/html/rfc4122
http://www.rfc-editor.org/rfc/rfc4122.txt
http://xml.resource.org/public/rfc/html/rfc4122.html
http://xml.resource.org/public/rfc/xml/rfc4122.xml
http://oauth-wrap-wg.googlegroups.com/web/SWT-v0.9.5.1.pdf?gda=Sn4MsEMAAABFB7PFAFiVedPtjcqT8uuIImHXUksNUKMXLyrSumAs_dF2tzlQ33RhT1wW8BFYO1QytiJ-HdGYYcPi_09pl8N7FWLveOaWjzbYnpnkpmxcWg
http://oauth-wrap-wg.googlegroups.com/web/SWT-v0.9.5.1.pdf?gda=Sn4MsEMAAABFB7PFAFiVedPtjcqT8uuIImHXUksNUKMXLyrSumAs_dF2tzlQ33RhT1wW8BFYO1QytiJ-HdGYYcPi_09pl8N7FWLveOaWjzbYnpnkpmxcWg
http://www.w3.org/TR/2002/CR-xml11-20021015
http://www.w3.org/TR/2002/CR-xml11-20021015

following byte array contains the UTF-8 characters for the Decoded JWT
Payload Segment:

[123, 34, 105, 115, 115, 34, 58, 34, 106, 111, 161, 34, 44, 13, 10, 32,
34, 101, 120, 112, 34, 58, 49, 51, 48, 48, 56, 49, 57, 51, 56, 48, 44,
13, 10, 32, 34, 104, 116, 116, 112, 58, 47, 47, 101, 120, 97, 109, 112,
108, 101, 46, 99, 111, 109, 47, 105, 115, 95, 114, 111, 111, 116, 34,
58, 116, 114, 117, 101, 125]

Base64url encoding the above yields the JWT Payload Segment value:

eyJpc3Mi01iJqb2UiLAGKICJI1eHA10jEzMDA4MTkzODASDQogImhOdHAGLY91eGFtcGX1LMNVbS9pc19yb2901T jpl

The following example JSON header object declares that the data
structure is a JSON Web Token (JWT) and the JWT Signing Input is signed
using the HMAC SHA-256 algorithm:

{Iltypll : n JWT”,
"alg":"HS256"}

The following byte array contains the UTF-8 characters for the Decoded
JWT Header Segment:

[123, 34, 116, 121, 112, 34, 58, 34, 74, 87, 84, 34, 44, 13, 10, 32,
34, 97, 108, 103, 34, 58, 34, 72, 83, 50, 53, 54, 34, 125]

Base64url encoding this UTF-8 representation yields this JWT Header
Segment value:

eyJOeXAi01iJKV1QiLAOKICIhbGci0iJIUZzI1INiJ9

Concatenating the JWT Header Segment, a period character, and the JWT
Payload Segment yields this JWT Signing Input value (with line breaks
for display purposes only):

eyJO0eXAi0iJKV1QiLAOKICIhbGci0iJIUzIINiJ9
eyJpc3Mi0iJgb2UiLAGKICJI1eHA10jEzMDA4MTkz0ODASDQogImhOdHAGLY91eGFtcGXx1LmNvbS9pc19yb2901 jpl

The UTF-8 representation of the JWT Signing Input is the following byte
array:

[161, 121, 74, 48, 101, 88, 65, 105, 79, 105, 74, 75, 86, 49, 81, 105,
76, 65, 48, 75, 73, 67, 74, 104, 98, 71, 99, 105, 79, 105, 74, 73, 85,
122, 73, 49, 78, 105, 74, 57, 46, 101, 121, 74, 112, 99, 51, 77, 105,
79, 105, 74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74, 108,
101, 72, 65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122,
79, 68, 65, 115, 68, 81, 111, 1603, 73, 109, 104, 48, 100, 72, 65, 54,
76, 121, 57, 108, 1601, 71, 70, 116, 99, 71, 120, 108, 76, 109, 78, 118,
98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48, 99,
110, 86, 108, 102, 81]

HMACs are generated using keys. This example used the key represented
by the following byte array:

[3, 35, 53, 75, 43, 15, 165, 188, 131, 126, 6, 101, 119, 123, 166, 143,
90, 179, 40, 230, 240, 84, 201, 40, 169, 15, 132, 178, 210, 80, 46,

191, 211, 251, 90, 146, 210, 6, 71, 239, 150, 138, 180, 195, 119, 98,
61, 34, 61, 46, 33, 114, 5, 46, 79, 8, 192, 205, 154, 245, 103, 208,
128, 163]

Running the HMAC SHA-256 algorithm on the UTF-8 representation of the
JWT Signing Input with this key yields the following byte array:

[116, 24, 223, 180, 151, 153, 224, 37, 79, 250, 96, 125, 216, 173, 187,
186, 22, 212, 37, 77, 105, 214, 191, 240, 91, 88, 5, 88, 83, 132, 141,
121]

Base64url encoding the above HMAC output yields the JWT Crypto Segment
value:

dBjftJez4CVP-mB92K27uhbUJU1plr_wWigFWFOE]jXk

Combining these segments in the order Header.Payload.Signature with
period characters between the segments yields this complete JWT using
the JWT Compact Serialization (with line breaks for display purposes
only):

eyJ0eXAi0iJKV1QiLAOKICJIhbGci0iJIUzIINiJ9
eyJpc3Mi0iJgb2UiLAGKICJI1eHA10jEzZMDA4MTkz0ODASDQogImhOdHAGLY91eGFtcGXx1LmNvbS9pc19yb2901 jpl

dBjftJezZ4CVP-mB92K27uhbUJUlplr_wwW1lgFWFOEjXk

A.1.2. Decoding TOC

Decoding the JWT first requires removing the base64url encoding from
the JWT Header Segment, the JWT Payload Segment, and the JWT Crypto
Segment. We base64url decode the segments per Section 7 (Base64url
encoding as used by JWTs) and turn them into the corresponding byte
arrays. We translate the header segment byte array containing UTF-8
encoded characters into the Decoded JWT Header Segment string.
Likewise, if the payload represents a JWT Claims Object, we translate
the payload segment byte array containing UTF-8 encoded characters into
a Decoded JWT Claims Object string.

A.1.3. Validating TOC

Next we validate the decoded results. Since the "alg" parameter in the
header is "HS256", we validate the HMAC SHA-256 signature contained in
the JWT Crypto Segment. If any of the validation steps fail, the token
MUST be rejected.

First, we validate that the decoded JWT Header Segment string is legal
JSON.

If the payload represents a JWT Claims Object, we also validate that
the decoded JWT Payload Segment string is legal JSON.

To validate the signature, we repeat the previous process of using the
correct key and the UTF-8 representation of the JWT Signing Input as
input to a SHA-256 HMAC function and then taking the output and
determining if it matches the Decoded JWT Crypto Segment. If it matches
exactly, the token has been validated.

A.2. JIWT using RSA SHA-256 T0C

A.2.1. Encoding TOC

The Decoded JWT Payload Segment used in this example is the same as in
the previous example:

{IIiSSII : Iljoe”,
"exp":1300819380,
"http://example.com/is_root":true}

Since the JWT Payload Segment will therefore be the same, its
computation is not repeated here. However, the Decoded JWT Header
Segment is different in two ways: First, because a different algorithm
is being used, the "alg" value is different. Second, for illustration
purposes only, the optional "typ" parameter is not used. (This
difference is not related to the signature algorithm employed.) The
Decoded JWT Header Segment used is:

{"alg":"RS256"}

The following byte array contains the UTF-8 characters for the Decoded
JWT Header Segment:

[123, 34, 97, 108, 103, 34, 58, 34, 82, 83, 50, 53, 54, 34, 125]
Base64url encoding this UTF-8 representation yields this JWT Header
Segment value:

eyJhbGci0iJSUzI1NiJ9

Concatenating the JWT Header Segment, a period character, and the JWT
Payload Segment yields this JWT Signing Input value (with line breaks
for display purposes only):

eyJhbGci0iJSUzI1NiJ9

eyJpc3Mi0iJgb2UiLAGKICJI1eHA10jEzZMDA4MTkz0ODASDQogImhOdHAGLY91eGFtcGXx1LmNvbS9pc19yb2901 jpl

The UTF-8 representation of the JWT Signing Input is the following byte
array:

[161, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 122, 73, 49,
78, 105, 74, 57, 46, 101, 121, 74, 112, 99, 51, 77, 105, 79, 105, 74,
113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74, 108, 101, 72, 65,
105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68, 65,
115, 68, 81, 111, 103, 73, 109, 104, 48, 100, 72, 65, 54, 76, 121, 57,
108, 101, 71, 70, 116, 99, 71, 120, 108, 76, 109, 78, 118, 98, 83, 57,
112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48, 99, 110, 86,
108, 102, 81]

The RSA key consists of a public part (n, e), and a private exponent d.
The values of the RSA key used in this example, presented as the byte
arrays representing big endian integers are:

Parameter
Value
Name

[161, 248, 22, 10, 226, 227, 201, 180, 101, 206, 141, 45,
101, 98, 99, 54, 43, 146, 125, 190, 41, 225, 240, 36, 119,
252, 22, 37, 204, 144, 161, 54, 227, 139, 217, 52, 151, 197,
182, 234, 99, 221, 119, 17, 230, 124, 116, 41, 249, 86, 176,
251, 138, 143, 8, 154, 220, 75, 105, 137, 60, 193, 51, 63,
83, 237, 208, 25, 184, 119, 132, 37, 47, 236, 145, 79, 228,
133, 119, 105, 89, 75, 234, 66, 128, 211, 44, 15, 85, 191,
98, 148, 79, 19, 3, 150, 188, 110, 155, 223, 110, 189, 210,
189, 163, 103, 142, 236, 160, 198, 104, 247, 1, 179, 141,
191, 251, 56, 200, 52, 44, 226, 254, 109, 39, 250, 222, 74,
90, 72, 116, 151, 157, 212, 185, 207, 154, 222, 196, 199, 91,
5, 133, 44, 44, 15, 94, 248, 165, 193, 117, 3, 146, 249, 68,
232, 237, 100, 193, 16, 198, 182, 71, 96, 154, 164, 120, 58,
235, 156, 108, 154, 215, 85, 49, 48, 80, 99, 139, 131, 102,
92, 111, 111, 122, 130, 163, 150, 112, 42, 31, 100, 27, 130,
211, 235, 242, 57, 34, 25, 73, 31, 182, 134, 135, 44, 87, 22,
245, 10, 248, 53, 141, 154, 139, 157, 23, 195, 64, 114, 143,
127, 135, 216, 154, 24, 216, 252, 171, 103, 173, 132, 89, 12,
46, 207, 117, 147, 57, 54, 60, 7, 3, 77, 111, 96, 111, 158,
33, 224, 84, 86, 202, 229, 233, 161]

e [1, 0, 1]
[18, 174, 113, 164, 105, 205, 10, 43, 195, 126, 82, 108, 69,
0, 87, 31, 29, 97, 117, 29, 100, 233, 73, 112, 123, 98, 89,
15, 157, 11, 165, 124, 150, 60, 64, 30, 63, 207, 47, 44, 211,

d 189, 236, 136, 229, 3, 191, 198, 67, 155, 11, 40, 200, 47,
125, 55, 151, 103, 31, 82, 19, 238, 216, 193, 90, 37, 216,
213, 206, 160, 2, 94, 227, 171, 46, 139, 127, 121, 33, 111,

198, 59, 234, 86, 39, 83, 180, 6, 68, 198, 161, 81, 39, 217,
178, 149, 69, 64, 160, 187, 225, 163, 5, 86, 152, 45, 78,
159, 222, 95, 100, 37, 241, 77, 75, 113, 52, 65, 181, 93,
199, 59, 155, 74, 237, 204, 146, 172, 227, 146, 126, 55, 245,
125, 12, 253, 94, 117, 129, 250, 81, 44, 143, 73, 97, 169,
235, 11, 128, 248, 168, 7, 70, 114, 138, 85, 255, 70, 71, 31,
52, 37, 6, 59, 157, 83, 100, 47, 94, 222, 30, 132, 214, 19,
8, 26, 250, 92, 34, 208, 81, 40, 91, 214, 59, 148, 59, 86,
93, 137, 138, 5, 104, 84, 19, 229, 60, 60, 108, 101, 37, 255,
31, 227, 78, 61, 220, 112, 240, 213, 100, 80, 253, 164, 139,
161, 46, 16, 78, 157, 235, 159, 184, 24, 129, 225, 196, 189,
242, 93, 146, 71, 244, 80, 200, 101, 146, 121, 104, 231, 115,
52, 244, 65, 79, 117, 167, 80, 225, 57, 84, 110, 58, 138,
115, 157]

The RSA private key (n, d) is then passed to the RSA signing function,
which also takes the hash type, SHA-256, and the UTF-8 representation
of the JWT Signing Input as inputs. The result of the signature is a
byte array S, which represents a big endian integer. In this example, S
is:

Result
Value
Name

[112, 46, 33, 137, 67, 232, 143, 209, 30, 181, 216, 45, 191,
120, 69, 243, 65, 6, 174, 27, 129, 255, 247, 115, 17, 22, 173,
209, 113, 125, 131, 101, 109, 66, 10, 253, 60, 150, 238, 221,
115, 162, 102, 62, 81, 102, 104, 123, 0, 11, 135, 34, 110, 1,
135, 237, 16, 115, 249, 69, 229, 130, 173, 252, 239, 22, 216,
90, 121, 142, 232, 198, 109, 219, 61, 184, 151, 91, 23, 208,
148, 2, 190, 237, 213, 217, 217, 112, 7, 16, 141, 178, 129, 96,
213, 248, 4, 12, 167, 68, 87, 98, 184, 31, 190, 127, 249, 217,
46, 10, 231, 111, 36, 242, 91, 51, 187, 230, 244, 74, 230, 30,

S 177, 4, 10, 203, 32, 4, 77, 62, 249, 18, 142, 212, 1, 48, 121,
91, 212, 189, 59, 65, 238, 202, 208, 102, 171, 101, 25, 129,
253, 228, 141, 247, 127, 55, 45, 195, 139, 159, 175, 221, 59,
239, 177, 139, 93, 163, 204, 60, 46, 176, 47, 158, 58, 65, 214,
18, 202, 173, 21, 145, 18, 115, 160, 95, 35, 185, 232, 56, 250,
175, 132, 157, 105, 132, 41, 239, 90, 30, 136, 121, 130, 54,
195, 212, 14, 96, 69, 34, 165, 68, 200, 242, 122, 122, 45, 184,
6, 99, 209, 108, 247, 202, 234, 86, 222, 64, 92, 178, 33, 90,
69, 178, 194, 85, 102, 181, 90, 193, 167, 72, 160, 112, 223,
200, 163, 42, 70, 149, 67, 208, 25, 238, 251, 71]

Base64url encoding the signature produces this value for the JWT Crypto
Segment:

cC4hiUP0j9Eetdgtv3hF80EGrhuB__dzERat®XF992VtQgroPJIbu3X0iZj5RZmh7AAUHIM4Bh-0Qc_l1F5YKt_08\

Combining these segments in the order Header.Payload.Signature with
period characters between the segments yields this complete JWT using
the JWT Compact Serialization (with line breaks for display purposes
only):

eyJhbGci0iJSUzI1NiJ9
eyJpc3Mi0iJgb2UiLAGKICJI1eHA10jEzZMDA4MTkz0ODASDQogImhOdHAGLY91eGFtcGXx1LmNvbS9pc19yb2901 jpl

cC4hiUP0j9Eetdgtv3hF80EGrhuB__dzERat®XF992VtQgroPJIbu3X0iZj5RZmh7AAUHIM4Bh-0Qc_l1F5YKt_08\

A.2.2. Decoding TOC

Decoding the JWT from this example requires processing the JWT Header
Segment and JWT Payload Segment exactly as done in the first example.

A.2.3. Validating TOC

Since the "alg" parameter in the header is "RS256", we validate the RSA
SHA-256 signature contained in the JWT Crypto Segment. If any of the
validation steps fail, the token MUST be rejected.

First, we validate that the decoded JWT Header Segment string is legal
JSON.

If the payload represents a JWT Claims Object, we also validate that
the decoded JWT Payload Segment string is legal JSON.

Validating the JWT Crypto Segment is a little different from the
previous example. First, we base64url decode the JWT Crypto Segment to
produce a signature S to check. We then pass (n, e), S and the UTF-8
representation of the JWT Signing Input to an RSA signature verifier
that has been configured to use the SHA-256 hash function.

A.3. JIWT using ECDSA P-256 SHA-256 T0C

A.3.1. Encoding TOC

The Decoded JWT Payload Segment used in this example is the same as in
the previous examples:

{IIiSSII : ||joell,
"exp":1300819380,
"http://example.com/is_root":true}

Since the JWT Payload Segment will therefore be the same, its
computation is not repeated here. However, the Decoded JWT Header
Segment is differs from the previous example because a different
algorithm is being used. The Decoded JWT Header Segment used is:

{"alg":"ES256"}

The following byte array contains the UTF-8 characters for the Decoded
JWT Header Segment:

[123, 34, 97, 108, 103, 34, 58, 34, 69, 83, 50, 53, 54, 34, 125]
Base64url encoding this UTF-8 representation yields this JWT Header
Segment value:

eyJhbGciO0iJFUZI1INiJ9

Concatenating the JWT Header Segment, a period character, and the JWT
Payload Segment yields this JWT Signing Input value (with line breaks
for display purposes only):

eyJhbGciOiJFUzI1INiJ9

eyJpc3MiniJgb2UilAGKICJI1eHA10jEZMDA4MTkzODASDQogImhOdHAGLY91eGFtcGx1LmMNVbS9pc19yb290T]p

The UTF-8 representation of the JWT Signing Input is the following byte
array:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 70, 85, 122, 73, 49,
78, 105, 74, 57, 46, 101, 121, 74, 112, 99, 51, 77, 105, 79, 105, 74,
113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74, 108, 101, 72, 65,
105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68, 65,
115, 68, 81, 111, 103, 73, 109, 104, 48, 100, 72, 65, 54, 76, 121, 57,
108, 101, 71, 70, 116, 99, 71, 120, 108, 76, 109, 78, 118, 98, 83, 57,
112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48, 99, 110, 86,
108, 102, 81]

The ECDSA key consists of a public part, the EC point (x, y), and a
private part d. The values of the ECDSA key used in this example,
presented as the byte arrays representing big endian integers are:

Parameter

Value
Name

[127, 205, 206, 39, 112, 246, 196, 93, 65, 131, 203, 238,
X 111, 219, 75, 123, 88, 7, 51, 53, 123, 233, 239, 19, 186,
207, 110, 60, 123, 209, 84, 69]

[199, 241, 68, 205, 27, 189, 155, 126, 135, 44, 223, 237,
185, 238, 185, 244, 179, 105, 93, 110, 169, 11, 36, 173,
138, 70, 35, 40, 133, 136, 229, 173]

[142, 155, 16, 158, 113, 144, 152, 191, 152, 4, 135, 223,
d 31, 93, 119, 233, 203, 41, 96, 110, 190, 210, 38, 59, 95,
87, 194, 19, 223, 132, 244, 178]

The ECDSA private part d is then passed to an ECDSA signing function,
which also takes the curve type, P-256, the hash type, SHA-256, and the
UTF-8 representation of the JWT Signing Input as inputs. The result of
the signature is the EC point (R, S), where R and S are unsigned
integers. In this example, the R and S values, given as byte arrays
representing big endian integers are:

Result

Value
Name

[14, 209, 33, 83, 121, 99, 108, 72, 60, 47, 127, 21, 88, 7,
R 212, 2, 163, 178, 40, 3, 58, 249, 124, 126, 23, 129, 154, 195,
22, 158, 166, 101]

[197, 10, 7, 211, 140, 60, 112, 229, 216, 241, 45, 175, 8, 74,
S 84, 128, 166, 101, 144, 197, 242, 147, 80, 154, 143, 63, 127,
138, 131, 163, 84, 213]

Concatenating the S array to the end of the R array and base64url
encoding the result produces this value for the JWT Crypto Segment:

DtEhU31jbEg8L38VWATUAQOYKAMGE - Xx - F4GawxaepmXFCgfTjDxw5djxLa8ISISApmWQxFKTUJIqPP3-Kg6NU1Q
Combining these segments in the order Header.Payload.Signature with
period characters between the segments yields this complete JWT using
the JWT Compact Serialization (with line breaks for display purposes
only):
eyJhbGci0iJFUZI1NiJ9

eyJpc3Mi0iJqb2UiLAOGKICJI1eHA10jEzMDA4MTkzODASDQogImhOdHAGLY91eGFtcGX1LMNVbhS9pc19yb290T jpl

DtEhU31jbEg8L38VWATUAQOYKAMG - XX - FAGawxaepmXFCgfTjDxw5djxLa8IS1SApmWQXFKTUJqPP3-Kg6NU1Q

A.3.2. Decoding TOC

Decoding the JWT from this example requires processing the JWT Header
Segment and JWT Payload Segment exactly as done in the first example.

A.3.3. Validating TOC

Since the "alg" parameter in the header is "ES256", we validate the
ECDSA P-256 SHA-256 signature contained in the JWT Crypto Segment. If
any of the validation steps fail, the token MUST be rejected.

First, we validate that the decoded JWT Header Segment string is legal
JSON.

If the payload represents a JWT Claims Object, we also validate that
the decoded JWT Payload Segment string is legal JSON.

Validating the JWT Crypto Segment is a little different from the first
example. First, we base64url decode the JWT Crypto Segment as in the
previous examples but we then need to split the 64 member byte array
that must result into two 32 byte arrays, the first R and the second S.
We then pass (x, y), (R, S) and the UTF-8 representation of the JWT
Signing Input to an ECDSA signature verifier that has been configured
to use the P-256 curve with the SHA-256 hash function.

As explained in Section 8.3 (Signing a JWT with ECDSA P-256 SHA-256),
the use of the k value in ECDSA means that we cannot validate the
correctness of the signature in the same way we validated the
correctness of the HMAC. Instead, implementations MUST use an ECDSA
validator to validate the signature.

A.4. JWT using JSON Serialization TOC

Previous example JWTs shown have used the JWT Compact Serialization.
This section contains an example JWT using the JWT JSON Serialization.
This example demonstrates the capability for conveying multiple
signatures for the same JWT.

A.4.1. Encoding TOC

The Decoded JWT Payload Segment used in this example is the same as in
the previous examples:

{IIiSSII : "joe”,
"exp":1300819380,
"http://example.com/is_root":true}

Two signatures are used in this JWT: an RSA SHA-256 signature, for
which the header and signature values are the same as in Appendix A.2
(JWT using RSA SHA-256), and an ECDSA P-256 SHA-256 signature, for
which the header and signature values are the same as in Appendix A.3

(JWT using ECDSA P-256 SHA-256). The two Decoded JWT Header Segments
used are:

{"alg":"RS256"}
and:
{"alg":"ES256"}

Since the computations for all JWT Token Segments used in this example
were already presented in previous examples, they are not repeated
here.

A JSON Serialization of this JWT is as follows:

{"header": [

"eyJhbGci0iJSUzI1NiJ9",

"eyJhbGci0iJFUzZI1NiJ9"],
"payload":"eyJpc3MiOiJgb2UiLAOGKICJI1eHA10jEzMDA4MTkzODASDQogImh@dHAGLY91eGFtcGX1LmMNVbhS9|
"signature": [

"cC4hiUP0j9Eetdgtv3hF80EGrhuB__dzERatOXF9g2VtQgr9PJbu3X0iZj5RZmh7AAUHIM4Bh-0Qc_1F5YKt.

"DtEhU31jbEg8L38VWATUAQOYKAM6 - XX - F4GawxaepmXFCgfTjDxw5djxLa8IS1SApmWQxXTKTUJqPP3-Kg6NU:

A.4.2. Decoding TOC

Decoding the JWT first requires removing the base64url encoding from
the array of JWT Header Segments, the JWT Payload Segment, and the
array of JWT Crypto Segments. We base64url decode the segments per
Section 7 (Base64url encoding as used by JWTs) and turn them into the
corresponding byte arrays. We translate the header segment byte arrays
containing UTF-8 encoded characters into Decoded JWT Header Segment
strings. Likewise, if the payload represents a JWT Claims Object, we
translate the payload segment byte array into a Decoded JWT Claims
Object string.

A.4.3. Validating TOC

If any of the validation steps fail, the token MUST be rejected.
First, we validate that the header and signature arrays contain the
same number of elements.

Next, we validate that the Decoded JWT Header Segment strings are all
legal JSON.

If the payload represents a JWT Claims Object, we also validate that
the decoded JWT Payload Segment string is legal JSON.

Finally, for each Decoded JWT Header Segment, we validate the
corresponding signature using the algorithm specified in the "alg"
parameter, which must be present.

Appendix B. Notes on implementing base64url encoding without TOC
padding

This appendix describes how to implement base64url encoding and
decoding functions without padding based upon standard base64 encoding
and decoding functions that do use padding.

To be concrete, example C# code implementing these functions is shown
below. Similar code could be used in other languages.

static string base64urlencode(byte [] arg)
{
string s = Convert.ToBase64String(arg); // Standard base64 encoder
S s.Split('=")[0]; // Remove any trailing '='s
S s.Replace('+', '-"); // 62nd char of encoding
S s.Replace('/', '_"); // 63rd char of encoding
return s;

by

static byte [] base64urldecode(string arg)
{
string s = arg;
s = s.Replace('-', '+'); // 62nd char of encoding
s = s.Replace('_', '/'); // 63rd char of encoding
switch (s.Length % 4) // Pad with trailing '='s
{
case 0: break; // No pad chars in this case
case 2: s += "=="; break; // Two pad chars
case 3: s += "="; break; // One pad char
default: throw new System.Exception(
"Illegal base64url string!");
}

return Convert.FromBase64String(s); // Standard base64 decoder

}

As per the example code above, the number of '=' padding characters
that needs to be added to the end of a base64url encoded string without
padding to turn it into one with padding is a deterministic function of
the length of the encoded string. Specifically, if the length mod 4 is
©, no padding is added; if the length mod 4 is 2, two '=' padding
characters are added; if the length mod 4 is 3, one '=' padding
character is added; if the length mod 4 is 1, the input is malformed.

An example correspondence between unencoded and encoded values follows.
The byte sequence below encodes into the string below, which when
decoded, reproduces the byte sequence.

3 236 255 224 193

A-z_4ME

Appendix C. Relationship of JWTs to SAML Tokens TOC

SAML 2.0 (Cantor, S., Kemp, J., Philpott, R., and E. Maler, “Assertions
and Protocol for the OASIS Security Assertion Markup Language (SAML)
V2.0,"” March 2005.) [OASIS.saml-core-2.0-0s] provides a standard for
creating tokens with much greater expressivity and more security
options than supported by JWTs. However, the cost of this flexibility
and expressiveness is both size and complexity. In addition, SAML's use
of XML (Cowan, J., “Extensible Markup Language (XML) 1.4,"

October 2002.) [W3C.CR-xml11-20021015] and XML DSIG (Eastlake, D.,
Reagle, J., and D. Solo, “(Extensible Markup Language) XML-Signature
Syntax and Processing,” March 2002.) [RFC3275] only contributes to the
size of SAML tokens.

JWTs are intended to provide a simple token format that is small enough
to fit into HTTP headers and query arguments in URIs. It does this by
supporting a much simpler token model than SAML and using the JSON
(Crockford, D., “The application/json Media Type for JavaScript Object
Notation (JSON),” July 2006.) [RFC4627] object encoding syntax. It also
supports securing tokens using Hash-based Message Authentication Codes
(HMACs) and digital signatures using a smaller (and less flexible)
format than XML DSIG.

Therefore, while JWTs can do some of the things SAML tokens do, JWTs
are not intended as a full replacement for SAML tokens, but rather as a
compromise token format to be used when space is at a premium.

Appendix D. Relationship of JWTs to Simple Web Tokens (SWTs) TOC

Both JWTs and Simple Web Tokens SWT (Hardt, D. and Y. Goland, “Simple
Web Token (SWT),” November 2009.) [SWT], at their core, enable sets of
claims to be communicated between applications. For SWTs, both the
claim names and claim values are strings. For JWTs, while claim names
are strings, claim values can be any JSON type. Both token types offer
cryptographic protection of their content: SWTs with HMAC SHA-256 and
JWTs with a choice of algorithms, including HMAC SHA-256, RSA SHA-256,

and ECDSA P-256 SHA-256. The signed content of a SWT must be a set of
claims, whereas the payload of a JWT, in general, can be any base64url
encoded content.

Appendix E. Acknowledgements TOC

The authors acknowledge that the design of JWTs was intentionally
influenced by the design and simplicity of Simple Web Tokens (Hardt, D.

and Y. Goland, “Simple Web Token (SWT),” November 2009.) [SWT].
Solutions for signing JSON tokens were also previously explored by
Magic Signatures (Panzer (editor), J., lLaurie, B., and D. Balfanz,
“Magic Signatures,” August 2010.) [MagicSignatures], JSON Simple Sign
(Bradley, J. and N. Sakimura (editor), “JSON Simple Sign,”

September 2010.) [JSS], and Canvas Applications (Facebook, “Canvas
Applications,” 2010.) [CanvasApp], all of which influenced this draft.

Appendix F. Document History _ToC
-01

*Draft incorporating consensus decisions reached at IIW.
-00

*Public draft published before November 2010 IIW based upon the
JSON token convergence proposal incorporating input from several
implementers of related specifications.

Authors' Addresses
TOC

Michael B. Jones
Microsoft
Email: mbj@microsoft.com
URI: http://self-issued.info/

Dirk Balfanz
Google
Email: balfanz@google.com

John Bradley
independent

mailto:mbj@microsoft.com
http://self-issued.info/
mailto:balfanz@google.com

Email:

Email:

Email:

Email:

Email:

ve7jtb@ve7jtb.com

Yaron Y. Goland
Microsoft
yarong@microsoft.com

John Panzer
Google
jpanzer@google.com

Nat Sakimura
Nomura Research Institute
n-sakimura@nri.co.jp

Paul Tarjan
Facebook
paul.tarjan@facebook.com

mailto:ve7jtb@ve7jtb.com
mailto:yarong@microsoft.com
mailto:jpanzer@google.com
mailto:n-sakimura@nri.co.jp
mailto:paul.tarjan@facebook.com

	JSON Web Token (JWT) - Claims and Signingdraft-jones-json-web-token-01
	Abstract
	Requirements Language
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. JSON Web Token (JWT) Overview
	3.1. Example JWT
	4. JWT Claims
	4.1. Reserved Claim Names
	4.2. Public Claim Names
	4.3. Private Claim Names
	5. JWT Header
	5.1. Reserved Header Parameter Names
	5.2. Public Header Parameter Names
	5.3. Private Header Parameter Names
	6. Rules for Creating and Validating a JWT
	7. Base64url encoding as used by JWTs
	8. Signing JWTs with Cryptographic Algorithms
	8.1. Signing a JWT with HMAC SHA-256
	8.2. Signing a JWT with RSA SHA-256
	8.3. Signing a JWT with ECDSA P-256 SHA-256
	8.4. Additional Algorithms
	9. JWT Serialization Formats
	9.1. JWT Compact Serialization
	9.2. JWT JSON Serialization
	10. IANA Considerations
	11. Security Considerations
	11.1. Unicode Comparison Security Issues
	12. Open Issues and Things To Be Done (TBD)
	13. References
	13.1. Normative References
	13.2. Informative References
	Appendix A. JWT Examples
	A.1. JWT using HMAC SHA-256
	A.1.1. Encoding
	A.1.2. Decoding
	A.1.3. Validating
	A.2. JWT using RSA SHA-256
	A.2.1. Encoding
	A.2.2. Decoding
	A.2.3. Validating
	A.3. JWT using ECDSA P-256 SHA-256
	A.3.1. Encoding
	A.3.2. Decoding
	A.3.3. Validating
	A.4. JWT using JSON Serialization
	A.4.1. Encoding
	A.4.2. Decoding
	A.4.3. Validating
	Appendix B. Notes on implementing base64url encoding without padding
	Appendix C. Relationship of JWTs to SAML Tokens
	Appendix D. Relationship of JWTs to Simple Web Tokens (SWTs)
	Appendix E. Acknowledgements
	Appendix F. Document History
	Authors' Addresses

