
Network Working Group M. Jones
Internet-Draft Microsoft
Intended status: Standards Track D. Balfanz
Expires: September 13, 2012 Google
 J. Bradley
 independent
 Y. Goland
 Microsoft
 J. Panzer
 Google
 N. Sakimura
 Nomura Research Institute
 P. Tarjan
 Facebook
 March 12, 2012

JSON Web Token (JWT)
draft-jones-json-web-token-08

Abstract

 JSON Web Token (JWT) is a means of representing claims to be
 transferred between two parties. The claims in a JWT are encoded as
 a JSON object that is digitally signed or HMACed using JSON Web
 Signature (JWS) and/or encrypted using JSON Web Encryption (JWE).

 The suggested pronunciation of JWT is the same as the English word
 "jot".

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

Jones, et al. Expires September 13, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft JSON Web Token (JWT) March 2012

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 13, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Jones, et al. Expires September 13, 2012 [Page 2]

Internet-Draft JSON Web Token (JWT) March 2012

Table of Contents

1. Introduction . 4
2. Terminology . 4
3. JSON Web Token (JWT) Overview 5
3.1. Example JWT . 5

4. JWT Claims . 6
4.1. Reserved Claim Names 7
4.2. Public Claim Names . 9
4.3. Private Claim Names 9

5. JWT Header . 10
6. Plaintext JWTs . 11
6.1. Example Plaintext JWT 11

7. Rules for Creating and Validating a JWT 12
8. Cryptographic Algorithms 14
9. IANA Considerations . 15
9.1. JSON Web Token Claims Registry 15
9.2. application/jwt MIME Media Type Registration 15

10. Security Considerations 16
10.1. Unicode Comparison Security Issues 17

11. Open Issues and Things To Be Done (TBD) 17
12. References . 18
12.1. Normative References 18
12.2. Informative References 19

Appendix A. Relationship of JWTs to SAML Tokens 20
Appendix B. Relationship of JWTs to Simple Web Tokens (SWTs) . . 20
Appendix C. Acknowledgements 20
Appendix D. Document History 21

 Authors' Addresses . 23

Jones, et al. Expires September 13, 2012 [Page 3]

Internet-Draft JSON Web Token (JWT) March 2012

1. Introduction

 JSON Web Token (JWT) is a compact token format intended for space
 constrained environments such as HTTP Authorization headers and URI
 query parameters. JWTs encode claims to be transmitted as a JSON
 object (as defined in RFC 4627 [RFC4627]) that is base64url encoded
 and digitally signed or HMACed and/or encrypted. Signing and HMACing
 is performed using JSON Web Signature (JWS) [JWS]. Encryption is
 performed using JSON Web Encryption (JWE) [JWE].

 The suggested pronunciation of JWT is the same as the English word
 "jot".

2. Terminology

 JSON Web Token (JWT) A string consisting of multiple parts, the
 first being the Encoded JWT Header, plus additional parts
 depending upon the contents of the header, with the parts being
 separated by period ('.') characters, and each part containing
 base64url encoded content.

 JWT Header A string representing a JSON object that describes the
 cryptographic operations applied to the JWT. When the JWT is
 digitally signed or HMACed, the JWT Header is a JWS Header. When
 the JWT is encrypted, the JWT Header is a JWE Header.

 Header Parameter Names The names of the members within the JWT
 Header.

 Header Parameter Values The values of the members within the JWT
 Header.

 JWT Claims Set A string representing a JSON object that contains the
 claims conveyed by the JWT. When the JWT is digitally signed or
 HMACed, the bytes of the UTF-8 representation of the JWT Claims
 Set are base64url encoded to create the Encoded JWS Payload. When
 the JWT is encrypted, the bytes of the UTF-8 representation of the
 JWT Claims Set are used as the JWE Plaintext.

 Claim Names The names of the members of the JSON object represented
 by the JWT Claims Set.

 Claim Values The values of the members of the JSON object
 represented by the JWT Claims Set.

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627

Jones, et al. Expires September 13, 2012 [Page 4]

Internet-Draft JSON Web Token (JWT) March 2012

 Encoded JWT Header Base64url encoding of the bytes of the UTF-8 RFC
3629 [RFC3629] representation of the JWT Header.

 Base64url Encoding For the purposes of this specification, this term
 always refers to the URL- and filename-safe Base64 encoding
 described in RFC 4648 [RFC4648], Section 5, with the (non URL-
 safe) '=' padding characters omitted, as permitted by Section 3.2.
 (See Appendix C of [JWS] for notes on implementing base64url
 encoding without padding.)

3. JSON Web Token (JWT) Overview

 JWTs represent a set of claims as a JSON object that is base64url
 encoded and digitally signed or HMACed and/or encrypted. The JWT
 Claims Set represents this JSON object. As per RFC 4627 [RFC4627]
 Section 2.2, the JSON object consists of zero or more name/value
 pairs (or members), where the names are strings and the values are
 arbitrary JSON values. These members are the claims represented by
 the JWT.

 The member names within the JWT Claims Set are referred to as Claim
 Names. The corresponding values are referred to as Claim Values.

 The bytes of the UTF-8 representation of the JWT Claims Set are
 digitally signed or HMACed in the manner described in JSON Web
 Signature (JWS) [JWS] and/or encrypted in the manner described in
 JSON Web Encryption (JWE) [JWE].

 The contents of the JWT Header describe the cryptographic operations
 applied to the JWT Claims Set. If the JWT Header is a JWS Header, the
 claims are digitally signed or HMACed. If the JWT Header is a JWE
 Header, the claims are encrypted.

 A JWT is represented as a JWS or JWE. The number of parts is
 dependent upon the representation of the resulting JWS or JWE.

3.1. Example JWT

 The following example JWT Header declares that the encoded object is
 a JSON Web Token (JWT) and the JWT is HMACed using the HMAC SHA-256
 algorithm:
 {"typ":"JWT",
 "alg":"HS256"}

 Base64url encoding the bytes of the UTF-8 representation of the JWT
 Header yields this Encoded JWS Header value, which is used as the
 Encoded JWT Header:

https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627#section-2.2
https://datatracker.ietf.org/doc/html/rfc4627#section-2.2

Jones, et al. Expires September 13, 2012 [Page 5]

Internet-Draft JSON Web Token (JWT) March 2012

 eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9

 The following is an example of a JWT Claims Set:
 {"iss":"joe",
 "exp":1300819380,
 "http://example.com/is_root":true}

 Base64url encoding the bytes of the UTF-8 representation of the JSON
 Claims Set yields this Encoded JWS Payload (with line breaks for
 display purposes only):
 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly
 9leGFtcGxlLmNvbS9pc19yb290Ijp0cnVlfQ

 Signing the Encoded JWS Header and Encoded JWS Payload with the HMAC
 SHA-256 algorithm and base64url encoding the signature in the manner
 specified in [JWS], yields this Encoded JWS Signature:
 dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

 Concatenating these parts in this order with period characters
 between the parts yields this complete JWT (with line breaks for
 display purposes only):
 eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9
 .
 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ
 .
 dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

 This computation is illustrated in more detail in [JWS], Appendix
A.1.

4. JWT Claims

 The JWT Claims Set represents a JSON object whose members are the
 claims conveyed by the JWT. The Claim Names within this object MUST
 be unique. Note however, that the set of claims that a JWT must
 contain to be considered valid is context-dependent and is outside
 the scope of this specification. When used in a security-related
 context, implementations MUST understand and support all of the
 claims present; otherwise, the JWT MUST be rejected for processing.

 There are three classes of JWT Claim Names: Reserved Claim Names,
 Public Claim Names, and Private Claim Names.

Jones, et al. Expires September 13, 2012 [Page 6]

Internet-Draft JSON Web Token (JWT) March 2012

4.1. Reserved Claim Names

 The following claim names are reserved. None of the claims defined
 in the table below are intended to be mandatory, but rather, provide
 a starting point for a set of useful, interoperable claims. All the
 names are short because a core goal of JWTs is for the tokens to be
 compact.

 +-------+--------+-------------+------------------------------------+
Claim	JSON	Claim	Claim Semantics
Name	Value	Syntax	
	Type		
+-------+--------+-------------+------------------------------------+			
exp	number	IntDate	The "exp" (expiration time) claim
			identifies the expiration time on
			or after which the token MUST NOT
			be accepted for processing. The
			processing of the "exp" claim
			requires that the current
			date/time MUST be before the
			expiration date/time listed in the
			"exp" claim. Implementers MAY
			provide for some small leeway,
			usually no more than a few
			minutes, to account for clock
			skew. This claim is OPTIONAL.
nbf	number	IntDate	The "nbf" (not before) claim
			identifies the time before which
			the token MUST NOT be accepted for
			processing. The processing of the
			"nbf" claim requires that the
			current date/time MUST be after or
			equal to the not-before date/time
			listed in the "nbf" claim.
			Implementers MAY provide for some
			small leeway, usually no more than
			a few minutes, to account for
			clock skew. This claim is
			OPTIONAL.
iat	number	IntDate	The "iat" (issued at) claim
			identifies the time at which the
			JWT was issued. This claim can be
			used to determine the age of the
			token. This claim is OPTIONAL.

Jones, et al. Expires September 13, 2012 [Page 7]

Internet-Draft JSON Web Token (JWT) March 2012

iss	string	StringOrURI	The "iss" (issuer) claim
			identifies the principal that
			issued the JWT. The processing of
			this claim is generally
			application specific. The "iss"
			value is case sensitive. This
			claim is OPTIONAL.
aud	string	StringOrURI	The "aud" (audience) claim
			identifies the audience that the
			JWT is intended for. The
			principal intended to process the
			JWT MUST be identified with the
			value of the audience claim. If
			the principal processing the claim
			does not identify itself with the
			identifier in the "aud" claim
			value then the JWT MUST be
			rejected. The interpretation of
			the audience value is generally
			application specific. The "aud"
			value is case sensitive. This
			claim is OPTIONAL.
prn	string	StringOrURI	The "prn" (principal) claim
			identifies the subject of the JWT.
			The processing of this claim is
			generally application specific.
			The "prn" value is case sensitive.
			This claim is OPTIONAL.
jti	string	String	The "jti" (JWT ID) claim provides
			a unique identifier for the JWT.
			The identifier value MUST be
			assigned in a manner that ensures
			that there is a negligible
			probability that the same value
			will be accidentally assigned to a
			different data object. The "jti"
			claim can be used to prevent the
			JWT from being replayed. The
			"jti" value is case sensitive.
			This claim is OPTIONAL.
typ	string	String	The "typ" (type) claim is used to
			declare a type for the contents of
			this JWT Claims Set. The "typ"
			value is case sensitive. This
			claim is OPTIONAL.
 +-------+--------+-------------+------------------------------------+

 Table 1: Reserved Claim Definitions

Jones, et al. Expires September 13, 2012 [Page 8]

Internet-Draft JSON Web Token (JWT) March 2012

 Additional reserved claim names MAY be defined via the IANA JSON Web
 Token Claims registry, as per Section 9. The syntax values used
 above are defined as follows:

 +-------------+---+
 | Syntax Name | Syntax Definition |
 +-------------+---+
IntDate	The number of seconds from 1970-01-01T0:0:0Z as
	measured in UTC until the desired date/time. See
	RFC 3339 [RFC3339] for details regarding date/times
	in general and UTC in particular.
String	Any string value MAY be used.
StringOrURI	Any string value MAY be used but a value containing
	a ":" character MUST be a URI as defined in RFC
	3986 [RFC3986].
 +-------------+---+

 Table 2: Claim Syntax Definitions

4.2. Public Claim Names

 Claim names can be defined at will by those using JWTs. However, in
 order to prevent collisions, any new claim name SHOULD either be
 defined in the IANA JSON Web Token Claims registry or be defined as a
 URI that contains a collision resistant namespace. Examples of
 collision resistant namespaces include:

 o Domain Names,

 o Object Identifiers (OIDs) as defined in the ITU-T X.660 and X.670
 Recommendation series, or

 o Universally Unique IDentifier (UUID) as defined in RFC 4122
 [RFC4122].

 In each case, the definer of the name or value needs to take
 reasonable precautions to make sure they are in control of the part
 of the namespace they use to define the claim name.

4.3. Private Claim Names

 A producer and consumer of a JWT may agree to any claim name that is
 not a Reserved Name Section 4.1 or a Public Name Section 4.2. Unlike
 Public Names, these private names are subject to collision and should
 be used with caution.

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122

Jones, et al. Expires September 13, 2012 [Page 9]

Internet-Draft JSON Web Token (JWT) March 2012

5. JWT Header

 The members of the JSON object represented by the JWT Header describe
 the cryptographic operations applied to the JWT and optionally,
 additional properties of the JWT. The member names within the JWT
 Header are referred to as Header Parameter Names. These names MUST
 be unique. The corresponding values are referred to as Header
 Parameter Values.

 Implementations MUST understand the entire contents of the header;
 otherwise, the JWT MUST be rejected for processing.

 There are two ways of distinguishing whether the JWT is a JWS or JWE.
 The first is by examining the "alg" (algorithm) header value. If the
 value represents a signature algorithm, the JWT is a JWS; if it
 represents an encryption algorithm, the JWT is a JWE. A second
 method is determining whether an "enc" (encryption method) member
 exists. If the "enc" member exists, the JWT is a JWE; otherwise, the
 JWT is a JWS. Both methods will yield the same result.

 JWS Header Parameters are defined by [JWS]. JWE Header Parameters
 are defined by [JWE]. This specification further specifies the use
 of the following header parameters in both the cases where the JWT is
 a JWS and where it is a JWE.

Jones, et al. Expires September 13, 2012 [Page 10]

Internet-Draft JSON Web Token (JWT) March 2012

 +----------+--------+-----------+-----------------------------------+
Header	JSON	Header	Header Parameter Semantics
Paramete	Value	Parameter	
rName	Type	Syntax	
+----------+--------+-----------+-----------------------------------+			
typ	string	String	The "typ" (type) header parameter
			is used to declare structural
			information about the JWT. In
			the normal case where nested
			signing or encryption operations
			are not employed, the use of this
			header parameter is OPTIONAL, and
			if present, it is RECOMMENDED
			that its value be either "JWT" or
			"http://openid.net/specs/jwt/1.0"
			.In the case that nested signing
			or encryption steps are employed
			,the use of this header parameter
			is REQUIRED; in this case, the
			value MUST either be "JWS", to
			indicate that a nested signed JW
			Tis carried in this JWT or "JWE",
			to indicate that a nested
			encrypted JWT is carried in this
			JWT.
 +----------+--------+-----------+-----------------------------------+

 Table 3: Reserved Header Parameter Usage

6. Plaintext JWTs

 To support use cases where the JWT content is secured by a means
 other than a signature and/or encryption contained within the token
 (such as a signature on a data structure containing the token), JWTs
 MAY also be created without a signature or encryption. A plaintext
 JWT is a JWS using the "none" JWS "alg" header parameter value
 defined in JSON Web Algorithms (JWA) [JWA]; it is a signed JWT with
 an empty JWS Signature value.

6.1. Example Plaintext JWT

 The following example JWT Header declares that the encoded object is
 a Plaintext JWT:
 {"alg":"none"}

 Base64url encoding the bytes of the UTF-8 representation of the JWT
 Header yields this Encoded JWT Header:

Jones, et al. Expires September 13, 2012 [Page 11]

Internet-Draft JSON Web Token (JWT) March 2012

 eyJhbGciOiJub25lIn0

 The following is an example of a JWT Claims Set:
 {"iss":"joe",
 "exp":1300819380,
 "http://example.com/is_root":true}

 Base64url encoding the bytes of the UTF-8 representation of the JSON
 Claims Set yields this Encoded JWS Payload (with line breaks for
 display purposes only):
 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ

 The Encoded JWS Signature is the empty string.

 Concatenating these parts in this order with period characters
 between the parts yields this complete JWT (with line breaks for
 display purposes only):
 eyJhbGciOiJub25lIn0
 .
 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt
 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ
 .

7. Rules for Creating and Validating a JWT

 To create a JWT, one MUST perform these steps. The order of the
 steps is not significant in cases where there are no dependencies
 between the inputs and outputs of the steps.

 1. Create a JWT Claims Set containing the desired claims. Note that
 white space is explicitly allowed in the representation and no
 canonicalization is performed before encoding.

 2. Let the Message be the bytes of the UTF-8 representation of the
 JWT Claims Set.

 3. Create a JWT Header containing the desired set of header
 parameters. The JWT MUST conform to either the [JWS] or [JWE]
 specifications. Note that white space is explicitly allowed in
 the representation and no canonicalization is performed before
 encoding.

 4. Base64url encode the bytes of the UTF-8 representation of the JWT
 Header. Let this be the Encoded JWT Header.

Jones, et al. Expires September 13, 2012 [Page 12]

Internet-Draft JSON Web Token (JWT) March 2012

 5. Depending upon whether the JWT is to be signed or encrypted,
 there are two cases:

 * If the JWT is to be signed, create a JWS using the JWT Header
 as the JWS Header and the Message as the JWS Payload; all
 steps specified in [JWS] for creating a JWS MUST be followed.

 * Else, if the JWT is to be encrypted, create a JWE using the
 JWT Header as the JWE Header and the Message as the JWE
 Plaintext; all steps specified in [JWE] for creating a JWE
 MUST be followed.

 6. If a nested signing or encryption operation will be performed,
 let the Message be the JWS or JWE, and return to Step 3, using a
 "typ" value of either "JWS" or "JWE" respectively in the new JWT
 Header created in that step.

 7. Otherwise, let the resulting JWT be the JWS or JWE.

 When validating a JWT the following steps MUST be taken. The order
 of the steps is not significant in cases where there are no
 dependencies between the inputs and outputs of the steps. If any of
 the listed steps fails then the token MUST be rejected for
 processing.

 1. The JWT MUST contain at least one period character.

 2. Let the Encoded JWT Header be the portion of the JWT before the
 first period character.

 3. The Encoded JWT Header MUST be successfully base64url decoded
 following the restriction given in this specification that no
 padding characters have been used.

 4. The JWT Header MUST be completely valid JSON syntax conforming
 to RFC 4627 [RFC4627].

 5. The JWT Header MUST be validated to only include parameters and
 values whose syntax and semantics are both understood and
 supported.

 6. Determine whether the JWT is a JWS or a JWE by examining the
 "alg" (algorithm) header value and optionally, the "enc"
 (encryption method) header value, if present.

 7. Depending upon whether the JWT is a JWS or JWE, there are two
 cases:

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627

Jones, et al. Expires September 13, 2012 [Page 13]

Internet-Draft JSON Web Token (JWT) March 2012

 * If the JWT is a JWS, all steps specified in [JWS] for
 validating a JWS MUST be followed. Let the Message be the
 result of base64url decoding the JWS Payload.

 * Else, if the JWT is a JWE, all steps specified in [JWE] for
 validating a JWE MUST be followed. Let the Message be the
 JWE Plaintext.

 8. If the JWT Header contains a "typ" value of either "JWS" or
 "JWE", then the Message contains a JWT that was the subject of
 nested signing or encryption operations, respectively. In this
 case, return to Step 1, using the Message as the JWT.

 9. Otherwise, let the JWT Claims Set be the Message.

 10. The JWT Claims Set MUST be completely valid JSON syntax
 conforming to RFC 4627 [RFC4627].

 11. When used in a security-related context, the JWT Claims Set MUST
 be validated to only include claims whose syntax and semantics
 are both understood and supported.

 Processing a JWT inevitably requires comparing known strings to
 values in the token. For example, in checking what the algorithm is,
 the Unicode string encoding "alg" will be checked against the member
 names in the JWT Header to see if there is a matching header
 parameter name. A similar process occurs when determining if the
 value of the "alg" header parameter represents a supported algorithm.

 Comparisons between JSON strings and other Unicode strings MUST be
 performed as specified below:

 1. Remove any JSON applied escaping to produce an array of Unicode
 code points.

 2. Unicode Normalization [USA15] MUST NOT be applied at any point to
 either the JSON string or to the string it is to be compared
 against.

 3. Comparisons between the two strings MUST be performed as a
 Unicode code point to code point equality comparison.

8. Cryptographic Algorithms

 JWTs use JSON Web Signature (JWS) [JWS] and JSON Web Encryption (JWE)
 [JWE] to sign and/or encrypt the contents of the JWT.

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627

Jones, et al. Expires September 13, 2012 [Page 14]

Internet-Draft JSON Web Token (JWT) March 2012

 Of the JWS signing algorithms, only HMAC SHA-256 and "none" MUST be
 implemented by conforming JWT implementations. It is RECOMMENDED
 that implementations also support the RSA SHA-256 and ECDSA P-256
 SHA-256 algorithms. Support for other algorithms and key sizes is
 OPTIONAL.

 If an implementation provides encryption capabilities, of the JWE
 encryption algorithms, only RSA-PKCS1-1.5 with 2048 bit keys, AES-
 128-CBC, and AES-256-CBC MUST be implemented by conforming
 implementations. It is RECOMMENDED that implementations also support
 ECDH-ES with 256 bit keys, AES-128-GCM, and AES-256-GCM. Support for
 other algorithms and key sizes is OPTIONAL.

9. IANA Considerations

9.1. JSON Web Token Claims Registry

 This specification calls for:

 o A new IANA registry entitled "JSON Web Token Claims" for reserved
 claim names is defined in Section 4.1. Inclusion in the registry
 is RFC Required in the RFC 5226 [RFC5226] sense for reserved JWT
 claim names that are intended to be interoperable between
 implementations. The registry will just record the reserved claim
 name and a pointer to the RFC that defines it. This specification
 defines inclusion of the claim names defined in Table 1.

9.2. application/jwt MIME Media Type Registration

 This specification registers the "application/jwt" MIME Media Type.

 Type name:
 application

 Subtype name:
 jwt

 Required parameters:
 n/a

 Optional parameters:
 n/a

 Encoding considerations:
 n/a

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226

Jones, et al. Expires September 13, 2012 [Page 15]

Internet-Draft JSON Web Token (JWT) March 2012

 Security considerations:
 See the Security Considerations section of this document

 Interoperability considerations:
 n/a

 Published specification:
 [[this document]]

 Applications that use this media type:
 OpenID Connect, Mozilla Browser ID, Salesforce, Google, numerous
 others

 Additional information:
 Magic number(s): n/a
 File extension(s): n/a
 Macintosh file type code(s): n/a

 Person & email address to contact for further information:
 Michael B. Jones
 mbj@microsoft.com

 Intended usage:
 COMMON

 Restrictions on usage:
 none

 Author:
 Michael B. Jones
 mbj@microsoft.com

 Change controller:
 Michael B. Jones
 mbj@microsoft.com

10. Security Considerations

 TBD: Lots of work to do here. We need to remember to look into any
 issues relating to security and JSON parsing. One wonders just how
 secure most JSON parsing libraries are. Were they ever hardened for
 security scenarios? If not, what kind of holes does that open up?
 Also, we need to walk through the JSON standard and see what kind of
 issues we have especially around comparison of names. For instance,
 comparisons of claim names and other parameters must occur after they
 are unescaped. Need to also put in text about: Importance of keeping
 secrets secret. Rotating keys. Strengths and weaknesses of the

Jones, et al. Expires September 13, 2012 [Page 16]

Internet-Draft JSON Web Token (JWT) March 2012

 different algorithms.

 TBD: Need to put in text about why strict JSON validation is
 necessary. Basically, that if malformed JSON is received then the
 intent of the sender is impossible to reliably discern. One example
 of malformed JSON that MUST be rejected is an object in which the
 same member name occurs multiple times. While in non-security
 contexts it's o.k. to be generous in what one accepts, in security
 contexts this can lead to serious security holes. For example,
 malformed JSON might indicate that someone has managed to find a
 security hole in the issuer's code and is leveraging it to get the
 issuer to issue "bad" tokens whose content the attacker can control.

 TBD: Write about the need to secure the token content if a signature
 is not contained in the JWT itself.

10.1. Unicode Comparison Security Issues

 Claim names in JWTs are Unicode strings. For security reasons, the
 representations of these names must be compared verbatim after
 performing any escape processing (as per RFC 4627 [RFC4627], Section

2.5).

 This means, for instance, that these JSON strings must compare as
 being equal ("JWT", "\u004aWT"), whereas these must all compare as
 being not equal to the first set or to each other ("jwt", "Jwt",
 "JW\u0074").

 JSON strings MAY contain characters outside the Unicode Basic
 Multilingual Plane. For instance, the G clef character (U+1D11E) may
 be represented in a JSON string as "\uD834\uDD1E". Ideally, JWT
 implementations SHOULD ensure that characters outside the Basic
 Multilingual Plane are preserved and compared correctly;
 alternatively, if this is not possible due to these characters
 exercising limitations present in the underlying JSON implementation,
 then input containing them MUST be rejected.

11. Open Issues and Things To Be Done (TBD)

 The following items remain to be done in this draft:

 o EDITORIAL: Give each claim name and header parameter definition
 its own section. This will let them appear in the index, will
 give space for examples when needed, and will get rid of the way-
 too-cramped tables.

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627

Jones, et al. Expires September 13, 2012 [Page 17]

Internet-Draft JSON Web Token (JWT) March 2012

 o Add normative text that requires rejecting headers and Claim Sets
 in which member names occur multiple times, as apparently this is
 legal JSON.

 o Provide an example of an encrypted JWT.

 o Clarify the intended use of the "typ" Header Parameter across the
 JWS, JWE, and JWT specifications. Decide whether a registry of
 "typ" values is appropriate.

 o EDITORIAL: Think about how to best describe the concept currently
 described as "the bytes of the UTF-8 representation of". Possible
 terms to use instead of "bytes of" include "byte sequence", "octet
 series", and "octet sequence". Also consider whether we want to
 add an overall clarifying statement somewhere in each spec
 something like "every place we say 'the UTF-8 representation of
 X', we mean 'the bytes of the UTF-8 representation of X'". That
 would potentially allow us to omit the "the bytes of" part
 everywhere else.

 o Finish the Security Considerations section.

 o Possibly write a companion specification that uses the JWS and JWE
 JSON Serializations.

12. References

12.1. Normative References

 [JWA] Jones, M., "JSON Web Algorithms (JWA)", March 2012.

 [JWE] Jones, M., Rescorla, E., and J. Hildebrand, "JSON Web
 Encryption (JWE)", March 2012.

 [JWS] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", March 2012.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3339] Klyne, G., Ed. and C. Newman, "Date and Time on the
 Internet: Timestamps", RFC 3339, July 2002.

https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3339

Jones, et al. Expires September 13, 2012 [Page 18]

Internet-Draft JSON Web Token (JWT) March 2012

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [USA15] Davis, M., Whistler, K., and M. Duerst, "Unicode
 Normalization Forms", Unicode Standard Annex 15, 09 2009.

12.2. Informative References

 [CanvasApp]
 Facebook, "Canvas Applications", 2010.

 [JSS] Bradley, J. and N. Sakimura (editor), "JSON Simple Sign",
 September 2010.

 [MagicSignatures]
 Panzer (editor), J., Laurie, B., and D. Balfanz, "Magic
 Signatures", January 2011.

 [OASIS.saml-core-2.0-os]
 Cantor, S., Kemp, J., Philpott, R., and E. Maler,
 "Assertions and Protocol for the OASIS Security Assertion
 Markup Language (SAML) V2.0", OASIS Standard saml-core-
 2.0-os, March 2005.

 [RFC3275] Eastlake, D., Reagle, J., and D. Solo, "(Extensible Markup
 Language) XML-Signature Syntax and Processing", RFC 3275,
 March 2002.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 July 2005.

 [SWT] Hardt, D. and Y. Goland, "Simple Web Token (SWT)",
 Version 0.9.5.1, November 2009.

https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc3275
https://datatracker.ietf.org/doc/html/rfc4122

Jones, et al. Expires September 13, 2012 [Page 19]

Internet-Draft JSON Web Token (JWT) March 2012

 [W3C.CR-xml11-20021015]
 Cowan, J., "Extensible Markup Language (XML) 1.1", W3C
 CR CR-xml11-20021015, October 2002.

Appendix A. Relationship of JWTs to SAML Tokens

 SAML 2.0 [OASIS.saml-core-2.0-os] provides a standard for creating
 tokens with much greater expressivity and more security options than
 supported by JWTs. However, the cost of this flexibility and
 expressiveness is both size and complexity. In addition, SAML's use
 of XML [W3C.CR-xml11-20021015] and XML DSIG [RFC3275] only
 contributes to the size of SAML tokens.

 JWTs are intended to provide a simple token format that is small
 enough to fit into HTTP headers and query arguments in URIs. It does
 this by supporting a much simpler token model than SAML and using the
 JSON [RFC4627] object encoding syntax. It also supports securing
 tokens using Hash-based Message Authentication Codes (HMACs) and
 digital signatures using a smaller (and less flexible) format than
 XML DSIG.

 Therefore, while JWTs can do some of the things SAML tokens do, JWTs
 are not intended as a full replacement for SAML tokens, but rather as
 a compromise token format to be used when space is at a premium.

Appendix B. Relationship of JWTs to Simple Web Tokens (SWTs)

 Both JWTs and Simple Web Tokens SWT [SWT], at their core, enable sets
 of claims to be communicated between applications. For SWTs, both
 the claim names and claim values are strings. For JWTs, while claim
 names are strings, claim values can be any JSON type. Both token
 types offer cryptographic protection of their content: SWTs with HMAC
 SHA-256 and JWTs with a choice of algorithms, including HMAC SHA-256,
 RSA SHA-256, and ECDSA P-256 SHA-256.

Appendix C. Acknowledgements

 The authors acknowledge that the design of JWTs was intentionally
 influenced by the design and simplicity of Simple Web Tokens [SWT]
 and ideas for JSON tokens that Dick Hardt discussed within the OpenID
 community.

 Solutions for signing JSON content were previously explored by Magic
 Signatures [MagicSignatures], JSON Simple Sign [JSS], and Canvas
 Applications [CanvasApp], all of which influenced this draft.

https://datatracker.ietf.org/doc/html/rfc3275
https://datatracker.ietf.org/doc/html/rfc4627

Jones, et al. Expires September 13, 2012 [Page 20]

Internet-Draft JSON Web Token (JWT) March 2012

Appendix D. Document History

 -08

 o Removed language that required that a JWT must have three parts.
 Now the number of parts is explicitly dependent upon the
 representation of the underlying JWS or JWE.

 o Moved the "alg":"none" definition to the JWS spec.

 o Registered the "application/jwt" MIME Media Type.

 o Clarified that the order of the creation and validation steps is
 not significant in cases where there are no dependencies between
 the inputs and outputs of the steps.

 o Corrected the Magic Signatures and Simple Web Token (SWT)
 references.

 -07

 o Defined the "prn" (principal) claim to identify the subject of the
 JWT.

 o Defined the "jti" (JWT ID) claim to enable replay protection.

 o Use the term "JWT Claims Set" rather than "JWT Claims Object"
 since this is actually a string representing a JSON object and not
 the JSON object itself.

 o Moved "MUST" requirements from the Overview to later in the spec.

 o Respect line length restrictions in examples.

 o Applied other editorial improvements.

 -06

 o Reference and use content from [JWS] and [JWE], rather than
 repeating it here.

 o Simplified terminology to better match JWE, where the terms "JWT
 Header" and "Encoded JWT Header" are now used, for instance,
 rather than the previous terms "Decoded JWT Header Segment" and
 "JWT Header Segment". Also changed to "Plaintext JWT" from
 "Unsigned JWT".

Jones, et al. Expires September 13, 2012 [Page 21]

Internet-Draft JSON Web Token (JWT) March 2012

 o Describe how to perform nested encryption and signing operations.

 o Changed "integer" to "number", since that is the correct JSON
 type.

 o Changed StringAndURI to StringOrURI.

 -05

 o Added the "nbf" (not before) claim and clarified the meaning of
 the "iat" (issued at) claim.

 -04

 o Correct typo found by John Bradley: "the JWT Claim Segment is the
 empty string" -> "the JWT Crypto Segment is the empty string".

 -03

 o Added "http://openid.net/specs/jwt/1.0" as a token type identifier
 URI for JWTs.

 o Added "iat" (issued at) claim.

 o Changed RSA SHA-256 from MUST be supported to RECOMMENDED that it
 be supported. Rationale: Several people have objected to the
 requirement for implementing RSA SHA-256, some because they will
 only be using HMACs and symmetric keys, and others because they
 only want to use ECDSA when using asymmetric keys, either for
 security or key length reasons, or both.

 o Defined "alg" value "none" to represent unsigned JWTs.

 -02

 o Split signature specification out into separate
draft-jones-json-web-signature-00. This split introduced no

 semantic changes.

 o The JWT Compact Serialization is now the only token serialization
 format specified in this draft. The JWT JSON Serialization can
 continue to be defined in a companion specification.

 -01

 o Draft incorporating consensus decisions reached at IIW.

 -00

https://datatracker.ietf.org/doc/html/draft-jones-json-web-signature-00

Jones, et al. Expires September 13, 2012 [Page 22]

Internet-Draft JSON Web Token (JWT) March 2012

 o Public draft published before November 2010 IIW based upon the
 JSON token convergence proposal incorporating input from several
 implementers of related specifications.

Authors' Addresses

 Michael B. Jones
 Microsoft

 Email: mbj@microsoft.com
 URI: http://self-issued.info/

 Dirk Balfanz
 Google

 Email: balfanz@google.com

 John Bradley
 independent

 Email: ve7jtb@ve7jtb.com

 Yaron Y. Goland
 Microsoft

 Email: yarong@microsoft.com

 John Panzer
 Google

 Email: jpanzer@google.com

 Nat Sakimura
 Nomura Research Institute

 Email: n-sakimura@nri.co.jp

http://self-issued.info/

Jones, et al. Expires September 13, 2012 [Page 23]

Internet-Draft JSON Web Token (JWT) March 2012

 Paul Tarjan
 Facebook

 Email: pt@fb.com

Jones, et al. Expires September 13, 2012 [Page 24]

