
Workgroup: Network Working Group

Published: 21 June 2022

Intended Status: Informational

Expires: 23 December 2022

Authors: B. Jordan, Ed.

Broadcom

S. Erdtman

Spotify AB

A. Rundgren

Independent

JWS Clear Text JSON Signature Option (JWS/CT)

Abstract

This document describes a method for extending the scope of the JSON

Web Signature (JWS) specification, called JWS/CT (JWS "Clear Text").

By combining the detached mode of JWS with the JSON Canonicalization

Scheme (JCS), JWS/CT enables JSON objects to remain in the JSON

format after being signed. In addition to supporting a consistent

data format, this arrangement also simplifies documentation,

debugging, and logging. The ability to embed signed JSON objects in

other JSON objects, makes the use of counter-signatures

straightforward.

This informational specification has been produced outside the IETF,

is not an IETF standard, and does not have IETF consensus. The

intended audiences of this document are JSON tool vendors as well as

designers of JSON-based cryptographic solutions.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 23 December 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document.

Table of Contents

1. Introduction

2. Terminology

3. Detailed Operation

3.1. Signature Creation

3.1.1. Create the JSON Object to be Signed

3.1.2. Canonicalize the JSON Object to be Signed

3.1.3. Generate a JWS String

3.1.4. Assemble the Signed JSON Object

3.2. Signature Validation

3.2.1. Parse the Signed JSON Object

3.2.2. Fetch the Signature Property String

3.2.3. Remove the Signature Property String

3.2.4. Canonicalize the Remaining JSON Object

3.2.5. Validate the JWS String

4. IANA Considerations

5. Security Considerations

6. References

6.1. Normative References

6.2. Informative References

Appendix A. Open-Source Implementations

Appendix B. JWS/CT Application Notes

B.1. Counter-Signatures

B.2. Detached Signatures

B.3. Array of Signatures

Appendix C. Test Vector Using the ES256 Algorithm

Appendix D. Enhanced JWS Processing Option

Acknowledgements

Document History

Authors' Addresses

1. Introduction

This specification introduces a method for augmenting data expressed

in the JSON [RFC8259] notation, with enveloped signatures, similar

to the scheme used in XML Signature [XMLDSIG]. For interoperability

and security reasons this specification constrains JSON objects to

the I-JSON [RFC7493] subset.

To avoid "reinventing the wheel", this specification leverages JSON

Web Signature (JWS) [RFC7515].

¶

¶

¶

https://trustee.ietf.org/license-info

By building on the detached mode of JWS in combination with the JSON

Canonicalizion Scheme (JCS) [RFC8785], JSON objects to be signed can

be kept in the JSON format. This arrangement is here referred to as

JWS/CT, where CT stands for "Clear Text" signing.

The primary motivations for keeping signed JSON objects in the JSON

format include simplified documentation, debugging, and logging, as

well as for maintaining a consistent message structure.

Another target is HTTP-based signature schemes that currently

utilize HTTP header values for holding detached signatures. By using

the method described herein, signed JSON-formatted HTTP requests and

responses may be self-contained and thus be serializable. The latter

facilitates such data to be

stored in databases

passed through intermediaries

embedded in other JSON objects

counter-signed

without losing the ability to (at any time) verify signatures.

Appendix B outlines different ways to handle multiple signatures

including counter-signing using JWS/CT.

The intended audiences of this document are JSON tool vendors as

well as designers of JSON-based cryptographic solutions.

2. Terminology

Note that this document is not on the IETF standards track. However,

a conformant implementation is supposed to adhere to the specified

behavior for security and interoperability reasons. This text uses

BCP 14 to describe that necessary behavior.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Detailed Operation

This section describes the details related to signing and validating

signatures based on this specification.

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

The following characteristics are crucial to know for prospective

JWS/CT implementers and users:

With the exception of the reliance on the detached mode described

in Appendix F of JWS [RFC7515], JWS/CT does not alter the JWS

signature creation process, validation process, or format. This

means that the contents of JWS headers as well as things related

to signature algorithms and cryptographic keys are out of scope

for this specification. A slightly enhanced processing option is

outlined in Appendix D.

JWS/CT depends exclusively on the JWS Compact Serialization mode.

JSON data to be signed MUST be supplied as JSON objects. That is,

direct signing of JSON arrays or JSON primitives is out of scope

for this specification.

JCS [RFC8785] constrains JSON objects to the I-JSON [RFC7493]

subset.

The signature creation and signature validation sections (Section

3.1 and Section 3.2 respectively), feature examples using the HS256

JOSE algorithm [RFC7518] with a 256-bit key having the following

value, here expressed as hexadecimal bytes:

7f dd 85 1a 3b 9d 2d af c5 f0 d0 00 30 e2 2b 93

43 90 0c d4 2e de 49 48 56 8a 4a 2e e6 55 29 1a

3.1. Signature Creation

The following sub-sections describe how JSON objects can be signed

according to the JWS/CT specification.

3.1.1. Create the JSON Object to be Signed

Create or parse the JSON object to be signed.

The following example object is used to illustrate the operations in

the sections that follow:

{

 "statement": "Hello signed world!",

 "otherProperties": [2000, true]

}

¶

*

¶

* ¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

3.1.2. Canonicalize the JSON Object to be Signed

Use the result of the previous step as input to the canonicalization

process described in JCS [RFC8785].

Applied to the example, the following JSON string should be

generated:

{"otherProperties":[2000,true],"statement":"Hello signed world!"}

After encoding the string above in the UTF-8 [UNICODE] format, the

following bytes (here in hexadecimal notation) should be generated:

7b 22 6f 74 68 65 72 50 72 6f 70 65 72 74 69 65 73 22 3a 5b 32 30

30 30 2c 74 72 75 65 5d 2c 22 73 74 61 74 65 6d 65 6e 74 22 3a 22

48 65 6c 6c 6f 20 73 69 67 6e 65 64 20 77 6f 72 6c 64 21 22 7d

3.1.3. Generate a JWS String

Use the result of the previous step as JWS Payload to the signature

process described in Appendix F of JWS [RFC7515].

For the example, the JWS header is assumed to be:

{"alg":"HS256"}

The resulting JWS string should then after payload removal and using

the key specified in Section 3, read as follows:

eyJhbGciOiJIUzI1NiJ9..VHVItCBCb8Q5CI-49imarDtJeSxH2uLU0DhqQP5Zjw4

3.1.4. Assemble the Signed JSON Object

Before a complete signed object can be created, a dedicated top-

level property for holding the JWS signature string needs to be

defined. The only requirement is that this property MUST NOT clash

with any other top-level property name. The JWS string itself MUST

be supplied as a JSON string argument to the signature property.

For the example, the property name "signature" is assumed to be the

designated holder of the JWS string. Equipped with a signature

property, the JWS string from the previous section, and the original

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

JSON example, the process above should result in the following, now

signed JSON object (with a line break in the "signature" property

for display purposes only):

{

 "statement": "Hello signed world!",

 "otherProperties": [2000, true],

 "signature": "eyJhbGciOiJIUzI1NiJ9..VHVItCBCb8Q5CI-49imar

DtJeSxH2uLU0DhqQP5Zjw4"

}

3.2. Signature Validation

The following sub-sections describe how JSON objects signed

according to the JWS/CT specification can be validated.

3.2.1. Parse the Signed JSON Object

Parse the JSON object that is expected to have been signed. If the

parsing is unsuccessful, the operation MUST cause a compliant

implementation to terminate processing and return an error

indication.

To illustrate the subsequent operations the signed JSON object

featured in Section 3.1.4 is used as example.

3.2.2. Fetch the Signature Property String

After successful parsing, retrieve the designated JSON top-level

property holding the JWS string. If the property is missing or its

argument is not a JSON string value, the operation MUST cause a

compliant implementation to terminate processing and return an error

indication.

For the example, where the property named "signature" is assumed to

hold the JWS string, the operation above should return the following

string:

eyJhbGciOiJIUzI1NiJ9..VHVItCBCb8Q5CI-49imarDtJeSxH2uLU0DhqQP5Zjw4

3.2.3. Remove the Signature Property String

Since the signature is calculated over the actual JSON object data,

the designated signature property and its argument MUST be removed

from the signed JSON object.

¶

¶

¶

¶

¶

¶

¶

¶

¶

If applied to the example the resulting JSON object should read as

follows:

{

 "statement": "Hello signed world!",

 "otherProperties": [2000, true]

}

Note: JSON tools usually by default remove whitespace. In addition,

the original ordering of properties may not always be honored.

However, none of this has (due to the canonicalization performed by

JCS), any impact on the result.

3.2.4. Canonicalize the Remaining JSON Object

Use the result of the previous step as input to the canonicalization

process described in JCS [RFC8785].

If applied to the example the result of the process above should

read as follows:

{"otherProperties":[2000,true],"statement":"Hello signed world!"}

After encoding the string above in the UTF-8 [UNICODE] format, the

following bytes (here in hexadecimal notation) should be generated:

7b 22 6f 74 68 65 72 50 72 6f 70 65 72 74 69 65 73 22 3a 5b 32 30

30 30 2c 74 72 75 65 5d 2c 22 73 74 61 74 65 6d 65 6e 74 22 3a 22

48 65 6c 6c 6f 20 73 69 67 6e 65 64 20 77 6f 72 6c 64 21 22 7d

3.2.5. Validate the JWS String

After extracting the detached mode JWS string and canonicalizing the

JSON object (to retrieve the JWS Payload), the JWS string MUST be

restored as described in Appendix F of JWS [RFC7515]. The actual JWS

validation procedure is not specified here because it is covered by

[RFC7515] and also depends on application-specific policies like:

Accepted JWS signature algorithms

Accepted and/or required JWS header elements

Signature key lookup methods

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

If the validation process for some reason fails, the operation MUST

cause a compliant implementation to terminate processing and return

an error indication.

For the example, validation is straightforward since both the

algorithm and the key to use are predefined (see Section 3). The

input string to a JWS validator should after the process step above

read as follows (with line breaks for display purposes only):

eyJhbGciOiJIUzI1NiJ9.eyJvdGhlclByb3BlcnRpZXMiOlsyMDAwLHRydWVdLCJzdGF0

ZW1lbnQiOiJIZWxsbyBzaWduZWQgd29ybGQhIn0.VHVItCBCb8Q5CI-49imarDtJeSxH2

uLU0DhqQP5Zjw4

4. IANA Considerations

This document has no IANA actions.

5. Security Considerations

This specification inherits all the security considerations of JWS

[RFC7515] and JCS [RFC8785]. Note that strict conformance to I-JSON

[RFC7493] is REQUIRED.

In similarity to any other signature specification, it is crucial

that signatures are verified before acting on the signed payload.

However, poorly tested software components may also introduce

security issues. Consider the following JSON example:

{

 "fromAccount": "1234",

 "toAccount": "4567",

 "amount": {

 "value": 100,

 "currency":"USD"

 }

}

A non-compliant JCS implementation could return

{"amount":{},"fromAccount":"1234","toAccount":"4567"}

giving an attacker the ability to change "amount" to whatever it

wants. Note though that this attack presumes that the consumer and

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC7493]

[RFC7515]

[RFC7518]

[RFC8174]

[RFC8259]

[RFC8785]

[UNICODE]

[RFC4648]

producer use implementations broken in the same way, otherwise the

signature would not validate.

For usage in a wider community, the name of the designated signature

property becomes a critical factor that MUST be documented and

communicated.

6. References

6.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Bray, T., Ed., "The I-JSON Message Format", RFC 7493, DOI

10.17487/RFC7493, March 2015, <https://www.rfc-

editor.org/info/rfc7493>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web

Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May

2015, <https://www.rfc-editor.org/info/rfc7515>.

Jones, M., "JSON Web Algorithms (JWA)", RFC 7518, DOI

10.17487/RFC7518, May 2015, <https://www.rfc-editor.org/

info/rfc7518>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/info/

rfc8259>.

Rundgren, A., Jordan, B., and S. Erdtman, "JSON

Canonicalization Scheme (JCS)", RFC 8785, DOI 10.17487/

RFC8785, June 2020, <https://www.rfc-editor.org/info/

rfc8785>.

The Unicode Consortium, "The Unicode Standard", <https://

www.unicode.org/versions/latest/>.

6.2. Informative References

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/info/rfc4648>.

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7493
https://www.rfc-editor.org/info/rfc7493
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8785
https://www.rfc-editor.org/info/rfc8785
https://www.unicode.org/versions/latest/
https://www.unicode.org/versions/latest/
https://www.rfc-editor.org/info/rfc4648

[RFC7517]

[RFC7797]

[SHS]

[XMLDSIG]

Jones, M., "JSON Web Key (JWK)", RFC 7517, DOI 10.17487/

RFC7517, May 2015, <https://www.rfc-editor.org/info/

rfc7517>.

Jones, M., "JSON Web Signature (JWS) Unencoded Payload

Option", RFC 7797, DOI 10.17487/RFC7797, February 2016,

<https://www.rfc-editor.org/info/rfc7797>.

NIST, "Secure Hash Standard (SHS)", FIPS PUB 180-4,

August 2015, <https://nvlpubs.nist.gov/nistpubs/FIPS/

NIST.FIPS.180-4.pdf>.

W3C, "XML Signature Syntax and Processing Version 1.1",

W3C Recommendation, April 2013, <https://www.w3.org/TR/

xmldsig-core1/>.

Appendix A. Open-Source Implementations

Due to the simplicity of this specification, there is hardly a need

for specific support software. However, JCS which is (at the time of

writing), a relatively new design, may be fetched as a separate

component for multiple platforms. The following open-source

implementations have been verified to be compatible with JCS:

JavaScript: <https://www.npmjs.com/package/canonicalize>

Java: <https://mvnrepository.com/artifact/io.github.erdtman/java-

json-canonicalization>

Go: <https://github.com/cyberphone/json-canonicalization/tree/

master/go>

.NET/C#: <https://github.com/cyberphone/json-canonicalization/

tree/master/dotnet>

Python: <https://github.com/cyberphone/json-canonicalization/

tree/master/python3>

Appendix B. JWS/CT Application Notes

The following application notes are not a part of the JWS/CT core;

they show how JWS/CT can be used in contexts involving multiple

signatures.

B.1. Counter-Signatures

Consider the following JWS/CT object showing an imaginary real

estate business record (with a line break in the "signature"

property for display purposes only):

¶

* ¶

*

¶

*

¶

*

¶

*

¶

¶

¶

https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc7797
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://www.w3.org/TR/xmldsig-core1/
https://www.w3.org/TR/xmldsig-core1/
https://www.npmjs.com/package/canonicalize
https://mvnrepository.com/artifact/io.github.erdtman/java-json-canonicalization
https://mvnrepository.com/artifact/io.github.erdtman/java-json-canonicalization
https://github.com/cyberphone/json-canonicalization/tree/master/go
https://github.com/cyberphone/json-canonicalization/tree/master/go
https://github.com/cyberphone/json-canonicalization/tree/master/dotnet
https://github.com/cyberphone/json-canonicalization/tree/master/dotnet
https://github.com/cyberphone/json-canonicalization/tree/master/python3
https://github.com/cyberphone/json-canonicalization/tree/master/python3

{

 "gps": [38.89768255588178, -77.03658644893932],

 "object": {

 "type": "house",

 "price": "$635,000"

 },

 "role": "buyer",

 "name": "John Smith",

 "timeStamp": "2020-11-08T13:56:08Z",

 "signature": "eyJhbGciOiJIUzI1NiJ9..zlPMniQiz4Eie86oK4xo25z

uyW92csiDqyiQrF6R5ug"

}

The signature above was created using the example key from Section

3.

Adding a notary signature on top of this could be performed by

embedding the former object as follows (with line breaks in the

"signature" properties for display purposes only):

{

 "attesting": {

 "gps": [38.89768255588178, -77.03658644893932],

 "object": {

 "type": "house",

 "price": "$635,000"

 },

 "role": "buyer",

 "name": "John Smith",

 "timeStamp": "2020-11-08T13:56:08Z",

 "signature": "eyJhbGciOiJIUzI1NiJ9..zlPMniQiz4Eie86oK4xo25z

uyW92csiDqyiQrF6R5ug"

 },

 "role": "notary",

 "name": "Carol Lombardi-Jones",

 "timeStamp": "2020-11-08T13:58:42Z",

 "signature": "eyJhbGciOiJFUzI1NiJ9..AVmJGUWp1JD0pf2j1_UQWXbf-

qj-2RWxOnyAXihd4POKbnjWqqSBmHPNfgMQFH_s5sXHkIOkDZe2nShqEJOEVA"

}

A side effect of this arrangement is that the notary's signature

signs not only the notary data, but the buyer's data and signature

as well. In most cases this way of adding signatures is advantageous

since it maintains the actual order of signing events which also

¶

¶

¶

¶

cannot be tampered with without invalidating the outermost

signature.

Note that all properties above including "signature" are application

specific.

The notary's signature was created using the example key from

Appendix C.

B.2. Detached Signatures

In the case the signing entities are "peers" or are unrelated to

each other, counter-signatures like described in Appendix B.1 are

not applicable since they presume a specific flow. For supporting

independent or asynchronous signers targeting a common document or

data object, an imaginable solution is using a scheme where each

signer calculates a hash of the target document/data and includes

the hash together with signer-specific meta data like the following:

{

 <<Common Document/Data to Sign...>>

 "signers": [{

 "sha256": "<<Hash of Document/Data to Sign>>",

 <<Signer-related meta data...>>

 "signature": "<<Signer JWS Signature>>"

 },{

 "sha256": "<<Hash of Document/Data to Sign>>",

 <<Signer-related meta data...>>

 "signature": "<<Signer JWS Signature>>"

 }]

}

In this case the object to sign would not be limited to JSON; it

could, for example, be a PDF document hosted on a specific URL. Note

that the relying party would have to update the structure for each

signature received. In some cases a database would probably be more

useful for holding individual signatures since a database can cope

with any number of signers as well as keeping track of who have

actually signed. The latter is crucial for things like international

treaties and company board statements.

¶

¶

¶

¶

¶

¶

Note that although "signers", "sha256", and "signature" are

application specific property names, the objects in the "signers"

array are assumed to be fully conformant with the JWS/CT

specification.

The following example shows a possible detached signature solution

(with line breaks in the "signature" properties for display purposes

only):

{

 "statement": "Hello signed world!",

 "otherProperties": [2000, true],

 "signers": [{

 "sha256": "n-i0HIBJKELoTicCK9c5nqJ8cYH0znGRcEbYKoQfm70",

 "timeStamp": "2020-11-18T07:45:28Z",

 "name": "Alice",

 "signature": "eyJhbGciOiJIUzI1NiJ9..AE7CnzSYsaspE3yrdsAwi

avd3IdWtdAmDE8FRMwYLA8"

 },{

 "sha256": "n-i0HIBJKELoTicCK9c5nqJ8cYH0znGRcEbYKoQfm70",

 "timeStamp": "2020-11-18T08:03:40Z",

 "name": "Bob",

 "signature": "eyJhbGciOiJFUzI1NiJ9..0tNLy0pLcHUjPhhorpKd5

7a8zTPeqlrOjATiSlPQ1vciE99x6mHmow04tPbJS8dqSqO9c4RkKW6jeL4ZyWpXLA"

 }]

}

Notes:

"Alice" used the example key from Section 3 while "Bob" used the

example key specified in Appendix C.

The "sha256" properties hold base64url-encoded [RFC4648], SHA256-

hashes [SHS] of the canonicalized data created in Section 3.1.2.

This arrangement requires a two-step validation process where

each JWS/CT object in the "signers" array is individually

validated, as well as having its "sha256" property compared with

the actual hash of the canonicalized common data.

B.3. Array of Signatures

Another possibility supporting multiple and independent signatures

is collecting JWS signature strings in a JSON array object according

to the following scheme:

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

{

 <<Common Document/Data to Sign...>>

 "<<Signature property>>": ["<<Signature-1>>",

 "<<Signature-2>>",

 .

 "<<Signature-n>>"]

}

Processing would follow Section 3, with the addition that each

signature is dealt with individually.

Compared to Appendix B.2, signature arrays imply that possible

signer-specific meta-data is supplied as JWS extensions in the

associated signature's base64url-encoded header.

By combining the example used in Section 3 with the test vector in

Appendix C, a valid signature array object could be as follows (with

line breaks in the "signatures" property for display purposes only):

{

 "statement": "Hello signed world!",

 "otherProperties": [2000, true],

 "signatures": ["eyJhbGciOiJIUzI1NiJ9..VHVItCBCb8Q5CI-49imar

DtJeSxH2uLU0DhqQP5Zjw4",

 "eyJhbGciOiJFUzI1NiJ9..ENP0j0-QPsA7N_Mg1-RMN

9IxapeTWtQwR7sPUqEiSNHPuV_fqSdRqqkLOlBdV01cc4lSJdn1XCv-ZHYdZ9t3kA"]

}

Note that "signatures" is not a keyword, it was only selected to

highlight the fact that there are multiple signatures.

Appendix C. Test Vector Using the ES256 Algorithm

This appendix shows how a signed version of the JSON example object

in Section 3.1.1 would look like if applying the ES256 JOSE

algorithm [RFC7518] (with a line break in the "signature" property

for display purposes only):

{

 "statement": "Hello signed world!",

 "otherProperties": [2000, true],

 "signature": "eyJhbGciOiJFUzI1NiJ9..ENP0j0-QPsA7N_Mg1-RMN

9IxapeTWtQwR7sPUqEiSNHPuV_fqSdRqqkLOlBdV01cc4lSJdn1XCv-ZHYdZ9t3kA"

}

¶

¶

¶

¶

¶

¶

¶

The example above depends on a JWS header holding the algorithm

{"alg":"ES256"}, and the following private key, here expressed in

the JWK [RFC7517] format:

{

 "kty": "EC",

 "crv": "P-256",

 "x": "6BKxpty8cI-exDzCkh-goU6dXq3MbcY0cd1LaAxiNrU",

 "y": "mCbcvUzm44j3Lt2b5BPyQloQ91tf2D2V-gzeUxWaUdg",

 "d": "6XxMFXhcYT5QN9w5TIg2aSKsbcj-pj4BnZkK7ZOt4B8"

}

Note that signing with the ES256 algorithm returns different results

for each signature due to a randomization step in the signature

computation process.

Appendix D. Enhanced JWS Processing Option

By default, JWS/CT uses the JWS compact serialization mode "as is".

As a consequence, a technically redundant, internal-only, base64url

encoding step is performed over the JWS Payload. Although the

performance hit should be marginal for most real-world applications,

a possibility is using the "Unencoded Payload" mode of RFC7797

[RFC7797]. However, this requires that the JWS implementation

supports the "b64":false and "crit":["b64"] header elements implied

by RFC7797, effectively rendering the RFC7797 mode as an implementer

option for specific communities.

Acknowledgements

People who have contributed directly and indirectly with valuable

input to this specification include Vladimir Dzhuvinov, James

Greussing, Freddi Gyara, and Filip Skokan.

Document History

[[This section to be removed by the RFC Editor before publication

as an RFC]]

Version 00:

Initial publication.

Version 01:

Added paragraph to Abstract.

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

¶

* ¶

Updated Security Considerations.

Version 02:

Changed alternative test key to ES256/P-256.

Moved RFC7797 to an appendix.

Changed <tt> to only be used on keywords.

Added some clarity to detached signatures.

Version 03:

Language changes suggested by ISE.

Version 04:

Language nit.

Version 05:

Document refresh.

Version 06:

Changes after ISE review.

Version 07:

Changes after ISE and external reviews.

Version 08:

Changes after ISE and external reviews.

Authors' Addresses

Bret Jordan (editor)

Broadcom

1320 Ridder Park Drive

San Jose, CA 95131

United States of America

Email: bret.jordan@broadcom.com

Samuel Erdtman

Spotify AB

Birger Jarlsgatan 61, 4tr

SE-113 56 Stockholm

Sweden

* ¶

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

* ¶

mailto:bret.jordan@broadcom.com

Email: erdtman@spotify.com

Anders Rundgren

Independent

Montpellier

France

Email: anders.rundgren.net@gmail.com

URI: https://www.linkedin.com/in/andersrundgren/

mailto:erdtman@spotify.com
mailto:anders.rundgren.net@gmail.com
https://www.linkedin.com/in/andersrundgren/

	JWS Clear Text JSON Signature Option (JWS/CT)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Detailed Operation
	3.1. Signature Creation
	3.1.1. Create the JSON Object to be Signed
	3.1.2. Canonicalize the JSON Object to be Signed
	3.1.3. Generate a JWS String
	3.1.4. Assemble the Signed JSON Object

	3.2. Signature Validation
	3.2.1. Parse the Signed JSON Object
	3.2.2. Fetch the Signature Property String
	3.2.3. Remove the Signature Property String
	3.2.4. Canonicalize the Remaining JSON Object
	3.2.5. Validate the JWS String

	4. IANA Considerations
	5. Security Considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Open-Source Implementations
	Appendix B. JWS/CT Application Notes
	B.1. Counter-Signatures
	B.2. Detached Signatures
	B.3. Array of Signatures

	Appendix C. Test Vector Using the ES256 Algorithm
	Appendix D. Enhanced JWS Processing Option
	Acknowledgements
	Document History
	Authors' Addresses

