
Network Working Group A. Biryukov
Internet-Draft D. Dinu
Intended status: Informational D. Khovratovich
Expires: May 8, 2016 University of Luxembourg
 S. Josefsson
 SJD AB
 November 5, 2015

The memory-hard Argon2 password hash function
draft-josefsson-argon2-00

Abstract

 This document describes the Argon2 memory-hard function for password
 hashing and other applications. We provide a implementer oriented
 description together with sample code and test vectors. The purpose
 is to simplify adoption of Argon2 for Internet protocols.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 8, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Biryukov, et al. Expires May 8, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Argon2 November 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Notation and Conventions 3
3. Argon2 Algorithm . 3
3.1. Argon2 Inputs and Outputs 3
3.2. Argon2 Operation . 4
3.3. Variable-length hash function H' 5
3.4. Indexing . 5
3.5. Compression function G 6
3.6. Permutation P . 6

4. Parameter Choice . 6
5. Example Code . 8
6. Test Vectors . 8
6.1. Argon2d Test Vectors 8
6.2. Argon2i Test Vectors 9

7. Acknowledgements . 10
8. IANA Considerations . 10
9. Security Considerations 10
10. References . 11
10.1. Normative References 11
10.2. Informative References 11

 Authors' Addresses . 11

1. Introduction

 This document describes the Argon2 memory-hard function for password
 hashing and other applications. We provide a implementer oriented
 description together with sample code and test vectors. The purpose
 is to simplify adoption of Argon2 for Internet protocols.

 Argon2 summarizes the state of the art in the design of memory-hard
 functions. It is a streamlined and simple design. It aims at the
 highest memory filling rate and effective use of multiple computing
 units, while still providing defense against tradeoff attacks.
 Argon2 is optimized for the x86 architecture and exploits the cache
 and memory organization of the recent Intel and AMD processors.
 Argon2 has two variants: Argon2d and Argon2i. Argon2d is faster and
 uses data-depending memory access, which makes it suitable for
 cryptocurrencies and applications with no threats from side-channel
 timing attacks. Argon2i uses data-independent memory access, which
 is preferred for password hashing and password-based key derivation.
 Argon2i is slower as it makes more passes over the memory to protect
 from tradeoff attacks.

Biryukov, et al. Expires May 8, 2016 [Page 2]

Internet-Draft Argon2 November 2015

 For further background and discussion, see the Argon2 paper [ARGON2].

2. Notation and Conventions

 x^y --- x multiplied by itself y times

 a*b --- multiplication of a and b

 c-d --- substraction of c with d

 E_f --- variable E with subscript index f

 g / h --- g divided by h

 I(j) --- function I evaluated on parameters j

 K || L --- string K concatenated with string L

3. Argon2 Algorithm

3.1. Argon2 Inputs and Outputs

 Argon2 have the following input parameters:

 o Message string P, typically a password. May have any length from
 0 to 2^32 - 1 bytes.

 o Nonce S, typically a random salt. May have any length from 8 to
 2^32 - 1 bytes. 16 bytes is recommended for password hashing.
 See [RFC4086] for discussion about randomness.

 o Degree of parallelism p determines how many independent (but
 synchronizing) computational chains can be run. It may take any
 integer value from 1 to 255.

 o Tag length T may be any integer number of bytes from 4 to 2^32-1.

 o Memory size m can be any integer number of kilobytes from 8*p to
 2^32-1. The actual number of blocks is m', which is m rounded
 down to the nearest multiple of 4*p.

 o Number of iterations t (used to tune the running time
 independently of the memory size) can be any integer number from 1
 to 2^32-1.

 o Version number v is one byte 0x10.

https://datatracker.ietf.org/doc/html/rfc4086

Biryukov, et al. Expires May 8, 2016 [Page 3]

Internet-Draft Argon2 November 2015

 o Secret value K (serves as key if necessary, but we do not assume
 any key use by default) may have any length from 0 to 32 bytes.

 o Associated data X may have any length from 0 to 2^32-1 bytes.

 o Type y of Argon2: 0 for Argon2d, 1 for Argon2i.

 The Argon2 output is a T-length string.

3.2. Argon2 Operation

 Argon2 uses an internal compression function G with two 1024-byte
 inputs and a 1024-byte output, and an internal hash function H. Here
 H is the Blake2b [I-D.saarinen-blake2] hash function, and the
 compression function G is based on its internal permutation. A
 variable-length hash function H' built upon H is also used. G and H'
 are described in later section.

 The Argon2 operation is as follows.

 1. Establish H_0 as the 64-bit value as shown in the figure below.
 H is BLAKE2b and the non-strings p, T, m, t, v, y, length(P),
 length(S), length(K), and length(X) are treated as a 32-bit
 little-endian encoding of the integer.

 H_0 = H(p, T, m, t, v, y, length(P), P, length(S), S,
 length(K), K, length(X), X)

 2. Allocate the memory as m' 1024-byte blocks where m' is derived
 as:

 m' = 4 * p * floor (m / 4p)

 For tunable parallelism with p threads, the memory is organized
 in a matrix B[i][j] of blocks with p rows (lanes) and q = m' / p
 columns.

 3. Compute B[i][0] for all i ranging from (and including) 0 to (not
 including) p.

 B[i][0] = H'(H0, 4byteencode(i), 4byteencode(0))

 Here 4byteencode is a function which takes an integer and little-
 endian encode and padds it to 4 bytes.

 4. Compute B[i][1] for all i ranging from (and including) 0 to (not
 including) p.

Biryukov, et al. Expires May 8, 2016 [Page 4]

Internet-Draft Argon2 November 2015

 B[i][1] = H'(H0, 4byteencode(i), 4byteencode(1))

 5. Compute B[i][j] for all i ranging from (and including) 0 to (not
 including) p, and for all j ranging from (and including) 2) to
 (not including) q. The block indices i' and j' are determined
 differently for Argon2d and Argon2i.

 B[i][j] = G(B[i][j-1], B[i'][j'])

 6. If the number of iterations t is larger than 1, we repeat the
 steps however replacing the computations with with the following
 expression:

 B[i][0] = G(B[i][q-1], B[i'][j'])
 B[i][j] = G(B[i][j-1], B[i'][j'])

 7. After t steps have been iterated, we compute the final block C as
 the XOR of the last column:

 C = B[0][q-1] XOR B[1][q-1] XOR ... XOR B[p-1][q-1]

 8. The output tag is computed as H'(C).

3.3. Variable-length hash function H'

 Let H_x be a hash function with x-byte output (in our case H_x is
 Blake2b, which supports x between 1 and 64 inclusive). Let V_i be a
 64-byte block, and A_i be its first 32 bytes, and T < 2^32 be the tag
 length in bytes. Then we define

 V_0 = T||X
 V_1 = H_64(V_0)
 V_2 = H_64(V_1)
 ...
 V_r = H_64(V_{r-1}) with r=floor(T/32)-1
 V_{r+1} = H_{T mod 64}(V_{r-1}) absent if 64 divides T
 H'(X) = A_1 || A_2 || ... || A_r || V_{r+1}

 FIXME: improve this description. FIXME2: V_{r+1} is not properly
 described, is it a 64-byte block or a {T mod 64} block?

3.4. Indexing

 TBD

Biryukov, et al. Expires May 8, 2016 [Page 5]

Internet-Draft Argon2 November 2015

3.5. Compression function G

 Compression function G is built upon the Blake2b round function P. P
 operates on the 128-byte input, which can be viewed as 8 16-byte
 registers:

 P(A_0, A_1, ... ,A_7) = (B_0, B_1, ... ,B_7)

 Compression function G(X, Y) operates on two 1024-byte blocks X and
 Y. It first computes R = X XOR Y. Then R is viewed as a 8x8-matrix
 of 16-byte registers R_0, R_1, ... , R_63. Then P is first applied
 rowwise, and then columnwise to get Z:

 (Q_0, Q_1, ... , Q_7) <- P(R_0, R_1, ... , R_7)
 (Q_8, Q_9, ... , Q_15) <- P(R_8, R_9, ... , R_15)
 ...
 (Q_56, Q_57, ... , Q_63) <- P(R_56, R_57, ... , R_63)
 (Z_0, Z_8, Z_16 , ... , Z_56) < P(Q_0, Q_8, Q_16, ... , Q_56)
 (Z_1, Z_9, Z_17 , ... , Z_57) < P(Q_1, Q_9, Q_17, ... , Q_57)
 ...
 (Z_7, Z_15, Z 23 , ... , Z_63) < P(Q_7, Q_15, Q_23, ... , Q_63)

 Finally, G outputs Z XOR R:

 G: (X,Y) -> R = X XOR Y -P-> Q -P-> Z -P-> Z XOR R

 FIXME: improve this description.

3.6. Permutation P

 TBD

4. Parameter Choice

 Argon2d is optimized for settings where the adversary does not get
 regular access to system memory or CPU, i.e. he can not run side-
 channel attacks based on the timing information, nor he can recover
 the password much faster using garbage collection. These settings
 are more typical for backend servers and cryptocurrency minings. For
 practice we suggest the following settings:

 o Cryptocurrency mining, that takes 0.1 seconds on a 2 Ghz CPU using
 1 core -- Argon2d with 2 lanes and 250 MB of RAM.

 o Backend server authentication, that takes 0.5 seconds on a 2 GHz
 CPU using 4 cores -- Argon2d with 8 lanes and 4 GB of RAM.

Biryukov, et al. Expires May 8, 2016 [Page 6]

Internet-Draft Argon2 November 2015

 Argon2i is optimized for more realistic settings, where the adversary
 possibly can access the same machine, use its CPU or mount cold-boot
 attacks. We use three passes to get rid entirely of the password in
 the memory. We suggest the following settings:

 o Key derivation for hard-drive encryption, that takes 3 seconds on
 a 2 GHz CPU using 2 cores - Argon2i with 4 lanes and 6 GB of RAM

 o Frontend server authentication, that takes 0.5 seconds on a 2 GHz
 CPU using 2 cores - Argon2i with 4 lanes and 1 GB of RAM.

 We recommend the following procedure to select the type and the
 parameters for practical use of Argon2.

 1. Select the type y. If you do not know the difference between
 them or you consider side-channel attacks as viable threat,
 choose Argon2i.

 2. Figure out the maximum number h of threads that can be initiated
 by each call to Argon2.

 3. Figure out the maximum amount m of memory that each call can
 afford.

 4. Figure out the maximum amount x of time (in seconds) that each
 call can afford.

 5. Select the salt length. 128 bits is sufficient for all
 applications, but can be reduced to 64 bits in the case of space
 constraints.

 6. Select the tag length. 128 bits is sufficient for most
 applications, including key derivation. If longer keys are
 needed, select longer tags.

 7. If side-channel attacks is a viable threat, enable the memory
 wiping option in the library call.

 8. Run the scheme of type y, memory m and h lanes and threads, using
 different number of passes t. Figure out the maximum t such that
 the running time does not exceed x. If it exceeds x even for t =
 1, reduce m accordingly.

 9. Hash all the passwords with the just determined values m, h, and
 t.

Biryukov, et al. Expires May 8, 2016 [Page 7]

Internet-Draft Argon2 November 2015

5. Example Code

 TBD -- is there a python implementation?

6. Test Vectors

 This section contains test vectors for Argon2.

6.1. Argon2d Test Vectors

 =======================================Argon2d
 Memory: 16 KiB
 Iterations: 3
 Parallelism: 4 lanes
 Tag length: 32 bytes
 Password[32]: 01 01 01 01 01 01 01 01
 01 01 01 01 01 01 01 01
 01 01 01 01 01 01 01 01
 01 01 01 01 01 01 01 01
 Salt[16]: 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02
 Secret[8]: 03 03 03 03 03 03 03 03
 Associated data[12]: 04 04 04 04 04 04 04 04 04 04 04 04
 Pre-hashing digest: ec a9 db ff fa c9 87 5c
 d2 dc 32 67 cb 82 7f 48
 79 af db 2f 6c b3 a5 29
 c5 87 7c 60 7d 72 92 02
 7c 23 15 47 fc 64 4f b8
 81 16 1f ee f6 e2 b3 d1
 63 49 1a 98 e8 a8 8c 8a
 40 15 b8 b5 dc 85 ec 1b

 After pass 0:
 Block 0000 [0]: 7ddae3a315a45d2d
 Block 0000 [1]: 50d8b9a49514a996
 Block 0000 [2]: d5fd2f56c5085520
 Block 0000 [3]: 81fa720dcf94e004
 ...
 Block 0031 [124]: 40b2d44e241f7a2a
 Block 0031 [125]: 9b9658c82ba08f84
 Block 0031 [126]: 917242b2a7a533f2
 Block 0031 [127]: 4169db73ebcc9e9c

 After pass 1:
 Block 0000 [0]: a8daed017254d662
 Block 0000 [1]: 1564d0fc4f5d07f4
 Block 0000 [2]: 6a18ece1fd7d79ff
 Block 0000 [3]: d04eb389a8ac7324
 ...

Biryukov, et al. Expires May 8, 2016 [Page 8]

Internet-Draft Argon2 November 2015

 Block 0031 [124]: c859e8ba37e79999
 Block 0031 [125]: 0bb980cfe6552a4d
 Block 0031 [126]: 300cea2895f4459e
 Block 0031 [127]: 37af5d23a18f9d58

 After pass 2:
 Block 0000 [0]: e86fc8e713dbf6d3
 Block 0000 [1]: b30f1bdf8b4219d6
 Block 0000 [2]: a84aec198d1eaff0
 Block 0000 [3]: 1be35c5c8bfc52e0
 ...
 Block 0031 [124]: 9ffab191789d7380
 Block 0031 [125]: 4237012fc73e8d3e
 Block 0031 [126]: fbea11160fe7b50e
 Block 0031 [127]: 692210628c981931

 Tag: 57 b0 61 3b fd d4 13 1a
 0c 34 88 34 c6 72 9c 2c
 72 29 92 1e 6b ba 37 66
 5d 97 8c 4f e7 17 5e d2

6.2. Argon2i Test Vectors

 =======================================Argon2i
 Memory: 16 KiB
 Iterations: 3
 Parallelism: 4 lanes
 Tag length: 32 bytes
 Password[32]: 01 01 01 01 01 01 01 01
 01 01 01 01 01 01 01 01
 01 01 01 01 01 01 01 01
 01 01 01 01 01 01 01 01
 Salt[16]: 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02
 Secret[8]: 03 03 03 03 03 03 03 03
 Associated data[12]: 04 04 04 04 04 04 04 04 04 04 04 04
 Pre-hashing digest: c0 4e 5c 19 98 fc b1 12
 09 3e 36 a0 76 3e 2f 95
 57 f2 cf 53 6f b8 89 c9
 9c c6 d8 cd b3 49 cd 0c
 9d 48 db cc 94 57 59 8c
 6c 2d a1 e1 d1 8b 3b aa
 7a 37 43 cb d1 7a d8 5c
 61 df dc 7e 7a 8e 64 2f

 After pass 0:
 Block 0000 [0]: 34e7ba2a71020326
 Block 0000 [1]: 3a4e252bf033a4cb
 Block 0000 [2]: 3fb8e27bb8ab6a2b

Biryukov, et al. Expires May 8, 2016 [Page 9]

Internet-Draft Argon2 November 2015

 Block 0000 [3]: 65bb946635366867
 ...
 Block 0031 [124]: 433d8954deddd5d6
 Block 0031 [125]: c76ead72f0c08a23
 Block 0031 [126]: b7c6ce1154c1fdd1
 Block 0031 [127]: 0e766420b2ee181c

 After pass 1:
 Block 0000 [0]: 614a404c54646531
 Block 0000 [1]: 79f220080bfac514
 Block 0000 [2]: e9da047d0e4406b4
 Block 0000 [3]: 0995bc6d95590353
 ...
 Block 0031 [124]: 9b89e743afa7b916
 Block 0031 [125]: 9b3f7ca7cfff2db9
 Block 0031 [126]: 0065ff067978eab8
 Block 0031 [127]: 0a78fa2cea2b8bb2

 After pass 2:
 Block 0000 [0]: 3fea10517d1a7476
 Block 0000 [1]: e44c8bece4b3ecb2
 Block 0000 [2]: e348b27d988671cb
 Block 0000 [3]: 5f7f7cd33ef59e4d
 ...
 Block 0031 [124]: f60cb937689b55f8
 Block 0031 [125]: 418c55d7f343df3f
 Block 0031 [126]: 26899dd11adc7474
 Block 0031 [127]: dd3afa472ff1d124
 Tag: 91 3b a4 37 68 5b 61 3c
 f1 2b 94 46 79 53 40 37
 ac 46 cf a8 8a 02 f6 c7
 ba 28 0e 08 89 40 19 f2

7. Acknowledgements

 TBA

8. IANA Considerations

 None.

9. Security Considerations

 TBA

Biryukov, et al. Expires May 8, 2016 [Page 10]

Internet-Draft Argon2 November 2015

10. References

10.1. Normative References

 [I-D.saarinen-blake2]
 Saarinen, M. and J. Aumasson, "The BLAKE2 Cryptographic
 Hash and MAC", draft-saarinen-blake2-06 (work in
 progress), August 2015.

10.2. Informative References

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [ARGON2] Biryukov, A., Dinu, D., and D. Khovratovich, "Argon2: the
 memory-hard function for password hashing and other
 applications", WWW https://password-hashing.net/

argon2-specs.pdf, October 2015.

Authors' Addresses

 Alex Biryukov
 University of Luxembourg

 Daniel Dinu
 University of Luxembourg

 Dmitry Khovratovich
 University of Luxembourg

 Simon Josefsson
 SJD AB

 Email: simon@josefsson.org
 URI: http://josefsson.org/

https://datatracker.ietf.org/doc/html/draft-saarinen-blake2-06
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://password-hashing.net/argon2-specs.pdf
https://password-hashing.net/argon2-specs.pdf
http://josefsson.org/

Biryukov, et al. Expires May 8, 2016 [Page 11]

