
PPPEXT Working Group Ashwin Palekar
INTERNET-DRAFT Dan Simon
Category: Informational Microsoft Corporation
<draft-josefsson-pppext-eap-tls-eap-09.txt> Joe Salowey
8 October 2004 Hao Zhou
 Glen Zorn
 Cisco Systems
 S. Josefsson
 Extundo

 Protected EAP Protocol (PEAP) Version 2

 By submitting this Internet-Draft, I certify that any applicable
 patent or other IPR claims of which I am aware have been disclosed,
 and any of which I become aware will be disclosed, in accordance with

RFC 3668.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 22, 2005.

Copyright Notice

 Copyright (C) The Internet Society (2004). All rights reserved.

Abstract

 The Extensible Authentication Protocol (EAP) provides for support of
 multiple authentication methods. This document defines the Protected
 Extensible Authentication Protocol (PEAP) Version 2, which provides
 an encrypted and authenticated tunnel based on transport layer
 security (TLS) that encapsulates EAP authentication mechanisms.
 PEAPv2 uses TLS to protect against rogue authenticators, protect
 against various attacks on the confidentiality and integrity of the

Palekar et al. Informational [Page 1]

https://datatracker.ietf.org/doc/html/draft-josefsson-pppext-eap-tls-eap-09.txt
https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

INTERNET-DRAFT PEAPv2 8 October 2004

 inner EAP method exchange and provide EAP peer identity privacy.
 PEAPv2 also provides support for chaining multiple EAP mechanisms,
 cryptographic binding between authentications performed by inner EAP
 mechanisms and the tunnel, exchange of arbitrary parameters (TLVs),
 optimized session resumption, and fragmentation and reassembly.

Table of Contents

1. Introduction .. 4
1.1 Requirements Language 6
1.2 Terminology 7
1.3 Operational Model 8

2. Protocol overview 10
2.1 PEAPv2 Part 1 11
2.2 PEAPv2 Part 2 15
2.3 Error Handling 21
2.4 Fragmentation 22
2.5 Key Derivation 24
2.6 Ciphersuite Negotiation 26

3. PEAPv2 Protocol Description 26
3.1 PEAP Protocol Layers 26
3.2 PEAPv2 Packet Format 27

4. TLVs ... 28
4.1 TLV format 29
4.2 TLS-Payload TLV 30
4.3 Result TLV 31
4.4 NAK TLV .. 32
4.5 Crypto-Binding TLV 33
4.6 Connection-Binding TLV 36
4.7 Vendor-Specific TLV 37
4.8 URI TLV .. 38
4.9 EAP Payload TLV 39
4.10 Intermediate Result TLV 40
4.11 Reserved TLVs 41
4.12 Calling-Station-Id TLV 41
4.13 Called-Station-Id TLV 43
4.14 NAS-Port-Type TLV 44
4.15 Server-Identifier TLV 45
4.16 Identity-Type TLV 46
4.17 Server-Trusted-Root TLV 47
4.18 PKCS #7 TLV 48
4.19 Request-Action TLV 49
4.20 TLV Rules 50

Palekar et al. Informational [Page 2]

INTERNET-DRAFT PEAPv2 8 October 2004

5. Security considerations 52
5.1 Authentication and Integrity Protection 52
5.2 Method Negotiation 53
5.3 TLS Session Cache Handling 54
5.4 Certificate Revocation 55
5.5 Separation of EAP server and Authenticator 56

 5.6 Separation of PEAPv2 Part 1 and Part 2 Servers . 56
5.7 Identity Verification 58
5.8 Man-in-the-middle Attack Protection 59
5.9 Cleartext Forgeries 60
5.10 TLS Ciphersuites 61
5.11 Denial of Service Attacks 61
5.12 Server Unauthenticated Provisioning Mode 61
5.13 Security Claims 64

6. IANA Considerations 64
6.1 Definition of Terms 65
6.2 Recommended Registration Policies 65

7. References .. 65
7.1 Normative References 65
7.2 Informative References 66

Appendix A - Examples .. 69
Acknowledgments .. 83
Author's Addresses ... 83
Intellectual Property Statement 84
Disclaimer of Validity 85
Copyright Statement .. 85

Palekar et al. Informational [Page 3]

INTERNET-DRAFT PEAPv2 8 October 2004

1. Introduction

 The Extensible Authentication Protocol (EAP), defined in [RFC3748],
 provides for support of multiple authentication methods. EAP over
 PPP, defined in [RFC3748], is typically deployed with leased lines or
 modem connections. [IEEE8021X] defines EAP over IEEE 802 local area
 networks (EAPOL).

 Since its deployment, a number of weaknesses in EAP framework have
 become apparent. These include lack of support for:

 Identity protection
 Protected method negotiation
 Protected notification messages
 Protected termination messages
 Sequences of EAP methods
 Fragmentation and reassembly
 Exchange of arbitrary parameters in a secure channel
 Optimized re-authentication

 In addition, some EAP methods lack the following features:

 Mutual authentication
 Resistance to dictionary attacks
 Adequate key generation

 By wrapping the EAP protocol within TLS, Protected EAP (PEAP) Version
 2 addresses deficiencies in EAP or EAP methods. Benefits of PEAP
 Version 2 include:

Identity protection
 By encrypting the identity exchange, and allowing client identity
 to be provided after negotiation of the TLS channel, PEAPv2
 provides for identity protection.

Dictionary attack resistance
 By conducting the EAP conversation within a TLS channel, PEAPv2
 protects EAP methods that might be subject to an offline dictionary
 attack were they to be conducted in the clear.

Protected negotiation
 Since within PEAPv2, the EAP conversation is authenticated,
 integrity and replay protected on a per-packet basis, the EAP
 method negotiation that occurs within PEAPv2 is protected, as are
 error messages sent within the TLS channel (TLS alerts or EAP
 Notification packets). EAP negotiation outside of PEAPv2 is not
 protected.

https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc3748

Palekar et al. Informational [Page 4]

INTERNET-DRAFT PEAPv2 8 October 2004

Header protection
 Within PEAPv2, TLS provides per-packet encryption, authentication,
 integrity and replay protection for the EAP conversation. As a
 result, the Type-Data field within PEAPv2 (including the EAP header
 of the EAP method within PEAPv2) is protected against modification.
 However, the EAP header of PEAPv2 itself is not protected against
 modification, including the Code, Identifier and Type fields.

Protected termination
 By sending success/failure indications within the TLS channel,
 PEAPv2 provides support for protected termination of the EAP
 conversation. This prevents an attacker from carrying out denial
 of service attacks by spoofing EAP Failure messages, or fooling the
 EAP peer into accepting a rogue NAS, by spoofing EAP Success
 messages.

Fragmentation and Reassembly
 Since EAP does not include support for fragmentation and
 reassembly, individual methods need to include this capability. By
 including support for fragmentation and reassembly within PEAPv2,
 methods leveraging PEAPv2 do not need to support this on their own.

Fast reconnect
 Where EAP is used for authentication in wireless networks, the
 authentication latency is a concern. As a result, it is valuable
 to be able to do a quick re-authentication on roaming between
 access points. PEAPv2 supports this capability by leveraging the
 TLS session resumption facility, and any EAP method running under
 PEAPv2 can take advantage of it.

Standard key establishment
 In order to provide keying material for a wide range of link layer
 ciphersuites, EAP methods need to provide keying material. Key
 derivation is complex. PEAPv2 provides for key establishment by
 relying on the widely implemented and well-reviewed TLS [RFC2246]
 key derivation mechanism. PEAPv2 provides keying material for any
 EAP method running within it. If EAP methods will also be deployed
 without external protection (e.g PEAPv2 or IPSec), then the EAP
 methods should follow the guidelines in section 6.8 to prevent the
 man-in-the-middle attacks.

Sequencing of multiple EAP methods
 In order to enhance security, PEAPv2 implementations may choose to
 provide multi-factor authentication that validates different
 identities (for example user and machine identities) and/or uses
 different credentials of the same or different identities of the
 peer (e.g. user password and machine cert). PEAPv2 provides a
 standard way to chain different types of authentication mechanisms

https://datatracker.ietf.org/doc/html/rfc2246

Palekar et al. Informational [Page 5]

INTERNET-DRAFT PEAPv2 8 October 2004

 supporting different types of credentials.

Protected exchange of arbitrary parameters
 Type-Length-Value (TLV) tuples provide a way to exchange arbitrary
 information between peer and EAP server within a secure channel.
 This information can include signaling parameters for EAP protocol,
 provisioning parameters, media specific and environment specific
 data, and authorization parameters. The advantage of using PEAP
 TLVs is that every EAP method does not have to be modified.

Credential provisioning
 PEAPv2 supports provisioning of certificate trust anchors by the
 server using TLVs and can be extended to support provisioning of
 other peer credentials.

Optimized for light weight devices
 In order to support peers that may not support certificate
 ciphersuites, and may not support provisioning of certificate trust
 anchors, PEAPv2 enables negotiation of other TLS ciphersuites.

Server unauthenticated tunnel provisioning mode
 In some cases, the peer may only support password credentials and
 may not be provisioned with a certificate trust anchor.

 In server unauthenticated tunnel provisioning mode, a PEAPv2 peer
 can authenticate using a password, in order to be provisioned with
 a pre-shared key and other credentials that can be used for
 subsequent authentication. In server unauthenticated tunnel
 provisioning mode the PEAPv2 peer only confirms possession of the
 private key corresponding to the public key contained within the
 server certificate, but does not otherwise validate the server
 certificate. As a result, it is possible for an attacker to act as
 a man-in-the-middle during the initial exchange in order to perform
 an offline dictionary attack, based on capture of the password-
 based authentication exchange.

 In PEAPv2, implementation of server unauthenticated tunnel
 provisioning mode is optional, and due to the security
 vulnerabilities introduced by this mode, it is not recommended for
 use with peers that support certificate validation and provisioning
 of certificate trust anchors.

1.1. Requirements Language

 In this document, the key words "MAY", "MUST, "MUST NOT",
 "OPTIONAL", "RECOMMENDED", "SHOULD", and "SHOULD NOT", are to be
 interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119

Palekar et al. Informational [Page 6]

INTERNET-DRAFT PEAPv2 8 October 2004

1.2. Terminology

 This document frequently uses the following terms:

Access Point
 A Network Access Server implementing 802.11.

Authenticator
 The end of the link initiating EAP authentication. This term is
 also used in [IEEE8021X] and has the same meaning in this document.

Backend Authentication Server
 A backend authentication server is an entity that provides an
 authentication service to an Authenticator. When used, this server
 typically executes EAP methods for the Authenticator. This
 terminology is also used in [IEEE8021X].

EAP server
 The entity that terminates the EAP authentication method with the
 peer. In the case where no backend authentication server is used,
 the EAP server is part of the Authenticator. In the case where the
 authenticator operates in pass-through mode, the EAP server is
 located on the backend authentication server.

Link layer ciphersuite
 The ciphersuite negotiated for use at the link layer.

NAS Short for "Network Access Server".

Peer The end of the link that responds to the authenticator. In
 [IEEE8021X], this end is known as the Supplicant.

TLS Ciphersuite
 The ciphersuite negotiated for protection of the PEAPv2 Part 2
 conversation.

EAP Master key (MK)
 A key derived between the PEAPv2 client and server during the
 authentication conversation, and that is kept local to PEAPv2 and
 not exported or made available to a third party.

Master Session Key (MSK)
 Keying material (64 octets) that is derived between the PEAPv2
 client and server and exported by the PEAPv2 implementation.

Extended Master Session Key (EMSK)
 Additional keying material (64 octets) derived between the EAP
 client and server that is exported by the EAP method. The EMSK is

Palekar et al. Informational [Page 7]

INTERNET-DRAFT PEAPv2 8 October 2004

 known only to the EAP peer and server and is not provided to a
 third party.

TLV TLV standards for objects of format Type-Length-Value. The TLV
 format is defined in Section 4 of this document.

1.3. Operational Model

 In EAP, the EAP server may be implemented either within a Network
 Access Server (NAS) or on a backend authentication server. Where the
 EAP server resides on a NAS, the NAS is required to implement the
 desired EAP methods, and therefore needs to be upgraded to support
 each new EAP method.

 One of the goals of EAP is to enable development of new
 authentication methods without requiring deployment of new code on
 the Network Access Server (NAS). Where a backend authentication
 server is deployed, the NAS acts as a "passthrough" and need not
 understand specific EAP methods.

 This allows new EAP methods to be deployed on the EAP peer and
 backend authentication server, without the need to upgrade code
 residing on the NAS.

 Figure 1 describes the relationship between the EAP peer, NAS and EAP
 server. As described in the figure, the EAP conversation occurs
 between the EAP peer and EAP server, "passing through" the NAS. In
 order for the conversation to proceed in the case where the NAS and
 EAP server reside on separate machines, the NAS and EAP server need
 to establish trust beforehand.

 In PEAPv2, the conversation between the EAP peer and the EAP server
 is encrypted, authenticated, integrity and replay protected within a
 TLS channel.

 As a result, where the NAS acts as a "passthrough" it does not have
 knowledge of the TLS master secret derived between the peer and the
 EAP server. In order to provide keying material for link-layer
 ciphersuites, the NAS obtains the master session key, which is
 derived from a one-way function of the TLS master secret as well as
 keying material provided by EAP methods protected within a TLS
 channel. This enables the NAS and EAP peer to subsequently derive
 transient session keys suitable for encrypting, authenticating and
 integrity protecting session data. However, the NAS cannot decrypt
 the PEAPv2 conversation or spoof session resumption, since this
 requires knowledge of the TLS master secret.

Palekar et al. Informational [Page 8]

INTERNET-DRAFT PEAPv2 8 October 2004

+-+-+-+-+-+ +-+-+-+-+-+
Link		Link
Layer		Layer
Cipher-		Cipher-
Suite		Suite
+-+-+-+-+-+ +-+-+-+-+-+
 ^ ^
 | |
 | |
 | |
 V V
+-+-+-+-+-+ +-+-+-+-+-+ Trust +-+-+-+-+-+
	EAP		<======>	
	Conversation			
EAP	<================================>	EAP		
Peer	(over PPP,	NAS		Server
	802.11,etc.)		<=======	
			Keys	
+-+-+-+-+-+ +-+-+-+-+-+ +-+-+-+-+-+
 ^ ^
 | |
 | EAP API | EAP API
 | |
 V V
+-+-+-+-+-+ +-+-+-+-+-+
EAP		EAP
Method		Method
+-+-+-+-+-+ +-+-+-+-+-+

Figure 1 - Relationship between EAP client, backend
 authentication server and NAS.

Palekar et al. Informational [Page 9]

INTERNET-DRAFT PEAPv2 8 October 2004

1.3.1. Sequences

 EAP [RFC3748] prohibits use of multiple authentication methods within
 a single EAP conversation, except when tunneled methods such as
 PEAPv2 are used. This restriction was imposed in order to limit
 vulnerabilities to man-in-the-middle attacks as well as to ensure
 compatibility with existing EAP implementations.

 Within PEAP these concerns are addressed since PEAPv2 includes
 support for cryptographic binding to address man-in-the-middle
 attacks, as well as version negotiation so as to enable backward
 compatibility with prior versions of PEAP.

 Within this document, the term "sequence" refers to a series of EAP
 authentication methods run in sequence or TLV exchanges before or
 after EAP methods. The methods need not be distinct - for example,
 EAP-TLS could be run initially with machine credentials followed by
 the same protocol authenticating with user credentials.

 PEAPv2 supports two types of sequences:

[1] Serial authentication. Initiating additional EAP method(s) after a
 first successful authentication. In this case the sequence is
 successful if each of the EAP authentication methods completes
 successfully. For example, successful authentication might require
 a successful machine authentication followed by a successful user
 authentication.

[2] Parallel authentication. Initiating an alternative EAP method after
 failure of one or more initial methods. In this case the overall
 authentication is successful if any of the methods is successful.
 For example, if machine authentication fails, then user
 authentication can be attempted.

2. Protocol Overview

 Protected EAP (PEAP) Version 2 is comprised of a two-part
 conversation:

[1] In Part 1, a TLS session is negotiated, with server authenticating
 to the client and optionally the client to the server. The
 negotiated key is then used to encrypt the rest of the
 conversation.

[2] In Part 2, within the TLS session, zero or more EAP methods are
 carried out. Part 2 completes with a success/failure indication
 protected by the TLS session or a protected error (TLS alert).

https://datatracker.ietf.org/doc/html/rfc3748

Palekar et al. Informational [Page 10]

INTERNET-DRAFT PEAPv2 8 October 2004

 In the next two sections, we provide an overview of each of the parts
 of the PEAPv2 conversation.

2.1. PEAPv2 Part 1

2.1.1. Initial identity exchange

 The PEAP conversation typically begins with an optional identity
 exchange. The authenticator will typically send an EAP-
 Request/Identity packet to the peer, and the peer will respond with
 an EAP-Response/Identity packet to the authenticator.

 The initial identity exchange is used primarily to route the EAP
 conversation to the EAP server. Since the initial identity exchange
 is in the clear, the peer MAY decide to place a routing realm instead
 of its real name in the EAP-Response/Identity. The real identity of
 the peer can be established later in PEAPv2 part 2.

 If the EAP server is known in advance (such as when all users
 authenticate against the same backend server infrastructure and
 roaming is not supported), or if the identity is otherwise determined
 (such as from the dialing phone number or client MAC address), then
 the EAP-Request/Response-identity exchange MAY be omitted.

 Once the optional initial Identity Request/Response exchange is
 completed, while nominally the EAP conversation occurs between the
 authenticator and the peer, the authenticator MAY act as a
 passthrough device, with the EAP packets received from the peer being
 encapsulated for transmission to a backend authentication server.
 However, PEAP does not require a backend authentication server; if
 the authenticator implements PEAP, then it can authenticate local
 users.

 In the discussion that follows, we will use the term "EAP server" to
 denote the ultimate endpoint conversing with the peer.

2.1.2. TLS Session Establishment

 In this section, the protocol is described, and in Appendix A,
 examples of protocol exchanges are provided. While this section and
 the examples in Appendix A often describe negotiation of a
 certificate-based ciphersuite within TLS, PEAPv2 supports negotiation
 of other ciphersuites (for example, ciphersuites that do not use
 certificates) or extensions. However, the conversation may slightly
 differ if other TLS ciphersuites or extensions are used.

 Once having received the peer's Identity, and determined that PEAP
 authentication is to occur, the EAP server MUST respond with a

Palekar et al. Informational [Page 11]

INTERNET-DRAFT PEAPv2 8 October 2004

 PEAP/Start packet, which is an EAP-Request packet with EAP-Type=PEAP,
 the Start (S) bit set, the PEAP version as specified in Section

2.1.5, and optionally, the Server-Identity TLV.

 Assuming that the peer supports PEAP, the PEAP conversation will then
 begin, with the peer sending an EAP-Response packet with EAP-
 Type=PEAP. The Type-data field of the EAP-Response Packet will
 encapsulate one or more TLS records containing the TLS handshake
 messages. As defined in [RFC2246], the TLS handshake is used to
 negotiate parameters and cryptographic keys and may take several
 roundtrips between the client and server.

 The version offered by the client and server MUST be TLS v1.0 or
 later. PEAP implementations need not necessarily support all TLS
 ciphersuites listed in [RFC2246]. Not all TLS ciphersuites are
 supported by available TLS tool kits and licenses may be required in
 some cases.

 To ensure interoperability, PEAPv2 peers and servers MUST support the
 TLS v1.0 [RFC2246] mandatory-to-implement ciphersuite:

 TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

 In addition, PEAPv2 servers SHOULD support and be able to negotiate
 the following TLS ciphersuites:

 TLS_RSA_WITH_3DES_EDE_CBC_SHA
 TLS_RSA_WITH_RC4_128_MD5
 TLS_RSA_WITH_RC4_128_SHA
 TLS_RSA_WITH_AES_128_CBC_SHA

 In addition, PEAPv2 peers SHOULD support at least one of the
 following TLS ciphersuites:

 TLS_RSA_WITH_3DES_EDE_CBC_SHA
 TLS_RSA_WITH_RC4_128_MD5
 TLS_RSA_WITH_RC4_128_SHA
 TLS_RSA_WITH_AES_128_CBC_SHA

 TLS as described in [RFC2246] supports compression as well as
 ciphersuite negotiation. Therefore during the PEAPv2 Part 1
 conversation the PEAPv2 endpoints MAY request or negotiate TLS
 compression.

 If the full TLS handshake is performed, then the first payload of
 PEAPv2 part 2 is sent along with finished handshake message to reduce
 number of round trips.

https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2246

Palekar et al. Informational [Page 12]

INTERNET-DRAFT PEAPv2 8 October 2004

 Since after the TLS session is established, another complete EAP
 negotiation will occur and the peer will authenticate using a
 secondary mechanism, with PEAPv2 the client need not authenticate as
 part of TLS session establishment.

 Note that since TLS client certificates are sent in the clear, if
 identity protection is required, then it is possible for the TLS
 authentication to be re-negotiated after the first server
 authentication. To accomplish this, the server will typically not
 request a certificate in the server_hello, then after the
 server_finished message is sent, and before PEAP part 2, the server
 MAY send a TLS hello_request. This allows the client to perform
 client authentication by sending a client_hello if it wants to, or
 send a no_renegotiation alert to the server indicating that it wants
 to continue with PEAP part 2 instead. Assuming that the client
 permits renegotiation by sending a client_hello, then the server will
 respond with server_hello, a certificate and certificate_request
 messages. The client replies with certificate, client_key_exchange
 and certificate_verify messages. Since this re-negotiation occurs
 within the encrypted TLS channel, it does not reveal client
 certificate details.

2.1.3. Session Resumption

 The purpose of the sessionId within the TLS protocol and the Server-
 Identifier TLV in PEAP is to allow for improved efficiency in the
 case where a client repeatedly attempts to authenticate to an EAP
 server within a short period of time. This capability is
 particularly useful for support of wireless roaming.

 In order to help the peer choose a sessionID that belongs to the
 specific server, the EAP server MAY send an identifier (Server-
 Identifier TLV) that the peer can use as a hint. The Server-
 Identifier TLV MAY be sent in the first PEAP packet from the EAP
 server to the peer. In order to detect modification of the Server-
 Identifier TLV, the Server-Identifier TLV is included in calculation
 of the compound MAC.

 It is left up to the peer whether to attempt to continue a previous
 session, thus shortening the PEAP Part 1 conversation. Typically the
 peer's decision will be made based on the time elapsed since the
 previous authentication attempt to that EAP server.

 Based on the sessionId chosen by the peer, and the time elapsed since
 the previous authentication, the EAP server will decide whether to
 allow the continuation, or whether to choose a new session.

 In the case where the EAP server and the authenticator reside on the

Palekar et al. Informational [Page 13]

INTERNET-DRAFT PEAPv2 8 October 2004

 same device, then the client will only be able to continue sessions
 when connecting to the same NAS or channel server. Should devices be
 set up in a rotary or round-robin, where the Server-Identifier TLV is
 not used, it may not be possible for the peer to know in advance the
 authenticator it will be connecting to, and therefore which sessionId
 to attempt to reuse. As a result, the continuation attempt is likely
 to fail.

 In the case where the EAP authentication is remoted then continuation
 is much more likely to be successful, since multiple NAS devices and
 channel servers will remote their EAP authentications to the same
 backend authentication server.

 If the EAP server is resuming a previously established session, then
 it MUST include only a TLS change_cipher_spec message and a TLS
 finished handshake message after the server_hello message. The
 finished message contains the EAP server's authentication response to
 the peer.

 If the preceding server_hello message sent by the EAP server in the
 preceding EAP-Request packet indicated the resumption of a previous
 session, then the peer MUST send only the change_cipher_spec and
 finished handshake messages. The finished message contains the
 peer's authentication response to the EAP server. The latter contains
 the EAP server's authentication response to the peer. The peer will
 verify the hash in order to authenticate the EAP server.

 If authentication fails, then the peer and EAP-server MUST follow the
 error handling behavior specified in section 2.3.

 Even if the session is successfully resumed with the same EAP server,
 the peer and EAP server MUST NOT assume that either will skip inner
 EAP methods. The peer may have roamed to a network which may use the
 same EAP server, but may require conformance with a different
 authentication policy.

2.1.4. Version Negotiation

 PEAP packets contain a three bit version field, which enables PEAP
 implementations to be backward compatible with previous versions of
 the protocol. This specification documents the PEAP version 2
 protocol; implementations of this specification MUST use a version
 field set to 2. Version negotiation proceeds as follows:

[1] In the first EAP-Request sent with EAP-Type=PEAP, the EAP server
 MUST set the version field to the highest supported version number.

Palekar et al. Informational [Page 14]

INTERNET-DRAFT PEAPv2 8 October 2004

[2] If the EAP peer supports this version of the protocol, it MUST
 respond with an EAP-Response of EAP-Type=PEAP, and the version
 number proposed by the EAP server.

[3] If the EAP peer does not support this version, it responds with an
 EAP-Response of EAP-Type=PEAP and the highest supported version
 number.

[4] If the PEAP server does not support the version number proposed by
 the PEAP peer, it terminates the conversation, as described in

Section 2.2.2.

 The version negotiation procedure guarantees that the EAP peer and
 server will agree to the latest version supported by both parties.
 If version negotiation fails, then use of PEAP will not be possible,
 and another mutually acceptable EAP method will need to be negotiated
 if authentication is to proceed.

 The PEAP version field is not protected by TLS and therefore can be
 modified in transit. In order to detect modification of the PEAP
 version which could occur as part of a "downgrade" attack, the peer
 and EAP server check if the version it sent during negotiation is
 same as the version claimed to be received by the other party. Each
 party uses the Crypto-Binding TLV to inform the other party of the
 version number it received during the PEAP version negotiation. The
 receiver of the crypto binding TLV must verify that the version in
 the crypto binding TLV matches the version it sent during PEAP
 version negotiation.

2.2. PEAPv2 Part 2

 The second portion of the PEAPv2 conversation typically consists of a
 complete EAP conversation occurring within the TLS session negotiated
 in PEAPv2 Part 1; ending with protected termination using the Result-
 TLV. PEAPv2 part 2 will occur only if establishment of a new TLS
 session in Part 1 is successful or a TLS session is successfully
 resumed in Part 1. In cases where a new TLS session is established
 in PEAPv2 part 1, the first payload of the part 2 conversation is
 sent by the EAP server along with the finished message to save a
 round-trip.

 Part 2 SHOULD NOT occur if the EAP Server authenticates
 unsuccessfully, and MUST NOT occur if establishment of the TLS
 session in part 1 was not successful Or a TLS fatal error has been
 sent terminating the conversation.

 Since all packets sent within the PEAPv2 Part 2 conversation occur
 after TLS session establishment, they are protected using the

Palekar et al. Informational [Page 15]

INTERNET-DRAFT PEAPv2 8 October 2004

 negotiated TLS ciphersuite. All EAP packets of the EAP conversation
 in part 2 including the EAP header of the inner EAP method are
 protected using the negotiated TLS ciphersuite.

 Part 2 MAY NOT always include a EAP conversation within the TLS
 session, referred to in this document as inner EAP methods. However,
 Part 2 MUST always end with either protected termination or protected
 error termination (e.g. TLS alert).

 Within Part 2, protected EAP conversation and protected termination
 packets are always carried within TLVs. There are TLVs defined for
 specific purposes such as carrying EAP-authentication messages and
 carrying cryptographic binding. New TLVs may be developed for other
 purposes.

2.2.1. Protected Conversation

 Part 2 of the PEAPv2 conversation typically begins with the EAP
 server sending an optional EAP-Request/Identity packet to the peer,
 protected by the TLS ciphersuite negotiated in PEAPv2 Part 1. The
 peer responds with an EAP-Response/Identity packet to the EAP server,
 containing the peer's userId. Since this Identity Request/Response
 exchange is protected by the ciphersuite negotiated in TLS, it is not
 vulnerable to snooping or packet modification attacks.

 After the TLS session-protected Identity exchange, the EAP server
 will then select authentication method(s) for the peer, and will send
 an EAP-Request with the Type field set to the initial method. As
 described in [RFC3748], the peer can NAK the suggested EAP method,
 suggesting an alternative. Since the NAK will be sent within the TLS
 channel, it is protected from snooping or packet modification. As a
 result, an attacker snooping on the exchange will be unable to inject
 NAKs in order to "negotiate down" the authentication method. An
 attacker will also not be able to determine which EAP method was
 negotiated.

 The EAP conversation within the TLS protected session may involve a
 sequence of zero or more EAP authentication methods; it completes
 with the protected termination described in Section 2.2.2. Several
 TLVs may be included in each Request and Response. EAP methods are
 always encapsulated within EAP Payload-TLV.

 In a typical EAP conversation, the result of the conversation is
 communicated by sending EAP Success or EAP Failure packets after the
 EAP method is complete. The EAP Success or Failure packet is
 considered the last packet of the EAP conversation; and therefore
 cannot be used when sequences need to be supported. Hence, instead
 of using the EAP-success or EAP-failure packet, both peer and EAP

https://datatracker.ietf.org/doc/html/rfc3748

Palekar et al. Informational [Page 16]

INTERNET-DRAFT PEAPv2 8 October 2004

 server MUST use the Intermediate Result TLV to communicate the
 result.

 In a typical EAP conversation, the EAP Success or EAP Failure is
 considered the last packet of the EAP conversation. Within PEAPv2,
 the EAP server can start another EAP method after success or failure
 of the previous EAP method inside the protected session.

 In a sequence of more than one EAP authentication method, to make
 sure the same parties are involved in tunnel establishment and
 successful completion of previous inner EAP methods, before
 completing negotiation of the next EAP method, both peer and EAP
 server MUST use crypto binding (Crypto-Binding TLV). If no EAP
 methods have been negotiated inside the tunnel or no EAP methods have
 been successfully completed inside the tunnel, the Crypto-Binding TLV
 MUST NOT be used.

 The Intermediate-Result TLV and Crypto-Binding TLV MUST be sent after
 each EAP method that was successful. If the EAP method failed, or if
 the EAP method negotiation did not complete, then an Intermediate-
 Result TLV MAY be included, and the Crypto-Binding TLV MUST NOT be
 included. An exception is that the Crypto-Binding TLV MUST be sent
 along with a protected success/failure indication as described in

Section 2.2.2.

 If these TLVs are not sent after a successful EAP method, it should
 be considered a tunnel compromise error by peer and EAP server,
 resulting in terminating the conversation as described in Section

2.3.

 A subsequent EAP conversation can be started after both TLVs are
 exchanged in a TLV packet. Alternatively, if a subsequent EAP
 conversation is being attempted, then in order to reduce round trips,
 both TLVs SHOULD be sent with the EAP-Payload of the first EAP packet
 of the next EAP conversation (for example, EAP- Identity or EAP-
 packet of the EAP method). Alternatively, if the next packet is the
 protected success/failure packet, then in order to reduce round
 trips, both TLVs MUST be sent with the protected success/failure
 packet.

 If the EAP server sends a valid Crypto-Binding-TLV to the peer, the
 peer MUST respond with a Crypto-Binding TLV. If the Crypto-Binding-
 TLV is invalid, it should be considered a tunnel compromise error by
 the peer. If the peer does not respond with a TLV packet containing
 the Crypto-Binding TLV, it MUST be considered a tunnel compromise
 error by the EAP server.

 Within a PEAPv2 part 2 conversation, a peer MAY request the trusted

Palekar et al. Informational [Page 17]

INTERNET-DRAFT PEAPv2 8 October 2004

 root of a server certificate using a Server-Trusted-Root TLV, and
 the EAP server MAY respond with a Server-Trusted-Root TLV to the
 peer. The Server-Trusted-Root can be exchanged in regular
 authentication mode or server unauthenticated tunnel provisioning
 mode.

 After the peer has determined that it has successfully authenticated
 the EAP server and determined that the tunnel and inner EAP methods
 were between the same peer and EAP server by validating the Crypto-
 Binding TLV, it MAY send one or more Server-Trusted-Root TLVs (marked
 as optional) to request the trusted root of server certificate from
 the EAP server. The peer may receive a response, but is not required
 to use the trusted root received from the EAP server.

 If the EAP server has determined that it has successfully
 authenticated the peer and determined that the tunnel and inner EAP
 methods were between the same peer and EAP server by validating the
 Crypto-Binding TLV, then it MAY respond with the the server-trusted-
 root containing the PCKS#7 TLV.

2.2.2. Protected Termination

 The PEAPv2 part 2 conversation is completed by exchanges of
 success/failure indications (Result-TLV) within a TLV packet
 protected by the TLS session.

 Even if Crypto-Binding TLVs have been exchanged in previous
 conversations, the Crypto-Binding TLV MUST be included in both
 protected success/failure (Result-TLV) indications. If the TLVs are
 not included, or if the TLVs are invalid, it should be considered a
 tunnel compromise error, and the peer and EAP server MUST follow the
 rules described in Section 2.3 to abort the conversation.

 The Result TLV is sent within the TLS channel. The PEAP client then
 replies with a Result-TLV. The conversation concludes with the PEAP
 server sending a cleartext success/failure indication.

 The only outcome which should be considered as successful
 authentication is when a Result-TLV of Status=Success is answered by
 the peer with a Result TLV of Status=Success.

 The combinations (Result-TLV=Failure, Result-TLV=Success), (Result-
 TLV=Failure, Result-TLV=Failure), (no TLVs exchange or no protected
 success or failure) should be considered an authentication failure by
 both the peer and EAP server. Once the peer and EAP server consider
 that authentiation has failed, these are the last packets inside the
 protected tunnel. These combinations are considered an
 authentication failure regardless of whether a cleartext EAP Success

Palekar et al. Informational [Page 18]

INTERNET-DRAFT PEAPv2 8 October 2004

 or EAP Failure packet is subsequently sent.

 If the EAP server wants authentication to fail, it sends the TLV
 response with Result-TLV=Failure. If the EAP server sends a failure,
 the peer MUST respond with Result-TLV=Failure and the Crypto-Binding
 TLV, without any other mandatory TLVs. The Crypto-Binding TLV is
 calculated using the key derivation formula in Section 2.5; if for
 some reason one or more inner EAP method MSKs were not derived, then
 these MSKs are assumed to be null.

 If the EAP server has sent the success indication (Result-
 TLV=Success), the peer is allowed to refuse to accept a Success
 message from the EAP server since the client's policy may require
 completion of certain EAP methods or the client may require
 credentials.

 If the EAP server has sent a success indication (Result TLV=success),
 and the peer wants authentication to fail, it sends the TLV response
 with Result-TLV=Failure and Crypto-Binding-TLV.

 After the EAP-server returns success, if the peer wants to request
 the EAP server to continue conversation, it sends a Result
 TLV=Success along with a Request-Action TLV with the appropriate
 action (e.g. Negotiate-EAP, or Process-TLV). If the Request-Action
 TLV is set to mandatory, then the EAP server MUST process the action,
 or return status=failure, closing the conversation inside the tunnel.
 If the Request-Action TLV is set to optional, then the EAP server can
 ignore the TLV and return Result-TLV=Success again, closing the
 conversation inside the tunnel.

2.2.3. Server Unauthenticated Tunnel Provisioning Mode

 Server unauthenticated tunnel provisioning mode provides ease of
 deployment at the cost of introducing man-in-the-middle
 vulnerabilities. As a result, implementation of the server
 unauthenticated tunnel provisioning mode is OPTIONAL.

 In server unauthenticated tunnel provisioning mode, as part of PEAPv2
 part 1, the peer verifies that the EAP server possesses the private
 key corresponding to the public key contained in the certificate
 presented by the EAP server. However, the peer does not verify
 whether the certificate presented by the server chains to a
 provisioned trust anchor. Assuming that the server demonstrates
 possession of the private key, the peer continues with establishment
 of the tunnel (PEAPv2 part 2). As a result, it is possible that the
 TLS channel (PEAPv2 part 2) may be terminated by an attacker.

 The PEAPv2 Part 2 conversation is unchanged in server unauthenticated

Palekar et al. Informational [Page 19]

INTERNET-DRAFT PEAPv2 8 October 2004

 tunnel provisioning mode, except that the peer will only accept an
 EAP method supporting mutual authentication and key derivation that
 is compatible with its initial credentials (such as a password-based
 EAP method). The peer then uses the Crypto-Binding TLV to validate
 that the same server terminates both the TLS channel and the
 successfully completed EAP method, thereby verifying that the
 exchange was not subject to a man-in-the-middle attack. Assuming
 that the Crypto-Binding TLV exchange is successful, the peer will
 request and the server will subsequently provide a trusted root,
 using the Server-Trusted-Root TLV.

 Once the server unauthenticated tunnel provisioning exchange
 completes, the peer is expected to use the provisioned credentials in
 subsequent PEAPv2 authentications, and SHOULD NOT use server
 unauthenticated tunnel provisioning mode.

 PEAPv2 servers implementing server unauthenticated tunnel
 provisioning mode MAY support the following additional ciphersuites,
 beyond those specified in Section 2.1.2:

 TLS_DH_anon_WITH_AES_128_CBC_SHA

 PEAPv2 peers implementing server unauthenticated tunnel provisioning
 mode MAY support the following additional ciphersuites, beyond those
 specified in Section 2.1.2:

 TLS_DH_anon_WITH_AES_128_CBC_SHA

 Where TLS certificate ciphersuites are negotiated in PEAPv2 Part 1,
 if the peer can verify that the EAP server possesses the private key
 corresponding to the public key in the certificate presented by the
 PEAPv2 server, but the peer is not configured with a certificate
 trust anchor required to validate the server certificate, the peer
 MAY choose to go into server unauthenticated tunnel provisioning
 mode.

 If the peer cannot verify that the server possesses the corresponding
 private key, or if the certificate presented by the server is
 unacceptable for any reason other than the lack of an appropriate
 trust anchor, the peer MUST NOT use server unauthenticated tunnel
 provisioning mode. If the peer decides to proceed with server
 unauthenticated tunnel provisioning mode, it MUST NOT send a TLS
 fatal alert, but instead continues with establishment of the TLS
 channel as in PEAPv2 Part 1.

 [Issue] Can the peer use some other TLS alert to indicate the failure
 to EAP server? In Anon-DH, the server explicitly knows that the
 client will use provisioning mode. Will this in anyway make this

Palekar et al. Informational [Page 20]

INTERNET-DRAFT PEAPv2 8 October 2004

 provisioning mode less secure?

 [Issue] Since the server does not know upfront that the peer has
 decided to go into provisioning mode, does this result in any attacks
 like privacy et al?

2.3. Error Handling

 PEAPv2 does not have its own error message capabilities since:

[1] Errors in TLS and errors related to crypto-binding (tunnel
 compromise errors) are communicated via TLS alert messages.

[2] Errors within the EAP conversation in PEAPv2 Part 2 are expected to
 be handled by individual EAP methods.

[3] Violation of the TLV rules for inner-TLVs are handled using Result-
 TLVs.

 If an error occurs at any point in the TLS layer, the EAP server
 SHOULD send a TLS alert message instead of the next EAP-request
 packet to the peer. The EAP server SHOULD send an EAP-Request packet
 with EAP-Type=PEAP, encapsulating a TLS record containing the
 appropriate TLS alert message. The EAP server SHOULD send a TLS
 alert message rather than immediately terminating the conversation so
 as to allow the peer to inform the user of the cause of the failure
 and possibly allow for a restart of the conversation. To ensure that
 the peer receives the TLS alert message, the EAP server MUST wait for
 the peer to reply with an EAP-Response packet.

 The EAP-Response packet sent by the peer MAY encapsulate a TLS
 client_hello handshake message, in which case the EAP server MAY
 allow the PEAPv2 conversation to be restarted, or it MAY contain an
 EAP-Response packet with EAP-Type=PEAP and no data, in which case the
 PEAPv2 server MUST send an EAP-Failure packet, and terminate the
 conversation.

 It is up to the EAP server whether to allow restarts, and if so, how
 many times the conversation can be restarted. An EAP server
 implementing restart capability SHOULD impose a limit on the number
 of restarts, so as to protect against denial of service attacks.

 If an error occurs at any point in the TLS layer, the peer SHOULD
 send a TLS alert message instead of the next EAP-response packet to
 the EAP server. The peer SHOULD send an EAP-Response packet with
 EAP-Type=PEAP, encapsulating a TLS record containing the appropriate
 TLS alert message. The EAP server may restart the conversation by
 sending a EAP-Request packet encapsulating the TLS

Palekar et al. Informational [Page 21]

INTERNET-DRAFT PEAPv2 8 October 2004

 hello_request_handshake message, in which case the peer MAY allow the
 PEAPv2 conversation to be restarted; or the EAP server can response
 with EAP Failure.

 Any time the peer or the EAP server finds an error when processing
 the sequence of exchanges, such a violation of TLV rules, it should
 send a Result TLV of failure and terminate the tunnel. This is
 usually due to an implementation problem and is considered an fatal
 error.

 If a tunnel compromise error (see Section 2.2) is detected by the
 peer, the peer SHOULD send a TLS Internal Error alert (a Fatal error)
 message instead of the next EAP-response packet to the EAP server.
 Similarly, if a tunnel compromise error is detected by the EAP
 server, the EAP server SHOULD send a TLS Internal error alert (a
 Fatal error) message instead of the next EAP-response packet to the
 peer.

2.4. Fragmentation

 A single TLS record may be up to 16384 octets in length, but a TLS
 message may span multiple TLS records, and a TLS certificate message
 may in principle be as long as 16MB.

 The group of PEAPv2 messages sent in a single round may thus be
 larger than the PPP MTU size, the maximum RADIUS packet size of 4096
 octets, or even the Multilink Maximum Received Reconstructed Unit
 (MRRU).

 As described in [RFC1990], the multilink MRRU is negotiated via the
 Multilink MRRU LCP option, which includes an MRRU length field of two
 octets, and thus can support MRRUs as large as 64 KB.

 However, note that in order to protect against reassembly lockup and
 denial of service attacks, it may be desirable for an implementation
 to set a maximum size for one such group of TLS messages. Since a
 typical certificate chain is rarely longer than a few thousand
 octets, and no other field is likely to be anywhere near as long, a
 reasonable choice of maximum acceptable message length might be 64
 KB.

 If this value is chosen, then fragmentation can be handled via the
 multilink PPP fragmentation mechanisms described in [RFC1990]. While
 this is desirable, EAP methods are used in other applications such as
 [IEEE80211] and there may be cases in which multilink or the MRRU LCP
 option cannot be negotiated. As a result, a PEAPv2 implementation
 MUST provide its own support for fragmentation and reassembly.

https://datatracker.ietf.org/doc/html/rfc1990
https://datatracker.ietf.org/doc/html/rfc1990

Palekar et al. Informational [Page 22]

INTERNET-DRAFT PEAPv2 8 October 2004

 Since EAP is an ACK-NAK protocol, fragmentation support can be added
 in a simple manner. In EAP, fragments that are lost or damaged in
 transit will be retransmitted, and since sequencing information is
 provided by the Identifier field in EAP, there is no need for a
 fragment offset field as is provided in IPv4.

 PEAPv2 fragmentation support is provided through addition of flag
 bits within the EAP-Response and EAP-Request packets, as well as a
 TLV Message Length field of four octets. Flags include the Length
 included (L), More fragments (M), and PEAP Start (S) bits. The L
 flag is set to indicate the presence of the four octet TLV Message
 Length field, and MUST be set only for the first fragment of a
 fragmented TLV message or set of messages.

 The TLV Message Length field in the PEAPv2 header is not protected,
 and hence can be modified by a attacker. The TLS record length in
 the TLS data is protected. Hence, if the TLV Message length received
 in the first packet (with L bit set) is greater or less than the
 total size of TLS messages received including multiple fragments,
 then the TLV message length should be ignored.

 In order to protect against reassembly lockup and denial of service
 attacks, it may be desirable for an implementation to set a maximum
 size for one group of Outer-TLV messages. Since a typical
 certificate chain is rarely longer than a few thousand octets, and no
 other field is likely to be anywhere near as long, a reasonable
 choice of maximum acceptable message length for all the Outer-TLVs in
 a group of messages might be 64 KB.

 The M flag is set on all but the last fragment. The S flag is set
 only within the PEAP start message sent from the EAP server to the
 peer. The TLV Message Length field is four octets, and provides the
 total length of the TLV message or set of messages that is being
 fragmented; this simplifies buffer allocation.

 When a peer receives an EAP-Request packet with the M bit set, it
 MUST respond with an EAP-Response with EAP-Type=PEAP and no data.
 This serves as a fragment ACK. The EAP server MUST wait until it
 receives the EAP-Response before sending another fragment. In order
 to prevent errors in processing of fragments, the EAP server MUST
 increment the Identifier field for each fragment contained within an
 EAP-Request, and the peer MUST include this Identifier value in the
 fragment ACK contained within the EAP-Response. Retransmitted
 fragments will contain the same Identifier value.

 Similarly, when the EAP server receives an EAP-Response with the M
 bit set, it MUST respond with an EAP-Request with EAP-Type=PEAP and
 no TLS data. This serves as a fragment ACK. The EAP peer MUST wait

Palekar et al. Informational [Page 23]

INTERNET-DRAFT PEAPv2 8 October 2004

 until it receives the EAP-Request before sending another fragment.
 In order to prevent errors in the processing of fragments, the EAP
 server MUST increment the Identifier value for each fragment ACK
 contained within an EAP-Request, and the peer MUST include this
 Identifier value in the subsequent fragment contained within an EAP-
 Response.

2.5. Key Derivation

 Since the normal TLS keys are used in the handshake, and therefore
 should not be used in a different context, new keys must be derived
 from the TLS master secret for use with the selected link layer
 ciphersuites.

 Instead of deriving keys specific to link layer ciphersuites EAP
 methods provide a Master Session Key (MSK) used to derive keys in a
 link layer specific manner. The method used to extract ciphering
 keys from the MSK is beyond the scope of this document.

 PEAPv2 also derives an Extended Master Session Key (EMSK) which is
 reserved for use in deriving keys in other ciphering applications.
 This draft also does not discuss the format of the attributes used to
 communicate the master session keys from the backend authentication
 server to the NAS. Examples of such attributes are provided in
 [RFC2548].

 PEAPv2 combines key material from the TLS exchange with key material
 from inner key generating EAP methods to provide stronger keys and to
 bind inner authentication mechanisms to the TLS tunnel. Both the
 peer and EAP server MUST derive compound MAC and compound session
 keys using the procedure described below.

 The input for the cryptographic binding includes the following:

[a] The PEAPv2 tunnel key (TK) is calculated using the first 64 octets
 of the (secret) key material generated as described in the EAP-TLS
 algorithm ([RFC2716] section 3.5)

[b] The MSK provided by each successful inner EAP method (should not
 include the 64 octets of EMSK); for each successful EAP method
 completed within the tunnel.

 ISK1..ISKn are the MSK portion of the EAP keying material obtained
 from methods 1 to n. In some cases where the inner EAP method does
 not provide keys: ISKi, for some i, may be the null string ("").

 The PRF algorithm is based on PRF+ from IKEv2 shown below ("|"
 denotes concatenation)

https://datatracker.ietf.org/doc/html/rfc2548
https://datatracker.ietf.org/doc/html/rfc2716#section-3.5

Palekar et al. Informational [Page 24]

INTERNET-DRAFT PEAPv2 8 October 2004

 K = Key, S = Seed, LEN = output length, represented as binary
 in a single octet.

 PRF (K,S,LEN) = T1 | T2 | T3 | T4 | ... where:

 T1 = HMAC-SHA1(K, S | LEN | 0x01)
 T2 = HMAC-SHA1 (K, T1 | S | LEN | 0x02)
 T3 = HMAC-SHA1 (K, T2 | S | LEN | 0x03)
 T4 = HMAC-SHA1 (K, T3 | S | LEN | 0x04)
 ...
 The intermediate combined key is generated after each
 successful EAP method inside the tunnel.

 Generating the intermediate combined key:

 Take the second 32 octets of TK

 IPMK0 = TK
 for j = 1 to k do
 IPMKj = PRF(IPMK(j-1),"Intermediate PEAP MAC key" | ISKj, 32);

 k = the last successful EAP method inside the tunnel at the point
 where the combined MAC key is derived.

 Each IPMKj output is 32 octets. IPMKn is the intermediate combined
 key used to derive combined session and combined MAC keys.

 Compound MAC Key derivation:

 The Compound MAC Key for the server (the B1_MAC) is derived CMK_B1

 CMK_B1 = PRF(IPMKn,"PEAP Server B1 MAC key" | S_NONCE, 20)

 The Compound MAC Key for the client (the B2_MAC) is derived from
 MAC key called CMK B2.

 CMK_B2 = PRF(IPMKn,"PEAP Client B2 MAC key" | C_NONCE | S_NONCE,
 20)

 The compound MAC keys (CMK_B1 and CMK_B2) are each 20 octets long.

 Compound Session Key derivation:

 The compound session key (CSK) is derived on both the peer and EAP
 server.

 CSK = PRF(IPMKn, "PEAP compound session key" | C_NONCE | S_NONCE,
 OutputLength)

Palekar et al. Informational [Page 25]

INTERNET-DRAFT PEAPv2 8 October 2004

 The output length of the CSK must be at least 128 bytes. The first
 64 octets are taken and the MSK and the second 64 octets are taken
 as the EMSK. The MSK and EMSK are described in [RFC3748].

2.6. Ciphersuite Negotiation

 Since TLS supports TLS ciphersuite negotiation, peers completing the
 TLS negotiation will also have selected a TLS ciphersuite, which
 includes key strength, encryption and hashing methods. However,
 unlike in [RFC2716], within PEAPv2, the negotiated TLS ciphersuite
 relates only to the mechanism by which the PEAPv2 Part 2 conversation
 will be protected, and has no relationship to link layer security
 mechanisms negotiated within the PPP Encryption Control Protocol
 (ECP) [RFC1968] or within IEEE 802.11 [IEEE80211].

 As a result, this specification currently does not support secure
 negotiation of link layer ciphersuites.

3. PEAPv2 Protocol Description

3.1. PEAP Protocol Layers

 PEAP packets may encapsulate TLVs both inside and outside the TLS
 tunnel. The term "Outer TLVs" is used to refer to TLVs outside the
 TLS tunnel; TLS records are themselves enclosed within Outer TLVs.
 The term "Inner TLVs" is used to refer to TLVs sent within the TLS
 tunnel.

 In PEAPv2 Part 1, Outer TLVs are used to encapsulate TLS records
 (TLS-Payload TLV) as well as for other purposes, but no Inner TLVs
 are used. Therefore the layering of PEAPv2 Part 1 is as follows:

 +-+
 | TLS |
 +-+
 | Outer-TLVs (TLS-Payload TLV) |
 +-+
 | PEAP |
 +-+
 | EAP |
 +-+

 In PEAPv2 Part 2, Outer TLVs are used to encapsulate TLS records
 which in turn may encapsulate zero or more Inner TLVs. EAP packets
 (including EAP header fields) used within tunneled EAP authentication
 methods are carried within Inner TLVs. Therefore the layering of
 PEAPv2 Part 2 is as follows:

https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc2716
https://datatracker.ietf.org/doc/html/rfc1968

Palekar et al. Informational [Page 26]

INTERNET-DRAFT PEAPv2 8 October 2004

 +-+
 | EAP |
 +-+
 | Inner-TLVs (EAP-Payload TLV) |
 +-+
 | TLS |
 +-+
 | Outer-TLVs (TLS-Payload TLV) |
 +-+
 | PEAP |
 +-+
 | EAP |
 +-+

3.2. PEAPv2 Packet Format

 A summary of the PEAPv2 packet format is shown below. The fields are
 transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+
 | Type | Flags | Ver | Outer-TLV Message Length
 +-+
 | Outer-TLV Message Length | Outer-TLVs...
 +-+

 Code

 1 - Request
 2 - Response

 Identifier

 The Identifier field is one octet and aids in matching responses
 with requests. The Identifier field MUST be changed on each
 Request packet. The Identifier field in a Response packet MUST
 match the Identifier field from the corresponding Request.

 Length

 The Length field is two octets and indicates the length of the EAP
 packet including the Code, Identifier, Length, Type, Flags,
 Version, Outer-TLV Message Length and Outer-TLV fields. Octets
 outside the range of the Length field should be treated as Data
 Link Layer padding and should be ignored on reception.

Palekar et al. Informational [Page 27]

INTERNET-DRAFT PEAPv2 8 October 2004

 Type

 25 - PEAP

 Flags

 0 1 2 3 4
 +-+-+-+-+-+
 |L M S R R|
 +-+-+-+-+-+

 L = Length included
 M = More fragments
 S = PEAP start
 R = Reserved (must be zero)

 The L bit (length included) is set to indicate the presence of the
 four octet Outer-TLV Message Length field, and MUST be set for the
 first fragment of a fragmented Outer-TLV message or set of
 messages. The M bit(more fragments) is set on all but the last
 fragment. The S bit (PEAP start) is set in a PEAP Start message.
 This differentiates the PEAP Start message from a fragment
 acknowledgment.

 Version

 0 1 2
 +-+-+-+
 |R|1|0|
 +-+-+-+

 R = Reserved (must be zero)

 Outer-TLV Message Length

 The Outer-TLV Message Length field is four octets, and is present
 only if the L bit is set. This field provides the total length of
 the Outer-TLV message or set of messages that is being fragmented.

 Outer-TLV data

 The Outer-TLV data consists of the encapsulated packet in TLV
 format.

4. TLVs

 The TLVs used within PEAPv2 are standard Type-Length-Value (TLV)
 objects. The TLV objects could be used to carry arbitrary parameters

Palekar et al. Informational [Page 28]

INTERNET-DRAFT PEAPv2 8 October 2004

 between EAP peer and EAP server. Possible uses for TLV objects
 include: language and character set for Notification messages and
 cryptographic binding.

 The EAP peer may not necessarily implement all the TLVs supported by
 the EAP server; and hence to allow for interoperability, TLVs allow
 an EAP server to discover if a TLV is supported by the EAP peer,
 using the NAK TLV. The PEAPv2 packet does not have to contain any
 TLVs, nor need it contain any mandatory TLVs.

 The mandatory bit in a TLV indicates that if the peer does not
 support the TLV, it MUST send a NAK TLV in response; and all the
 other TLVs in the message MUST be ignored. If an EAP peer finds an
 unsupported TLV which is marked as optional, it MUST NOT send an NAK
 TLV.

 Note that a peer may support a TLV with the mandatory bit set, but
 may not understand the contents. The appropriate response to a
 supported TLV with content that is not understood is defined by the
 TLV specification.

 Outer-TLVs (other than TLS-Payload-TLV) SHOULD NOT be included in
 messages after the first two Outer-TLV messages sent by the peer and
 EAP server respectively. A single Outer-TLV message may be
 fragmented in multiple PEAP packets.

 All Outer-TLVs (except TLS-Payload) MUST NOT have the mandatory bit
 set. If an Outer-TLV other than TLS-Payload has the mandatory bit
 set, then the packet MUST be ignored.

 PEAPv2 implementations MUST support TLVs, as well as processing of
 mandatory/optional settings on the TLV.

4.1. TLV Format

 TLVs are defined as described below. The fields are transmitted from
 left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Value...
 +-+

 M

Palekar et al. Informational [Page 29]

INTERNET-DRAFT PEAPv2 8 October 2004

 0 - Optional TLV
 1 - Mandatory TLV

 R

 Reserved, set to zero (0)

 TLV Type

 A 14-bit field, denoting the TLV type. Allocated Types include:

 0 - Reserved
 1 - Reserved
 2 - Reserved
 3 - Result-TLV - Acknowledged Result
 4 - NAK-TLV
 5 - Error-Code TLV
 6 - Connection-Binding TLV
 7 - Vendor-Specific TLV
 8 - URI-TLV
 9 - EAP-Payload TLV
 10 - Intermediate-Result TLV
 11 - Reserved
 12 - Crypto-Binding TLV
 13 - Calling-Station-Id TLV
 14 - Called-Station-Id TLV
 15 - NAS-Port-Type TLV
 16 - Server-Identifier TLV
 17 - Identity-Type TLV
 18 - Server-Trusted-Root TLV
 19 - Request-Action TLV
 20 - PKCS#7 TLV

 Length

 The length of the Value field in octets.

 Value

 The value of the TLV.

4.2. TLS-Payload TLV

 The TLS-Payload TLV encapsulates TLS records. PEAPv2 implementations
 MUST support this TLV, which cannot be responded to with a NAK TLV.

 The TLS-Payload TLV is defined as follows:

Palekar et al. Informational [Page 30]

INTERNET-DRAFT PEAPv2 8 October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | TLS...
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 M

 1 - Mandatory TLV

 R

 Reserved, set to zero (0)

 TLV Type

 2

 Length

 >=0

 TLS

 TLS records. If no TLS data, then this TLV has a Length field
 set to zero (0). As noted in Section 2.4, a single TLS record may
 be up to 16384 octets in length, but a TLS message may span
 multiple TLS records, and a TLS certificate message may in
 principle be as long as 16MB. However, in order to protect
 against reassembly lockup and denial of service attacks, a
 maximum TLS payload size of 64 KB is assumed.

4.3. Result TLV

 The Result TLV provides support for acknowledged success and failure
 messages within PEAPv2. PEAPv2 implementations MUST support this
 TLV, which cannot be responded to with a NAK TLV. If the Status
 field does not contain one of the known values, then the peer or EAP
 server MUST drop the connection. The Result TLV is defined as
 follows:

Palekar et al. Informational [Page 31]

INTERNET-DRAFT PEAPv2 8 October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Status |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 M

 1 - Mandatory TLV

 R

 Reserved, set to zero (0)

 TLV Type

 3

 Length

 2

 Status

 The Status field is two octets. Values include:

 1 - Success
 2 - Failure

4.4. NAK TLV

 The NAK TLV allows a peer to detect TLVs that are not supported by
 the other peer. A TLV packet can contain 0 or more NAK TLVs. PEAPv2
 implementations MUST support the NAK TLV, which cannot be responded
 to with a NAK TLV. The NAK TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Vendor-Id |
 +-+
 | NAK-Type | TLVs....
 +-+

Palekar et al. Informational [Page 32]

INTERNET-DRAFT PEAPv2 8 October 2004

 M

 1 - Mandatory TLV

 R

 Reserved, set to zero (0)

 TLV Type

 4

 Length

 >=6

 Vendor-Id

 The Vendor-Id field is four octets, and contains the Vendor-Id of
 the TLV that was not supported. The high-order octet is 0 and the
 low-order 3 octets are the SMI Network Management Private
 Enterprise Code of the Vendor in network byte order. The Vendor-
 Id field MUST be zero for TLVs that are not Vendor-Specific TLVs.
 For Vendor-Specific TLVs, the Vendor-ID MUST be set to the SMI
 code.

 NAK-Type

 The NAK-Type field is two octets. The field contains the Type of
 the TLV that was not supported. A TLV of this Type MUST have been
 included in the previous packet.

 TLVs

 This field contains a list of TLVs, each of which MUST NOT have
 the mandatory bit set. These optional TLVs can be used in the
 future to communicate why the offending TLV was determined to be
 unsupported.

4.5. Crypto-Binding TLV

 The Crypto-Binding TLV is used prove that both peers participated in
 the sequence of authentications (specifically the TLS session and
 inner EAP methods that generate keys).

 Both the Binding Request (B1) and Binding Response (B2) use the same
 packet format. However the Sub-Type indicates whether it is B1 or
 B2.

Palekar et al. Informational [Page 33]

INTERNET-DRAFT PEAPv2 8 October 2004

 The Crypto-Binding TLV MUST be used to perform Cryptographic Binding
 after each successful EAP method in a sequence of EAP methods is
 complete in PEAPv2 part 2. The Crypto-Binding TLV can also be used
 during Protected Termination.

 The Crypto-Binding TLV must have the version number received during
 the PEAP version negotiation. The receiver of the crypto binding TLV
 must verify that the version in the crypto binding TLV matches the
 version it sent during the PEAP version negotiation. If this check
 fails then the TLV is invalid.

 The receiver of the crypto binding TLV must verify that the subtype
 is not set to any value other than the ones allowed. If this check
 fails then the TLV is invalid.

 This message format is used for the Binding Request (B1) and also the
 Binding Response. This uses TLV type CRYPTO_BINDING_TLV. PEAPv2
 implementations MUST support this TLV and this TLV cannot be
 responded to with a NAK TLV. The Crypto-Binding TLV is defined as
 follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Reserved | Version | Received Ver. | Sub-Type |
 +-+
 | |
 ~ Nonce ~
 | |
 +-+
 | |
 ~ Compound MAC ~
 | |
 +-+

 M

 1 - Mandatory TLV

 R

 Reserved, set to zero (0)

 TLV Type

 12

Palekar et al. Informational [Page 34]

INTERNET-DRAFT PEAPv2 8 October 2004

 Length

 56

 Reserved

 Reserved, set to zero (0)

 Version

 The Version field is a single octet, which is set to the version
 of crypto binding TLV. For the Crypto-Binding TLV defined in this
 specification, it is set to two (2).

 Received Version

 The Received Version field is a single octet and MUST be set to
 the PEAP version number received during version negotiation. Note
 that this field only provides protection against downgrade attacks
 where a version of PEAP requiring support for this TLV is required
 on both sides (such as PEAPv2 or a more recent version).

 Sub-Type

 The Sub-Type field is two octets. Possible values include:

 0 - Binding Request
 1 - Binding Response

 Nonce

 The Nonce field is 32 octets. It contains a 256 bit nonce that is
 temporally unique, used for compound MAC key derivation at each
 end. This is the S_NONCE for the B1 message and a C_NONCE for the
 B2 message.

 Compound MAC

 The Compound MAC field is 20 octets. This can be the Server MAC
 (B1_MAC) or the Client MAC (B2_MAC). It is computed over the
 entire Crypto-Binding TLV attribute using the HMAC-SHA1-128 that
 provides 128 bits of output using the CMK_B1 or CMK_B2 with the
 MAC field zeroed out. The MAC is computed over the buffer created
 after concatenating these fields in the following order:

[a] Entire Crypto-Binding TLV attribute received from the other party

Palekar et al. Informational [Page 35]

INTERNET-DRAFT PEAPv2 8 October 2004

[b] The first two Outer-TLVs packets sent by EAP-server to the peer.
 If a single outer-TLV packet is fragmented in multiple PEAP
 packets; then all fragments for that message MUST be included. The
 TLS-Payload TLV MUST NOT be included in the calculation of the MAC.

[c] The first two Outer-TLV packets sent by peer to the EAP-server. If
 a single outer-TLV packet is fragmented in multiple PEAP packets;
 then all fragments for that message MUST be included. The TLS-
 Payload TLV MUST NOT be included in the calculation of the MAC.
 [Issue] The length in the TLS payload TLV will not be included in
 calc of the MAC. Is this ok?

[d] The EAP Type sent by the EAP server in the first PEAP packet.

[e] The EAP Type sent by the peer in the first PEAP packet.

 If Compound MAC validation fails, then it is considered a tunnel
 compromise error.

 [Issue] if Outer-TLVs are modified, it compound MAC would fail; but
 is this really a tunnel compromise error?.

4.6. Connection-Binding TLV

 The Connection-Binding TLV allows for connection specific information
 to be sent by the peer to the AAA server. This TLV should be logged
 by the EAP or AAA server. The AAA or EAP server should not deny
 access if there i s a mismatch between the value sent through the AAA
 protocol and this TLV.

 The format of this TLV is defined for the layer that defines the
 parameters. The format of the value sent by the peer to the EAP
 server may be different from the format of the corresponding value
 sent through the AAA protocol. For example, the connection binding
 TLV may contain the 802.11 MAC Address or SSID.

 PEAP implementations MAY support this TLV and this TLV MUST NOT be
 responded to with a NAK TLV. The Connection-Binding TLV is defined
 as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | TLVs...
 +-+

Palekar et al. Informational [Page 36]

INTERNET-DRAFT PEAPv2 8 October 2004

 M

 0 - Optional TLV

 R

 Reserved, set to zero (0)

 TLV Type

 6

 Length

 >=0

 TLVs...

 The field contains a list of TLVs, each in the same format defined
 in Section 4.3, with the optional bit set. These TLVs contain
 information on the identity of the peer and authenticator (layer 2
 or IP addresses); the media used to connect the peer and
 authenticator (NAS-Port-Type); and/or the service the client is
 trying to access on the gateway (SSID). The format of these TLVs
 will be defined in a separate draft.

4.7. Vendor-Specific TLV

 The Vendor-Specific TLV is available to allow vendors to support
 their own extended attributes not suitable for general usage.

 A Vendor-Specific-TLV attribute can contain one or more TLVs,
 referred to as Vendor-TLVs. The TLV-type of the Vendor-TLV will be
 defined by the vendor. All the Vendor-TLVs inside a single Vendor-
 Specific TLV belong to the same vendor.

 PEAPv2 implementations MUST support the Vendor-Specific TLV, and this
 TLV MUST NOT be responded to with a NAK TLV. PEAPv2 implementations
 MAY NOT support the Vendor-TLVs inside in the Vendor-Specific TLV,
 and can respond to the Vendor-TLVs with a NAK TLV containing the
 appropriate Vendor-ID and Vendor-TLV type.

 Vendor-TLVs may be optional or mandatory. Vendor-TLVs sent in the
 protected success and failure packets MUST be marked as optional. If
 Vendor-TLVs sent in protected success/failure packets are marked as
 Mandatory, then the peer or EAP server MUST drop the connection.

 The Vendor-Specific TLV is defined as follows:

Palekar et al. Informational [Page 37]

INTERNET-DRAFT PEAPv2 8 October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Vendor-Id |
 +-+
 | Vendor-TLVs....
 +-+

 M

 1 - Mandatory TLV

 R

 Reserved, set to zero (0)

 TLV Type

 7

 Length

 >=4

 Vendor-Id

 The Vendor-Id field is four octets. The high-order octet is 0 and
 the low-order 3 octets are the SMI Network Management Private
 Enterprise Code of the Vendor in network byte order. The Vendor-
 Id MUST be zero for TLVs that are not Vendor-Specific TLVs. For
 Vendor-Specific TLVs, the Vendor-ID MUST be set to the SMI code.

 Vendor-TLVs

 This field is of indefinite length. It contains vendor-specific
 TLVs, in a format defined by the vendor.

4.8. URI TLV

 The URI TLV allows a server to send a URI to the client to refer it
 to a resource. The TLV contains a URI in the format specified in

RFC2396 with UTF-8 encoding. Interpretation of the value of the URI
 is outside the scope of this document.

 If a packet contains multiple URI TLVs, then the client SHOULD select
 the first TLV it can implement, and ignore the others. If the client

https://datatracker.ietf.org/doc/html/rfc2396

Palekar et al. Informational [Page 38]

INTERNET-DRAFT PEAPv2 8 October 2004

 is unable to implement any of the URI TLVs, then it MAY ignore the
 error. PEAP implementations MAY support this TLV; and this TLV
 cannot be responded to with a NAK TLV. The URI TLV is defined as
 follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | URI...
 +-+

 M

 0 - Optional TLV

 R

 Reserved, set to zero (0)

 TLV Type

 8

 Length

 >=0

 URI

 This field is of indefinite length, and conforms to the format
 specified in [RFC2396].

4.9. EAP-Payload TLV

 To allow piggybacking EAP request and response with other TLVs, the
 EAP Payload TLV is defined, which includes an encapsulated EAP packet
 and 0 or more TLVs. PEAPv2 implementations MUST support this TLV,
 which cannot be responded to with a NAK TLV. The EAP-Payload TLV is
 defined as follows:

https://datatracker.ietf.org/doc/html/rfc2396

Palekar et al. Informational [Page 39]

INTERNET-DRAFT PEAPv2 8 October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | EAP packet...
 +-+
 | TLVs...
 +-+

 M

 1 - Mandatory TLV

 R

 Reserved, set to zero (0)

 TLV Type

 9

 Length

 >=0

 EAP packet

 This field contains a complete EAP packet, including the EAP
 header (Code, Identifier, Length, Type) fields. The length of
 this field is determined by the Length field of the encapsulated
 EAP packet.

 TLVs...

 This (optional) field contains a list of TLVs associated with the
 EAP packet field. The TLVs utilize the same format described

Section 4.3, and MUST NOT have the mandatory bit set. The total
 length of this field is equal to the Length field of the EAP-
 Payload-TLV, minus the Length field in the EAP header of the EAP
 packet field.

4.10. Intermediate Result TLV

 The Intermediate Result TLV provides support for acknowledged
 intermediate Success and Failure messages within EAP. PEAPv2
 implementations MUST support this TLV, which cannot be responded to
 with a NAK TLV. The Intermediate Result TLV is defined as follows:

Palekar et al. Informational [Page 40]

INTERNET-DRAFT PEAPv2 8 October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Status | TLVs...
 +-+

 M

 1 - Mandatory TLV

 R

 Reserved, set to zero (0)

 TLV Type

 10

 Length

 >=2

 Status

 The Status field is two octets. Values include:

 1 - Success
 2 - Failure

 TLVs

 This (optional) field is of indeterminate length, and contains the
 TLVs associated with the Intermediate Result TLV, in the same
 format as described in Section 4.3. The TLVs in this field MUST
 NOT have the mandatory bit set.

4.11. Reserved TLVs

 TLV type 11 is reserved due to use in previous implementations.
 PEAPv2 implementations MAY NOT support this TLV, which MUST be marked
 as OPTIONAL. This TLV MUST NOT be responded to with a NAK TLV.

4.12. Calling-Station-ID TLV

 This TLV allows a peer to send information to EAP server about the
 call originator. This TLV MAY be included in the Connection-Binding-

Palekar et al. Informational [Page 41]

INTERNET-DRAFT PEAPv2 8 October 2004

 TLV.

 For dial-up, the Called-Station-ID TLV contains the phone number of
 the peer. For use with IEEE 802.1X, the MAC address of the peer is
 included, as specified in [RFC3580].

 For VPN, this attribute is used to send the IPv4 or IPV6 address of
 the interface of the peer used to initiate the VPN in ASCII format.
 Where the Fully Qualified Domain Name (FQDN) of the VPN client is
 known, it SHOULD be appended, separated from the address with a space
 (" "). Example: "12.20.2.3 vpnserver.company.com".

 As described in [RFC3748] Section 7.15, this TLV SHOULD be logged by
 the EAP or AAA server, and MAY be used for comparison with
 information gathered by other means.

 However, since the format of this TLV may not match the format of the
 information gathered by other means, if an EAP server or AAA server
 supports the capability to deny access based on a mismatch, spurious
 authentication failures may occur. As a result, implementations
 SHOULD allow the administrator to disable this check.

 PEAP implementations MAY support this TLV and this TLV MUST NOT be
 responded to with a NAK TLV. The Calling-Station-ID TLV is defined
 as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | String...
 +-+

 M

 0 - Optional TLV

 R

 Reserved, set to zero (0)

 TLV Type

 13

 Length

https://datatracker.ietf.org/doc/html/rfc3580
https://datatracker.ietf.org/doc/html/rfc3748#section-7.15

Palekar et al. Informational [Page 42]

INTERNET-DRAFT PEAPv2 8 October 2004

 >=0

 String

 The field should be the same as the value of the Calling-Station-
 ID attribute in [RFC2865].

4.13. Called-Station-ID TLV

 This TLV allows a peer to send information to EAP server about the
 NAS it called. This TLV MAY be included in the Connection-Binding-
 TLV.

 For dial-up, the Calling-Station-ID TLV contains the phone number
 called by the peer. For use with IEEE 802.1X, the MAC address of the
 NAS is included, as specified in [RFC3580].

 For VPN, this attribute is used to send the IPv4 or IPv6 address of
 VPN server in ASCII format. Where the Fully Qualified Domain Name
 (FQDN) of the VPN server is known, it SHOULD be appended, separated
 from the address with a space (" "). Example: "12.20.2.3
 vpnserver.company.com".

 This TLV SHOULD be logged by the EAP or AAA server, and MAY be used
 for comparison with information gathered by other means. However,
 since the format of this TLV may not match the format of the
 information gathered by other means, if an EAP server or AAA server
 supports the capability to deny access based on a mismatch, spurious
 authentication failures may occur. As a result, implementations
 SHOULD allow the administrator to disable this check.

 PEAP implementations MAY support this TLV, and this TLV MUST NOT be
 responded to with a NAK TLV. The Called-Station-ID TLV is defined as
 follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | String...
 +-+

 M

 0 - Optional TLV

 R

https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc3580

Palekar et al. Informational [Page 43]

INTERNET-DRAFT PEAPv2 8 October 2004

 Reserved, set to zero (0)

 TLV Type

 14

 Length

 >=0

 String

 The field should be the same as the value of the Called-Station-ID
 attribute in [RFC2865].

4.14. NAS-Port-Type TLV

 This TLV allows a peer to send information to EAP server about the
 type of physical connection used by the peer to connect to NAS. This
 TLV MAY be included in the Connection-Binding-TLV.

 The value of this field is the same as the value of NAS-Port-Type
 attribute in [RFC2865].

 This TLV SHOULD be logged by the EAP or AAA server and MAY be used
 for comparison with information gathered by other means. However,
 since the format of this TLV may not match the format of the
 information gathered by other means, if an EAP server or AAA server
 supports the capability to deny access based on a mismatch, spurious
 authentication failures may occur. As a result, implementations
 SHOULD allow the administrator to disable this check.

 PEAP implementations MAY support this TLV; and this TLV MUST NOT be
 responded to with a NAK TLV. The NAS-Port-Type TLV is defined as
 follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Value |
 +-+

 M

 0 - Optional TLV

https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2865

Palekar et al. Informational [Page 44]

INTERNET-DRAFT PEAPv2 8 October 2004

 R

 Reserved, set to zero (0)

 TLV Type

 15

 Length

 4

 Value

 The Value field is four octets. Values are the same as for the
 NAS-Port-Type attribute defined in [RFC2865].

4.15. Server-Identifier TLV

 This TLV allows a EAP-Server to send a hint to the EAP peer to help
 the EAP peer select the appropriate sessionID for session resumption.
 The field is a string sent by the EAP server, and the field should be
 treated as a opaque string by the peer. During a full-tls-handshake,
 the EAP-peer MAY keep track of this field and the corresponding
 sessionID, and use it as a hint to select the appropriate sessionID
 during session resumption.

 PEAP implementations MAY support this TLV and this TLV MUST NOT be
 responded to with a NAK TLV. The Server-Identifier TLV is defined as
 follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | String...
 +-+

 M

 0 - Optional TLV

 R

 Reserved, set to zero (0)

 TLV Type

https://datatracker.ietf.org/doc/html/rfc2865

Palekar et al. Informational [Page 45]

INTERNET-DRAFT PEAPv2 8 October 2004

 16

 Length

 >=0

 String

 Contains an identifier sent by the EAP server.

4.16. Identity-Type TLV

 The Identity-Type TLV allows an EAP-server to send a hint to help the
 EAP-peer select the right type of identity; for example; user or
 machine.

 PEAPv2 implementations MAY support this TLV, which cannot be
 responded to with a NAK TLV.

 If the Identity-type field does not contain one of the known values
 or if the EAP peer does not have an identity corresponding to the
 identity-type, then the peer MUST ignore the value. The Identity-
 Type TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Identity-Type |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 M

 0 - Optional TLV

 R

 Reserved, set to zero (0)

 TLV Type

 17

 Length

 2

Palekar et al. Informational [Page 46]

INTERNET-DRAFT PEAPv2 8 October 2004

 Identity-Type

 The Identity-Type field is two octets. Values include:

 1 - User
 2 - Machine

4.17. Server-Trusted-Root TLV

 The Server-Trusted-Root TLV allows the peer to send a request to the
 EAP server for a trusted root in PKCS#7 format.

 The Server-Trusted-Root TLV is always marked as optional, and cannot
 be responded to with a NAK TLV. PEAPv2 server implementations that
 claim to support provisioning MUST support Server-Trusted-Root TLV,
 PKCS#7 TLV, and the the PKCS#7-Server-Certificate-Root credential
 format defined in this TLV.

 PEAPv2 peer implementations MAY NOT support this TLV.

 The Server-Trusted-Root TLV can only be sent as an inner TLV (inside
 PEAP part 2 conversation), in both server unauthenticated tunnel
 provisioning mode, and the regular authentication process.

 The peer MUST NOT request, or accept the trusted root sent inside the
 Server-Root credential TLV by EAP server until it has completed
 authentication of EAP server, and validated the Crypto-Binding TLV.
 The peer may receive a trusted root, but is not required to use the
 trusted root received from the EAP server.

 If the EAP server sets credential-format to PKCS#7-Server-
 Certificate-Root, then the Server-Trusted-Root^A TLV MUST contain the
 root of the certificate chain of the certificate issued to the EAP
 server packages in a PKCS#7 TLV. If the Server certificate is a
 self-signed certificate, then the root is the self-signed
 certificate. In this case, the EAP server does not have to sign the
 certificate inside the PCKS#7 TLV since it does not necessarily have
 to private key for it.

 If the Server-Trusted-Root TLV credential format does not contain one
 of the known values, then the EAP-server MUST ignore the value.

 The Server-Trusted-Root TLV is defined as follows:

Palekar et al. Informational [Page 47]

INTERNET-DRAFT PEAPv2 8 October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Credential-Type | TLVs...
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

 M

 0 - Optional TLV

 R

 Reserved, set to zero (0)

 TLV Type

 18

 Length

 >=2

 Credential-Type

 The Credential-Type field is two octets. Values include:

 1 - PKCS#7-Server-Certificate-Root.

 TLVs

 This field is of indefinite length. It contains TLVs associated
 with the certificate-request.

4.18. PKCS#7 TLV

 The PKCS#7 TLV contains the PKCS #7 wrapped X.509 certificate. This
 field contains a certificate or certificate chain in PKCS#7 [RFC2315]
 format requested by the peer.

 The PKCS#7 TLV is always marked as optional, which cannot be
 responded to with a NAK TLV. PEAPv2 server implementations that
 claim to support provisioning MUST support this TLV. PEAPv2 peer
 implementations MAY NOT support this TLV.

 If the PKCS#7 TLV contains a certificate or certificate chain that is
 not acceptable to the peer, then peer MUST ignore the value.

https://datatracker.ietf.org/doc/html/rfc2315

Palekar et al. Informational [Page 48]

INTERNET-DRAFT PEAPv2 8 October 2004

 The PKCS#7 TLV is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | PKCS#7 data...
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-++-+-+-+-+-+-+-+

 M

 0 - Optional TLV

 R

 Reserved, set to zero (0)

 TLV Type

 20

 Length

 >=0

 PKCS#7 Data

 PKCS #7 wrapped X.509 certificate. This field contains a
 certificate or certificate chain in PKCS#7 [RFC2315] format.

4.19. Request-Action TLV

 The Request-Action TLV MAY be sent by the peer along with
 acknowledged failure. It allows the peer to request the EAP server
 to negotiate EAP methods or process TLVs specified in the failure
 packet. The server MAY ignore this TLV.

 PEAPv2 implementations MUST support this TLV, which cannot be
 responded to with a NAK TLV.

 The Request-Action TLV is defined as follows:

https://datatracker.ietf.org/doc/html/rfc2315

Palekar et al. Informational [Page 49]

INTERNET-DRAFT PEAPv2 8 October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |M|R| TLV Type | Length |
 +-+
 | Action |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 M

 0 - Optional TLV 1 - Mandatory TLV

 R

 Reserved, set to zero (0)

 TLV Type

 19

 Length

 2

 Action

 The Action field is two octets. Values include:

 1 - Process-TLV
 2 - Negotiate-EAP

4.20. TLV Rules

 To save round trips, multiple TLVs can be sent in the single PEAPv2
 packet. However, multiple EAP Payload TLVs within one single PEAPv2
 packet is not supported in this version and MUST NOT be sent. If the
 peer or EAP server receives multiple EAP Payload TLVs, then it MUST
 drop the connection.

 The following table defines the meaning of the table entries in the
 sections below:

 0 This TLV MUST NOT be present in the packet.
 0+ Zero or more instances of this TLV MAY be present in packet.
 0-1 Zero or one instance of this TLV MAY be present in packet.
 1 Exactly one instance of this TLV MUST be present in packet.

Palekar et al. Informational [Page 50]

INTERNET-DRAFT PEAPv2 8 October 2004

4.20.1. Outer TLVs

 The following table provides a guide to which TLVs may be included in
 the PEAPv2 packet outside the TLS channel, which kind of packets, and
 in what quantity:

 Request Response Success Failure TLV in unencrypted-TLVs field
 0-1 0-1 0-1 0-1 Server-Identifier TLV
 0+ 0+ 0+ 0+ Vendor-Specific TLV
 1 1 1 1 TLS-Payload TLV

 Outer-TLVs (other than TLS-Payload TLV) MUST be marked as optional.
 Vendor-TLVs inside Vendor-Specific TLV MUST be marked as optional
 when included in Outer TLVs. Outer-TLVs (other than TLS-Payload-TLV)
 SHOULD NOT be included in messages after the first two Outer-TLV
 messages sent by peer and EAP-server respectively. A single Outer-
 TLV message may be fragmented in multiple PEAP packets.

4.20.2. Inner TLVs

 The following table provides a guide to which Inner TLVs may be
 encapsulated in TLS in PEAPv2 Part 2, in which kind of packets, and
 in what quantity:

 Request Response Success Failure Inner-TLVs
 0-1 0-1 0-1 0-1 Intermediate Result TLV
 0-1 0-1 0 0 EAP Payload TLV
 0-1 0-1 1 1 Result TLV
 0-1 0-1 1 1 Crypto-Binding TLV
 0+ 0+ 0 0 NAK TLV
 0-1 0-1 0-1 0-1 Connection-Binding TLV
 0+ 0+ 0+ 0+ Vendor-Specific TLV
 0+ 0 0+ 0-1 URI TLV
 0+ 0 0 0 Identity-Type TLV
 0+ 0+ 0+ 0+ Server-Trusted-Root TLV
 0 0-1 0 0-1 Request-Action TLV

 Vendor-TLVs (included in Vendor-Specific TLVs) sent in the protected
 success and failure packets MUST be marked as optional. If Vendor-
 TLVs sent in protected success/failure packets are marked as
 Mandatory, then the peer or EAP server MUST drop the connection.

 The following defines the meaning of packet type in the table above:

 Packet type Description

 Request - TLV request packet sent by the EAP server to the peer.
 Response - TLV packet sent by the peer to the EAP server.

Palekar et al. Informational [Page 51]

INTERNET-DRAFT PEAPv2 8 October 2004

 Success - TLV packet sent by the peer or EAP server as
 a protected success
 Failure - TLV packet sent by the peer or EAP server as
 a protected failure.

4.20.3. EAP-Payload TLV

 The EAP-Payload TLV can contain other TLVs. The table below defines
 which TLVs can be contained inside the EAP-Payload TLV and how many
 such TLVs can be included.

 Request Response TLV
 0+ 0+ Vendor-Specific TLV
 0+ 0+ Identity-Type TLV

 Vendor-TLVs inside Vendor-Specific TLV MUST be marked as optional
 when included in EAP-Payload TLV.

4.20.4. Connection-Binding TLV

 The Connection-Binding TLV can contain other TLVs. The table below
 defines which TLVs can be contained inside the Connecting-Binding TLV
 and how many such TLVs can be included.

 Request Response TLV
 0-1 0 Calling-Station-ID TLV
 0-1 0 Called-Station-ID TLV
 0-1 0 NAS-port-type TLV
 0+ 0+ Vendor-Specific TLV

 Vendor-TLVs inside Vendor-Specific TLV MUST be marked as optional
 when included in Connection-Binding TLV.

4.20.5. Server-Trusted-Root TLV

 The Server-Trusted-Root TLV can contain other TLVs. The table below
 defines which TLVs can be contained inside the Server-Trusted-Root
 TLV and how many such TLVs can be included.

 Request Response TLV
 0-1 0 PKCS#7 TLV

5. Security Considerations

5.1. Authentication and integrity protection

 PEAPv2 provides a server authenticated, encrypted and integrity
 protected tunnel. All data within the tunnel has these properties.

Palekar et al. Informational [Page 52]

INTERNET-DRAFT PEAPv2 8 October 2004

 Data outside the tunnel such as EAP Success and Failure, Outer-TLVs,
 authentication methods negotiated outside of PEAPv2 and the PEAPv2
 headers themselves (including the EAP-Type in the header) are not
 protected by this tunnel.

 In addition, the Crypto-Binding TLV can reveal man-in-the-middle
 attack described in section 6.8. Hence, the server should not reveal
 any sensitive data to the client until after the Crypto-Binding TLV
 has been properly verified.

 In order to detect modification of Outer-TLVs, the first two Outer-
 TLVs messages sent by both peer and EAP-server are included in the
 calculation of the Crypto-Binding TLV. Outer-TLVs (other than TLS-
 Payload TLV) SHOULD NOT be included in other PEAP packets since there
 is no mechanism to detect modification.

 In order to detect modification of EAP-Type sent in the clear (EAP-
 Type should be set to PEAP), the EAP-Type sent in the first two
 messages by both peer and EAP-server is included in the calculation
 of Crypto-Binding TLV. The EAP-type in the clear could modified in
 other PEAP packets.

5.2. Method negotiation

 If the peer does not support PEAPv2, or does not wish to utilize
 PEAPv2 authentication, it MUST respond to the initial EAP-
 Request/PEAP-Start with a NAK, suggesting an alternate authentication
 method. Since the NAK is sent in cleartext with no integrity
 protection or authentication, it is subject to spoofing. Inauthentic
 NAK packets can be used to trick the peer and authenticator into
 "negotiating down" to a weaker form of authentication, such as EAP-
 MD5 (which only provides one way authentication and does not derive a
 key).

 Since a subsequent protected EAP conversation can take place within
 the TLS session, selection of PEAPv2 as an authentication method does
 not limit the potential secondary authentication methods. As a
 result, the only legitimate reason for a peer to NAK PEAPv2 as an
 authentication method is that it does not support it. Where the
 additional security of PEAPv2 is required, server implementations
 SHOULD respond to a NAK with an EAP-Failure, terminating the
 authentication conversation.

 Since method negotiation outside of PEAP is not protected, if the
 peer is configured to allow PEAP and other EAP methods at the same
 time, the negotiation is subject to downgrade attacks. Since method
 negotiation outside of PEAP is not protected, if the peer is
 configured to allow PEAP version 2; and previous PEAP versions at the

Palekar et al. Informational [Page 53]

INTERNET-DRAFT PEAPv2 8 October 2004

 same time, the negotiation is subject to negotiation downgrade
 attacks. However, peers configured to allow PEAPv2 and later PEAP
 versions may not be subject to downgrade negotiation attack since the
 highest version supported by both peers is checked within the
 protected tunnel.

 If peer implementations select incorrect methods or credentials with
 EAP servers, then attacks are possible on the credentials. Hence, a
 PEAPv2 peer implementation should preferably be configured with a set
 of credentials and methods that may be used with a specific PEAPv2
 server. The peer implementation may be configured to use different
 methods and/or credentials based on the PEAPv2 server.

5.3. TLS session cache handling

 In cases where a TLS session has been successfully resumed, in some
 circumstances, it is possible for the EAP server to skip the PEAPv2
 Part 2 conversation, and successfully conclude the conversation with
 a protected termination.

 PEAPv2 "fast reconnect" is desirable in applications such as wireless
 roaming, since it minimizes interruptions in connectivity. It is
 also desirable when the "inner" EAP mechanism used is such that it
 requires user interaction. The user should not be required to re-
 authenticate herself, using biometrics, token cards or similar, every
 time the radio connectivity is handed over between access points in
 wireless environments.

 However, there are issues that need to be understood in order to
 avoid introducing security vulnerabilities.

 Since PEAPv2 Part 1 may not provide client authentication,
 establishment of a TLS session (and an entry in the TLS session
 cache) does not by itself provide an indication of the peer's
 authenticity.

 Some PEAPv2 implementations may not be capable of removing TLS
 session cache entries established in PEAPv2 Part 1 after an
 unsuccessful PEAPv2 Part 2 authentication. In such implementations,
 the existence of a TLS session cache entry provides no indication
 that the peer has previously been authenticated. As a result,
 implementations that do not remove TLS session cache entries after a
 failed PEAPv2 Part 2 authentication or failed protected termination
 MUST use other means than successful TLS resumption as the indicator
 of whether the client is authenticated or not. The implementation
 MUST determine that the client is authenticated only after the
 completion of protected termination. Failing to do this would enable
 a peer to gain access by completing PEAPv2 Part 1, tearing down the

Palekar et al. Informational [Page 54]

INTERNET-DRAFT PEAPv2 8 October 2004

 connection, re-connecting and resuming PEAPv2 Part 1, thereby proving
 herself authenticated. Thus, TLS resumption MUST only be enabled if
 the implementation supports TLS session cache removal. If an EAP
 server implementing PEAPv2 removes TLS session cache entries of peers
 failing PEAPv2 Part 2 authentication, then it MAY skip the PEAPv2
 Part 2 conversation entirely after a successful session resumption,
 successfully terminating the PEAPv2 conversation as described in

Section 2.4.

5.4. Certificate revocation

 Since the EAP server usually has network connectivity during the EAP
 conversation, the server is capable of following a certificate chain
 or verifying whether the peer's certificate has been revoked. In
 contrast, the peer may or may not have network connectivity, and thus
 while it can validate the EAP server's certificate based on a pre-
 configured set of CAs, it may not be able to follow a certificate
 chain or verify whether the EAP server's certificate has been
 revoked.

 In the case where the peer is initiating a voluntary Layer 2 channel
 using PPTP or L2TP, the peer will typically already have network
 connectivity established at the time of channel initiation. As a
 result, during the EAP conversation it is capable of checking for
 certificate revocation.

 As part of the TLS negotiation, the server presents a certificate to
 the peer. The peer SHOULD verify the validity of the EAP server
 certificate, and SHOULD also examine the EAP server name presented in
 the certificate, in order to determine whether the EAP server can be
 trusted. Please note that in the case where the EAP authentication is
 remoted, the EAP server will not reside on the same machine as the
 authenticator, and therefore the name in the EAP server's certificate
 cannot be expected to match that of the intended destination. In
 this case, a more appropriate test might be whether the EAP server's
 certificate is signed by a CA controlling the intended destination
 and whether the EAP server exists within a target sub-domain.

 In the case where the peer is attempting to obtain network access, it
 will not have network connectivity. The TLS Extensions [RFC3546]
 support piggybacking of an Online Certificate Status Protocol (OCSP)
 response within TLS, therefore can be utilized by the peer in order
 to verify the validity of server certificate. However, since not all
 TLS implementations implement the TLS extensions, it may be necessary
 for the peer to wait to check for certificate revocation until after
 network access has been obtained. In this case, the peer SHOULD
 conduct the certificate status check immediately upon going online
 and SHOULD NOT send data until it has received a positive response to

https://datatracker.ietf.org/doc/html/rfc3546

Palekar et al. Informational [Page 55]

INTERNET-DRAFT PEAPv2 8 October 2004

 the status request. If the server certificate is found to be invalid
 as per client policy, then the peer SHOULD disconnect.

 If the client has a policy to require checking certificate revocation
 and it cannot obtain revocation information then it may need to
 disallow the use of all or some of the inner methods since some
 methods may reveal some sensitive information.

5.5. Separation of the EAP server and the authenticator

 As a result of a complete PEAPv2 Part 1 and Part 2 conversation, the
 EAP endpoints will mutually authenticate, and derive a session key
 for subsequent use in link layer security. Since the peer and EAP
 client reside on the same machine, it is necessary for the EAP client
 module to pass the session key to the link layer encryption module.

 The situation may be more complex on the Authenticator, which may or
 may not reside on the same machine as the EAP server. In the case
 where the EAP server and the Authenticator reside on different
 machines, there are several implications for security. Firstly, the
 mutual authentication defined in PEAP will occur between the peer and
 the EAP server, not between the peer and the authenticator. This
 means that as a result of the PEAP conversation, it is not possible
 for the peer to validate the identity of the NAS or channel server
 that it is speaking to.

 The second issue is that the session key negotiated between the peer
 and EAP server will need to be transmitted to the authenticator.
 Therefore a secure mechanism needs to be provided to transmit the
 session key from the EAP server to the authenticator or channel
 server that needs to use the key. The specification of this transit
 mechanism is outside the scope of this document.

5.6. Separation of PEAPv2 Part 1 and Part 2 Servers

 The EAP server involved in PEAPv2 Part 2 need not necessarily be the
 same as the EAP server involved in PEAPv2 Part 1. For example, a
 local authentication server or proxy might serve as the endpoint for
 the Part 1 conversation, establishing the TLS channel. Subsequently,
 once the EAP-Response/Identity has been received within the TLS
 channel, it can be decrypted and forwarded in cleartext to the
 destination realm EAP server. The rest of the conversation will
 therefore occur between the destination realm EAP server and the
 peer, with the local authentication server or proxy acting as an
 encrypting/decrypting gateway. This permits a non-TLS capable EAP
 server to participate in the PEAPv2 conversation.

 Note however that such an approach introduces security

Palekar et al. Informational [Page 56]

INTERNET-DRAFT PEAPv2 8 October 2004

 vulnerabilities. Since the EAP Response/Identity is sent in the
 clear between the proxy and the EAP server, this enables an attacker
 to snoop the user's identity. It also enables a remote environments,
 which may be public hot spots or Internet coffee shops, to gain
 knowledge of the identity of their users. Since one of the potential
 benefits of PEAP is identity protection, this is undesirable.

 If the EAP method negotiated during PEAPv2 Part 2 does not support
 mutual authentication, then if the Part 2 conversation is proxied to
 another destination, the PEAP peer will not have the opportunity to
 verify the secondary EAP server's identity. Only the initial EAP
 server's identity will have been verified as part of TLS session
 establishment.

 Similarly, if the EAP method negotiated during PEAPv2 Part 2 is
 vulnerable to dictionary attack, then an attacker capturing the
 cleartext exchange will be able to mount an offline dictionary attack
 on the password.

 Finally, when a Part 2 conversation is terminated at a different
 location than the Part 1 conversation, the Part 2 destination is
 unaware that the EAP client has negotiated PEAPv2. As a result, it is
 unable to enforce policies requiring PEAP. Since some EAP methods
 require PEAPv2 in order to generate keys or lessen security
 vulnerabilities, where such methods are in use, such a configuration
 may be unacceptable.

 In summary, PEAPv2 encrypting/decrypting gateway configurations are
 vulnerable to attack and SHOULD NOT be used. Instead, the entire
 PEAPv2 connection SHOULD be proxied to the final destination, and the
 subsequently derived master session keys need to be transmitted back.
 T his provides end to end protection of PEAPv2. The specification of
 this transit mechanism is outside the scope of this document, but
 mechanisms similar to [RFC2548] can be used. These steps protect the
 client from revealing her identity to the remote environment.

 In order to find the proper PEAP destination, the EAP client SHOULD
 place a Network Access Identifier (NAI) conforming to [RFC2486] in
 the Identity Response.

 There may be cases where a natural trust relationship exists between
 the (foreign) authentication server and final EAP server, such as on
 a campus or between two offices within the same company, where there
 is no danger in revealing the identity of the station to the
 authentication server. In these cases, a proxy solution without end
 to end protection of PEAPv2 MAY be used. If RADIUS is used to
 communicate between gateway and EAP server, then the PEAPv2
 encrypting/decrypting gateway SHOULD provide support for IPsec

https://datatracker.ietf.org/doc/html/rfc2548
https://datatracker.ietf.org/doc/html/rfc2486

Palekar et al. Informational [Page 57]

INTERNET-DRAFT PEAPv2 8 October 2004

 protection of RADIUS in order to provide confidentiality for the
 portion of the conversation between the gateway and the EAP server,
 as described in [RFC3579].

5.7. Identity verification

 Since the TLS session has not yet been negotiated, the initial
 Identity request/response occurs in the clear without integrity
 protection or authentication. It is therefore subject to snooping and
 packet modification.

 In configurations where all users are required to authenticate with
 PEAPv2 and the first portion of the PEAPv2 conversation is terminated
 at a local backend authentication server, without routing by proxies,
 the initial cleartext Identity Request/Response exchange is not
 needed in order to determine the required authentication method(s) or
 route the authentication conversation to its destination. As a
 result, the initial Identity and Request/Response exchange MAY NOT
 be present, and a subsequent Identity Request/Response exchange MAY
 occur after the TLS session is established.

 If the initial cleartext Identity Request/Response has been tampered
 with, after the TLS session is established, it is conceivable that
 the EAP Server will discover that it cannot verify the peer's claim
 of identity. For example, the peer's userID may not be valid or may
 not be within a realm handled by the EAP server. Rather than
 attempting to proxy the authentication to the server within the
 correct realm, the EAP server SHOULD terminate the conversation.

 The PEAPv2 peer can present the server with multiple identities.
 This includes the claim of identity within the initial EAP-
 Response/Identity (MyID) packet, which is typically used to route the
 EAP conversation to the appropriate home backend authentication
 server. There may also be subsequent EAP-Response/Identity packets
 sent by the peer once the TLS channel has been established.

 Note that since the PEAPv2 peer may not present a certificate, it is
 not always possible to check the initial EAP-Response/Identity
 against the identity presented in the certificate, as is done in
 [RFC2716].

 Moreover, it cannot be assumed that the peer identities presented
 within multiple EAP-Response/Identity packets will be the same. For
 example, the initial EAP-Response/Identity might correspond to a
 machine identity, while subsequent identities might be those of the
 user. Thus, PEAPv2 implementations SHOULD NOT abort the
 authentication just because the identities do not match. However,
 since the initial EAP-Response/Identity will determine the EAP server

https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc2716

Palekar et al. Informational [Page 58]

INTERNET-DRAFT PEAPv2 8 October 2004

 handling the authentication, if this or any other identity is
 inappropriate for use with the destination EAP server, there is no
 alternative but to terminate the PEAPv2 conversation.

 The protected identity or identities presented by the peer within
 PEAPv2 Part 2 may not be identical to the cleartext identity
 presented in PEAPv2 Part 1, for legitimate reasons. In order to
 shield the userID from snooping, the cleartext Identity may only
 provide enough information to enable routing of the authentication
 request to the correct realm. For example, the peer may initially
 claim the identity of "nouser@bigco.com" in order to route the
 authentication request to the bigco.com EAP server. Subsequently,
 once the TLS session has been negotiated, in PEAPv2 Part 2, the peer
 may claim the identity of "fred@bigco.com". Thus, PEAPv2 can provide
 protection for the user's identity, though not necessarily the
 destination realm, unless the PEAPv2 Part 1 conversation terminates
 at the local authentication server.

 As a result, PEAPv2 implementations SHOULD NOT attempt to compare the
 Identities claimed with Parts 1 and 2 of the PEAPv2 conversation.
 Similarly, if multiple Identities are claimed within PEAPv2 Part 2,
 these SHOULD NOT be compared. An EAP conversation may involve more
 than one EAP authentication method, and the identities claimed for
 each of these authentications could be different (e.g. a machine
 authentication, followed by a user authentication).

5.8. Man-in-the-middle attack protection

 TLS protection can address a number of weaknesses in the EAP method;
 as well as EAP protocol weaknesses listed in the abstract and
 introduction sections in this document.

 Hence, the recommended solution is to always deploy authentication
 methods with protection of PEAPv2.

 if a deployment chooses to allow a EAP method protected by PEAP
 without protection of PEAP or IPsec at the same time, then this opens
 up a possibility of a man-in-the-middle attack.

 A man-in-the-middle can spoof the client to authenticate to it
 instead of the real EAP server; and forward the authentication to the
 real server over a protected tunnel. Since the attacker has access to
 the keys derived from the tunnel, it can gain access to the network.

 PEAP version 2 prevents this attack by using the keys generated by
 the inner EAP method in the crypto-binding exchange described in
 protected termination section. This attack is not prevented if the
 inner EAP method does not generate keys or if the keys generated by

Palekar et al. Informational [Page 59]

INTERNET-DRAFT PEAPv2 8 October 2004

 the inner EAP method can be compromised. Hence, in cases where the
 inner EAP method does not generate keys, the recommended solution is
 to always deploy authentication methods protected by PEAPv2.

 Alternatively, the attack can also be thwarted if the inner EAP
 method can signal to the peer that the packets are being sent within
 the tunnel. In most cases this may require modification to the inner
 EAP method. In order to allow for these implementations, PEAPv2
 implementations should inform inner EAP methods that the EAP method
 is being protected by a PEAPv2 tunnel.

 Since all sequence negotiations and exchanges are protected by TLS
 channel, they are immune to snooping and MITM attacks with the use of
 Crypto-Binding TLV. To make sure the same parties are involved tunnel
 establishment and previous inner method, before engaging the next
 method to sent more sensitive information, both peer and server MUST
 use the Crypto-Binding TLV between methods to check the tunnel
 integrity. If the Crypto-Binding TLV failed validation, they SHOULD
 stop the sequence and terminate the tunnel connection, to prevent
 more sensitive information being sent in subsequent methods.

5.9. Cleartext forgeries

 As described in [RFC3748], EAP Success and Failure packets are not
 authenticated, so that they may be forged by an attacker without fear
 of detection. Forged EAP Failure packets can be used to convince an
 EAP peer to disconnect. Forged EAP Success and Failure packets may be
 used to convince a peer to disconnect; or convince a peer to access
 the network even before authentication is complete, resulting in
 denial of service for the peer.

 By supporting encrypted, authenticated and integrity protected
 success/failure indications, PEAPv2 provides protection against these
 attacks.

 Once the peer responds with the first PEAP packet; and the EAP server
 receives the first PEAPv2 packet from the peer, both MUST silently
 discard all clear text EAP messages unless both the PEAPv2 peer and
 server have indicated success or failure or error using a protected
 error or protected termination mechanism. The success/failure
 decisions sent by a protected mechanism indicate the final decision
 of the EAP authentication conversation. After success/failure has
 been indicated by a protected mechanism, the PEAPv2 client can
 process unprotected EAP success and EAP failure message; however MUST
 ignore any unprotected EAP success or failure messages where the
 decision does not match the decision of the protected mechanism.

 After a Fatal alert is received or after protected termination is

https://datatracker.ietf.org/doc/html/rfc3748

Palekar et al. Informational [Page 60]

INTERNET-DRAFT PEAPv2 8 October 2004

 complete, the peer or EAP server should accept clear text EAP
 messages. If the PEAPv2 tunnel is nested inside another tunnel, then
 the clear text EAP messages should only be accepted after protected
 termination of outer tunnels.

 [RFC3748] states that an EAP Success or EAP Failure packet terminates
 the EAP conversation, so that no response is possible. Since EAP
 Success and EAP Failure packets are not retransmitted, if the final
 packet is lost, then authentication will fail. As a result, where
 packet loss is expected to be non-negligible, unacknowledged
 success/failure indications lack robustness.

 As a result, a EAP server SHOULD send a clear text EAP success or
 EAP-failure packet after the protected success or failure packet or
 TLS alert. The peer MUST NOT require the clear text EAP Success or
 EAP Failure if it has received the protected success or failure or
 TLS alert. For more details, refer to [RFC228bis], Section 4.2.

5.10. TLS Ciphersuites

 Anonymous ciphersuites are vulnerable to man-in-the-middle attacks,
 and SHOULD NOT be used with PEAPv2, unless the EAP methods inside
 PEAPv2 can address the man-in-the-middle attack or unless the man-in-
 the-middle attack can be addressed by mechanisms external to PEAPv2.

5.11. Denial of service attacks

 Denial of service attacks are possible if the attacker can insert or
 modify packets in the authentication channel. The attacker can
 modify unprotected fields in the PEAP packet such as the EAP protocol
 or PEAP version number. This can result in a denial of service
 attack. It is also possible for the attacker to modify protected
 fields in a packet to cause decode errors resulting in a denial of
 service. In these ways the attacker can prevent access for peers
 connecting to the network.

 Denial of service attacks with multiplier impacts are more
 interesting than the ones above. It is possible to multiply the
 impact by creating a large number of TLS sessions with the EAP
 server.

5.12. Server Unauthenticated Tunnel Provisioning Mode

 This section describes the rationale and security risks behind server
 unauthenticated tunnel provisioning mode. Server unauthenticated
 tunnel provisioning mode results in loss of security strength. Hence,
 PEAPv2 implementations are not required to implement this mode.

Palekar et al. Informational [Page 61]

INTERNET-DRAFT PEAPv2 8 October 2004

 In order to achieve strong mutual authentication, it is best to use
 an out of band mechanism to pre-provision the device with strong
 symmetric or asymmetric keys. In addition, if the device is not
 physically secure (mobile or devices at public places), then it is
 important to ensure that the device has secure storage.

 Devices such as regular operating systems typically support secure
 provisioning and secure credential storage capabilities, for example
 regular operating systems; and hence server unauthenticated tunnel
 provisioning mode is not recommended for these systems.

 If the provisioned credential is a shared key or asymmetric key
 issued to the peer, then the credential should only be issued to
 devices that can protect the provisioned credentials using secure
 storage, or use physical security. If the credentials are not
 protected, the attacker can compromise the provisioned credentials,
 and use it to get access to the network. Mobile light weight devices
 are typically not physically secure. Another concern is that
 credentials provisioned to a light weight mobile device that does not
 use secure storage could be transferred to a general operating system
 and used to get access to the network.

 If the provisioned credential is a certificate trusted root of the
 EAP server, this is public information and hence not susceptible to
 the same attacks as a shared key or asymmetric key.

 In server unauthenticated tunnel provisioning mode, an attacker may
 terminate the tunnel instead of the real server. The attacker can be
 detected after the crypto binding TLV is exchanged and validated.
 However, the EAP packets exchanged inside the tunnel until Crypto-
 Binding TLV is validated are available in unencrypted form to the
 attacker. It is difficult to completely negate the security risk
 unless the EAP methods inside the tunnel are secure; or unless
 physical wire security is assumed. These are a few guidelines to
 reduce the security risk:

[1] Minimize the use of this mode only during initial authentication to
 the network to reduce the risk of attack.

[2] If the password based EAP method used in provisioned mode is
 susceptible to dictionary attacks, then the implementation should
 support deployment of sound password password policies e.g.
 capability to enforce strong password policies and support rotation
 of passwords.

[3] Disable this mode by default and require users to initiate
 provisioning mode explicitly rather than being prompted during
 initiation of regular authentication process.

Palekar et al. Informational [Page 62]

INTERNET-DRAFT PEAPv2 8 October 2004

[4] Provide appropriate policy capabilities to allow administrators to
 lockdown the device and prevent regular users from enabling the
 mode.

[5] Ensure that the EAP methods used support mutual authentication.

[6] Ensure that the EAP methods used generate keys of sufficient
 strength to prevent compounding binding from being compromised.

[7] Minimize the information disclosed to the EAP server.

 Notes:

[a] The attacker may try to crack the password in the time required for
 authentication to complete.

[b] The attacker may start the conversation, capture the hash, and
 launch a offline dictionary attack.

5.12.1. Mechanism for credential provisioning

 The standard credential request/response capability is designed to be
 independent of the server unauthenticated tunnel provisioning mode,
 and can be used in regular authentication mode to provision other
 credentials to the peer that can be used for authentication to the
 network, or for potentially authentications to other services.

 The security risks vary depending on the type of credential
 exchanged, the scope of use of the credential; and the implementation
 of the device.

 If the provisioned credential is a shared key or asymmetric key
 issued to the device, then the credential should only be issued to
 devices that can protect the provisioned credentials using secure
 storage, or using physical security. The attacker can compromise the
 provisioned credentials and use them to get access to the network.
 It is not advisable to assume physical security for Mobile devices
 and devices at public places.

 If the provisioned credential is a certificate trusted root of the
 EAP server, this is public information, and hence not susceptible to
 the same attacks.

Palekar et al. Informational [Page 63]

INTERNET-DRAFT PEAPv2 8 October 2004

5.13. Security Claims

 Intended use: Wireless or Wired networks, and over
 the Internet, where physical security
 cannot be assumed.
 Auth. mechanism: Use arbitrary EAP and TLS authentication
 mechanisms for authentication of the
 client and server.
 Ciphersuite negotiation: Yes.
 Mutual authentication: Yes. Depends on the type of EAP method
 used within the tunnel and the type of
 authentication used within TLS.
 Integrity protection: Yes
 Replay protection: Yes
 Confidentiality: Yes
 Key derivation: Yes
 Key strength: Variable
 Dictionary attack prot: Not susceptible.
 Fast reconnect: Yes
 Crypt. binding: Yes.
 Acknowledged S/F: Yes
 Session independence: Yes.
 Fragmentation: Yes
 State Synchronization: Yes

 PEAPv2 derives keys by combining keys from TLS and the inner EAP
 methods. It should be noted that the use of TLS ciphersuites with a
 particular key lengths does not guarantee that the key strength of
 the keys will be equivalent to the length. The key exchange
 mechanisms (eg. RSA or Diffie-Hellman) used must provide sufficient
 security or they will be the weakest link. For example RSA key sizes
 with a modulus of 1024 bits provides less than 128 bits of security,
 this may provide sufficient key strength for some applications and
 not for others. See [PKLENGTH] for a detailed analysis of
 determining the public key strengths used to exchange symmetric keys.

6. IANA Considerations

 This section provides guidance to the Internet Assigned Numbers
 Authority (IANA) regarding registration of values related to the
 PEAPv2 protocol, in accordance with BCP 26, [RFC2434].

 The following name spaces in PEAPv2 require registration: TLV-Types,
 the Identity-Type field in the Identity-Type TLV, the Credential-Type
 field of the Server-Trusted-Root TLV, and the Action field of the
 Request-Action TLV. TLV types within Vendor-Specific TLVs do not
 require registration.

https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434

Palekar et al. Informational [Page 64]

INTERNET-DRAFT PEAPv2 8 October 2004

6.1. Definition of Terms

 The following terms are used here with the meanings defined in BCP
26: "name space", "assigned value", "registration".

 The following policies are used here with the meanings defined in BCP
26: "Private Use", "First Come First Served", "Expert Review",

 "Specification Required", "IETF Consensus", "Standards Action".

6.2. Recommended Registration Policies

 For "Designated Expert with Specification Required", the request is
 posted to the EAP WG mailing list (or, if it has been disbanded, a
 successor designated by the Area Director) for comment and review,
 and MUST include a pointer to a public specification. Before a
 period of 30 days has passed, the Designated Expert will either
 approve or deny the registration request and publish a notice of the
 decision to the EAP WG mailing list or its successor. A denial
 notice must be justified by an explanation and, in the cases where it
 is possible, concrete suggestions on how the request can be modified
 so as to become acceptable.

 TLV Types may assume a value between 0 and 16383 of which 0-20 have
 been allocated. Additional TLV type codes may be allocated following
 Designated Expert with Specification Required [RFC2434].

 The Identity-Type field may assume a value between 0 and 65535, of
 which 0-2 have been allocated. Additional Identity-Type values may
 be allocated following Designated Expert with Specification Required
 [RFC2434].

 The Credential-Type field may assume a value between 0 and 65535, of
 which 0-1 have already been allocated. Additional Credential-Type
 values may be allocated following Designated Expert with
 Specification Required [RFC2434].

 The Action field may assume a value between 0 and 65535, of which 0-2
 have already been allocated. Additional Action values may be
 allocated following Designated Expert with Specification Required
 [RFC2434].

7. References

7.1. Normative references

[RFC1321] Rivest, R. and S. Dusse, "The MD5 Message-Digest Algorithm",
RFC 1321, April 1992.

https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc1321

Palekar et al. Informational [Page 65]

INTERNET-DRAFT PEAPv2 8 October 2004

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC
2246, November 1998.

[RFC2373] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 2373, July 1998.

[RFC2486] Aboba, B. and M. Beadles, "The Network Access Identifier", RFC
2486, January 1999.

[RFC2396] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396, August
 1998.

[RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
 Considerations Section in RFCs", BCP 26, RFC 2434, October
 1998.

[RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J. and H.
 Levkowetz, "Extensible Authentication Protocol (EAP)", RFC

3748, June 2004.

[IEEE80211]
 Information technology - Telecommunications and information
 exchange between systems - Local and metropolitan area
 networks - Specific Requirements Part 11: Wireless LAN Medium
 Access Control (MAC) and Physical Layer (PHY) Specifications,
 IEEE Std. 802.11-2003, 2003.

[IEEE802.11i]
 Institute of Electrical and Electronics Engineers, "Unapproved
 Draft Supplement to Standard for Telecommunications and
 Information Exchange Between Systems - LAN/MAN Specific
 Requirements - Part 11: Wireless LAN Medium Access Control
 (MAC) and Physical Layer (PHY) Specifications: Specification
 for Enhanced Security", IEEE 802.11i, 2004.

[IEEE8021X]
 IEEE Standards for Local and Metropolitan Area Networks: Port
 based Network Access Control, IEEE Std 802.1X-2004, December
 2004.

[80211Req]
 Stanley, D., Walker, J. and B. Aboba, "EAP Method Requirements
 for Wireless LANs", draft-walker-ieee802-req-04.txt, Internet
 draft (work in progress), August 2004.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2373
https://datatracker.ietf.org/doc/html/rfc2486
https://datatracker.ietf.org/doc/html/rfc2486
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/draft-walker-ieee802-req-04.txt

Palekar et al. Informational [Page 66]

INTERNET-DRAFT PEAPv2 8 October 2004

7.2. Informative references

[RFC1968] Meyer, G., "The PPP Encryption Protocol (ECP)", RFC 1968, June
 1996.

[RFC1990] Sklower, K., Lloyd, B., McGregor, G., Carr, D. and T.
 Coradetti, "The PPP Multilink Protocol (MP)", RFC 1990, August
 1996.

[RFC2419] Sklower, K. and G. Meyer, "The PPP DES Encryption Protocol,
 Version 2 (DESE-bis)", RFC 2419, September 1998.

[RFC2420] Hummert, K., "The PPP Triple-DES Encryption Protocol (3DESE)",
RFC 2420, September 1998.

[RFC2548] Zorn, G., "Microsoft Vendor-specific RADIUS Attributes", RFC
2548, March 1999.

[RFC2865] Rigney, C., Willens, S., Rubens, A. and W. Simpson, "Remote
 Authentication Dial In User Service (RADIUS)", RFC 2865, June
 2000.

[RFC2716] Aboba, B. and D. Simon, "PPP EAP TLS Authentication Protocol",
RFC 2716, October 1999.

[RFC3078] Pall, G. and G. Zorn, "Microsoft Point-to-Point Encryption
 (MPPE) Protocol", RFC 3078, March 2001.

[RFC3079] Zorn, G., "Deriving Keys for use with Microsoft Point-to-Point
 Encryption (MPPE)", RFC 3079, March 2001.

[RFC3546] Blake-Wilson, S., et al. "TLS Extensions", RFC 3546, June
 2003.

[RFC3579] Aboba, B. and P. Calhoun, "RADIUS Support for EAP", RFC 3579,
 September 2003.

[RFC3580] Congdon, P., Aboba, B., Smith, A., Zorn, G. and J. Roese,
 "IEEE 802.1X Remote Authentication Dial In User Service
 (RADIUS) Usage Guidelines", RFC 3580, September 2003.

[RFC3766] H. Orman and P. Hoffman, "Determining Strengths For Public
 Keys Used For Exchanging Symmetric Keys", RFC 3766, April
 2004.

[FIPSDES] National Bureau of Standards, "Data Encryption Standard", FIPS
 PUB 46 (January 1977).

https://datatracker.ietf.org/doc/html/rfc1968
https://datatracker.ietf.org/doc/html/rfc1990
https://datatracker.ietf.org/doc/html/rfc2419
https://datatracker.ietf.org/doc/html/rfc2420
https://datatracker.ietf.org/doc/html/rfc2548
https://datatracker.ietf.org/doc/html/rfc2548
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2716
https://datatracker.ietf.org/doc/html/rfc3078
https://datatracker.ietf.org/doc/html/rfc3079
https://datatracker.ietf.org/doc/html/rfc3546
https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc3580
https://datatracker.ietf.org/doc/html/rfc3766

Palekar et al. Informational [Page 67]

INTERNET-DRAFT PEAPv2 8 October 2004

[MODES] National Bureau of Standards, "DES Modes of Operation", FIPS
 PUB 81 (December 1980).

[PEAPv0] Kamath, V., Palekar, A. and M. Wodrich, "Microsoft's PEAP
 version 0 (Implementation in Windows XP SP1)", draft-kamath-

pppext-peapv0-00.txt, Internet draft (work in progress), July
 2002.

[CompoundBinding]
 Puthenkulam, J., Lortz, V., Palekar, A. and D. Simon, "The
 Compound Authentication Binding Problem", draft-puthenkulam-

eap-binding-04.txt, Internet Draft (work in progress), October
 2003.

https://datatracker.ietf.org/doc/html/draft-kamath-pppext-peapv0-00.txt
https://datatracker.ietf.org/doc/html/draft-kamath-pppext-peapv0-00.txt
https://datatracker.ietf.org/doc/html/draft-puthenkulam-eap-binding-04.txt
https://datatracker.ietf.org/doc/html/draft-puthenkulam-eap-binding-04.txt

Palekar et al. Informational [Page 68]

INTERNET-DRAFT PEAPv2 8 October 2004

Appendix A - Examples

[Issue] The examples have not been changed to show outer TLVs.

A.1 Cleartext Identity Exchange

 In the case where an identity exchange occurs within PEAPv2 Part 1,
 the conversation will appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID1) ->

 // Identity sent in the clear. May be a hint to help route the
 authentication request to EAP server, instead of the full user
 identity.

 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (PEAP Start, S bit set)
 EAP-Response/
 EAP-Type=PEAP, V=2
 (TLS client_hello)->
 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)
 EAP-Response/
 EAP-Type=PEAP, V=2
 ([TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (TLS change_cipher_spec,
 TLS finished,
 EAP-Request/EAP-Type=EAP-TLV
 [EAP-Payload-TLV[EAP-Request/
 Identity]])

Palekar et al. Informational [Page 69]

INTERNET-DRAFT PEAPv2 8 October 2004

 // identity protected by TLS. EAP-TLV packet does not include an EAP-
 header.

 TLS channel established (EAP messages sent within TLS channel
 encapsulated in EAP-TLV packets without EAP header)

 EAP-TLV [EAP-Payload-TLV
 [EAP-Response/Identity (MyID2)]]]->

 <- EAP-TLV [EAP-Payload-TLV
 [EAP-Request/EAP-Type=X]]

 EAP-TLV [EAP-Payload-TLV
 [EAP-Response/EAP-Type=X]] ->

 // Protected termination

 <- EAP-TLV [Result TLV (Success),
 Crypto-Binding-TLV (Version=0,
 received-version=2, Nonce, B1_MAC),
 Intermediate-Result-TLV (Success)]

 EAP-TLV [Result-TLV (Success),
 Intermediate-Result-TLV (Success),
 Crypto-Binding-TLV (Version=0,
 received-version=2,Nonce, B2_MAC)]->

 TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Success

A.2 No cleartext Identity Exchange

 Where all peers are known to support PEAPv2, a non-certificate
 authentication is desired for the client and the PEAP Part 1
 conversation is carried out between the peer and a local EAP server,
 the cleartext identity exchange may be omitted and the conversation
 appears as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (PEAP Start, S bit set)

 EAP-Response/
 EAP-Type=PEAP, V=2

Palekar et al. Informational [Page 70]

INTERNET-DRAFT PEAPv2 8 October 2004

 (TLS client_hello)->
 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)
 EAP-Response/
 EAP-Type=PEAP, V=2
 ([TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (TLS change_cipher_spec,
 TLS finished,
 EAP-TLV [EAP-Payload-TLV
 (EAP-Request/Identity)])

 TLS channel established
 (messages sent within the TLS channel)

 EAP-TLV [EAP-Payload-TLV
 [EAP-Response/Identity (MyID)]] ->

 <- EAP-TLV [EAP-Payload-TLV
 [EAP-Type=EAP-Request/
 EAP-Type=X]]

 EAP-TLV [EAP-Payload-TLV
 [EAP-Response/EAP-Type=X
 or NAK] ->
 <- EAP-TLV [EAP-Payload-TLV
 [EAP-Request/EAP-Type=X]]

 EAP-TLV [EAP-Payload-TLV [EAP-Response/
 EAP-Type=X]] ->

 // Protected success
 <- EAP-TLV [Crypto-Binding-TLV=
 (Version=0, Received-version=2,
 Nonce, B1_MAC),
 Intermediate-Result-TLV(Success),
 Result TLV (Success)]

Palekar et al. Informational [Page 71]

INTERNET-DRAFT PEAPv2 8 October 2004

 EAP-TLV [Crypto-Binding-TLV=
 (Version=0,Received-version=2,
 Nonce, B2_MAC),
 Intermediate-Result-TLV (Success),
 Result TLV (Success)]->

 TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Success

A.3 Client certificate authentication with identity privacy

 Where all peers are known to support PEAPv2, where client certificate
 authentication is desired and the PEAPv2 Part 1 conversation is
 carried out between the peer and a local EAP server, the cleartext
 identity exchange may be omitted and the conversation appears as
 follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (PEAP Start, S bit set)

 EAP-Response/
 EAP-Type=PEAP, V=2
 (TLS client_hello)->
 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 TLS server_hello_done)
 EAP-Response/
 EAP-Type=PEAP, V=2
 (TLS client_key_exchange,
 TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (TLS change_cipher_spec,
 TLS finished,TLS Hello-Request)
 EAP-Response/
 EAP-Type=PEAP, V=2
 (TLS client_hello)->

 TLS channel established

Palekar et al. Informational [Page 72]

INTERNET-DRAFT PEAPv2 8 October 2004

 (messages sent within the TLS channel)

 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)
 EAP-Response/
 EAP-Type=PEAP, V=2
 ([TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished) ->

 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (TLS change_cipher_spec,
 TLS finished, EAP-TLV
 [Crypto-Binding-TLV (version=0,
 Received-version=2, Nonce,
 B1_MAC),
 Result-TLV (Success)])

 // packet format within the TLS channel

 EAP-TLV [
 Crypto-Binding-TLV=(Version=0,
 Received-version=2,
 Nonce, B2_MAC),
 Result TLV (Success)]

 TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Success

A.4 Fragmentation and Reassembly

 In the case where the PEAP fragmentation is required, the
 conversation will appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity

Palekar et al. Informational [Page 73]

INTERNET-DRAFT PEAPv2 8 October 2004

 EAP-Response/
 Identity (MyID) ->
 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (PEAP Start, S bit set)

 EAP-Response/
 EAP-Type=PEAP, V=2
 (TLS client_hello)->
 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)
 (Fragment 1: L, M bits set)

 EAP-Response/
 EAP-Type=PEAP, V=2 ->

 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (Fragment 2: M bit set)
 EAP-Response/
 EAP-Type=PEAP, V=2 ->
 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (Fragment 3)
 EAP-Response/
 EAP-Type=PEAP, V=2
 ([TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished)
 (Fragment 1: L, M bits set)->

 <- EAP-Request/
 EAP-Type=PEAP, V=2
 EAP-Response/
 EAP-Type=PEAP, V=2
 (Fragment 2)->
 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (TLS change_cipher_spec,
 TLS finished, EAP-TLV
 [EAP-Payload-TLV[

Palekar et al. Informational [Page 74]

INTERNET-DRAFT PEAPv2 8 October 2004

 EAP-Request/Identity]])

 TLS channel established
 (messages sent within the TLS channel)

 EAP-TLV
 [EAP-Payload-TLV
 [EAP-Response/Identity(myID)]] ->

 <- EAP-TLV [EAP-Payload-TLV
 [EAP-Request/EAP-Type=X]]

 EAP-TLV [EAP-Payload-TLV
 [EAP-Response/EAP-Type=X or NAK]]->

 <- EAP-TLV [EAP-Payload-TLV
 [EAP-Request/EAP-Type=X]]

 EAP-TLV [EAP-Payload-TLV
 [EAP-Response/EAP-Type=X] ->

 <- EAP-TLV [Crypto-Binding-TLV
 =(Version=0, Received-Version=2,
 Nonce, B1_MAC),
 Intermediate-Result-TLV(Success),
 Result TLV (Success)]

 EAP-TLV [
 Crypto-Binding-TLV=(Version=0,
 Received-Version=2,Nonce, B2_MAC),
 Result TLV (Success),
 Intermediate-Result-TLV (Success)] ->

 TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Success

A.5 Server authentication fails in Part 2

 In the case where the server authenticates to the client successfully
 in PEAPv2 Part 1, but the client fails to authenticate to the server
 in PEAPv2 Part 2, the conversation will appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity

Palekar et al. Informational [Page 75]

INTERNET-DRAFT PEAPv2 8 October 2004

 EAP-Response/
 Identity (MyID) ->
 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (PEAP Start, S bit set)
 EAP-Response/
 EAP-Type=PEAP, V=2
 (TLS client_hello)->
 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)
 EAP-Response/
 EAP-Type=PEAP, V=2
 ([TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (TLS change_cipher_spec,
 TLS finished, EAP-TLV
 [EAP-Payload-TLV
 [EAP-Request/Identity]])

 TLS channel established
 (messages sent within the TLS channel)

 EAP-TLV [EAP-Payload-TLV
 [EAP-Response/Identity (MyID)]] ->

 <- EAP-TLV [EAP-Payload-TLV
 [EAP-Request/EAP-Type=X]]

 EAP-TLV [EAP-Payload
 [EAP-Response/EAP-Type=X
 or NAK]] ->
 <- EAP-TLV [EAP-Payload
 [EAP-Request/EAP-Type=X]]

 EAP-TLV [EAP-Payload
 [EAP-Response/
 EAP-Type=X]] ->

Palekar et al. Informational [Page 76]

INTERNET-DRAFT PEAPv2 8 October 2004

 <- EAP-TLV [Crypto-Binding-TLV
 (Version=0, Received-Version=2,
 Nonce, B1_MAC),
 Intermediate-Result-TLV (Failure),
 Result TLV (Failure)]

 EAP-TLV [Crypto-Binding-TLV
 (Version=0, Received-version=2,
 Nonce, B2_MAC),
 Result TLV (Failure),
 Intermediate-Result-TLV (Failure)]

 (TLS session cache entry flushed)
 TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Failure

A.6 Server authentication fails in Part 1

 In the case where server authentication is unsuccessful in PEAP Part
 1, the conversation will appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID) ->
 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (PEAP Start)
 EAP-Response/
 EAP-Type=PEAP, V=2
 (TLS client_hello)->
 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 TLS server_hello_done)
 EAP-Response/
 EAP-Type=PEAP, V=2
 (TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request/

Palekar et al. Informational [Page 77]

INTERNET-DRAFT PEAPv2 8 October 2004

 EAP-Type=PEAP, V=2
 (TLS change_cipher_spec,
 TLS finished, EAP-TLV
 [EAP-Payload-TLV [
 EAP-Request/Identity]])
 EAP-Response/
 EAP-Type=PEAP, V=2
 (TLS Alert message) ->
 <- EAP-Failure
 (TLS session cache entry flushed)

A.7 Session resume success

 In the case where a previously established session is being resumed,
 the EAP server supports TLS session cache flushing for unsuccessful
 PEAPv2 Part 2 authentications and both sides authenticate
 successfully, the conversation will appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID) ->
 <- EAP-Request/
 EAP-Type=PEAP,V=2
 (PEAP Start)
 EAP-Response/
 EAP-Type=PEAP, V=2
 (TLS client_hello)->
 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (TLS server_hello,
 TLS change_cipher_spec
 TLS finished)
 EAP-Response/
 EAP-Type=PEAP, V=2
 (TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request/
 EAP-Type=EAP-TLV
 Result TLV (Success)

 // Compound MAC calculated using TLS keys since there were no inner
 EAP methods.

 EAP-Response/
 EAP-Type=EAP-TLV

Palekar et al. Informational [Page 78]

INTERNET-DRAFT PEAPv2 8 October 2004

 Crypto-Binding-TLV=(Version=0, Nonce, B2_MAC),
 Result TLV (Success)->

 TLS channel torn down
 (messages sent in cleartext)

 <- EAP-Success

A.8 Session resume failure

 In the case where a previously established session is being resumed,
 and the server authenticates to the client successfully but the
 client fails to authenticate to the server, the conversation will
 appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID) ->
 <- EAP-Request/
 EAP-Request/
 EAP-Type=PEAP, V=2
 (PEAP Start)
 EAP-Response/
 EAP-Type=PEAP, V=2
 (TLS client_hello) ->
 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (TLS server_hello,
 TLS change_cipher_spec,
 TLS finished)
 EAP-Response/
 EAP-Type=PEAP, V=2
 (TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request
 EAP-Type=PEAP, V=2
 (TLS Alert message)
 EAP-Response
 EAP-Type=PEAP, V=2 ->
 <- EAP-Failure
 (TLS session cache entry flushed)

A.9 Session resume failure

 In the case where a previously established session is being resumed,

Palekar et al. Informational [Page 79]

INTERNET-DRAFT PEAPv2 8 October 2004

 and the server authentication is unsuccessful, the conversation will
 appear as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID) ->
 <- EAP-Request/
 EAP-Request/
 EAP-Type=PEAP, V=2
 (PEAP Start)
 EAP-Response/
 EAP-Type=PEAP, V=2
 (TLS client_hello)->
 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (TLS server_hello,
 TLS change_cipher_spec,
 TLS finished)
 EAP-Response/
 EAP-Type=PEAP, V=2
 (TLS change_cipher_spec,
 TLS finished)
 <- EAP-Request/
 EAP-Type=PEAP, V=2
 EAP-Response/
 EAP-Type=PEAP, V=2
 (TLS Alert message) ->

 (TLS session cache entry flushed)
 <- EAP-Failure

A.10 PEAP version negotiation

 In the case where the peer and authenticator have mismatched PEAP
 versions (e.g. the peer has a pre-standard implementation with
 version 0, and the authenticator has an implementation compliant with
 this specification), the conversation will occur as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID) ->
 <- EAP-Request/

Palekar et al. Informational [Page 80]

INTERNET-DRAFT PEAPv2 8 October 2004

 EAP-Request/
 EAP-Type=PEAP, V=2
 (PEAP Start)
 EAP-Response/
 EAP-Type=PEAP, V=0
 (TLS client_hello)->
 <- EAP-Request/
 EAP-Type=PEAP, V=0
 (TLS server_hello,
 TLS change_cipher_spec,
 TLS finished)

 //conversation continued using pre-standard PEAP version 0

A.11 Sequences of EAP methods

 Where PEAPv2 is negotiated, with a sequence of EAP method X followed
 by method Y, the conversation will occur as follows:

 Authenticating Peer Authenticator
 ------------------- -------------
 <- EAP-Request/
 Identity
 EAP-Response/
 Identity (MyID1) ->
 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (PEAP Start, S bit set)

 EAP-Response/
 EAP-Type=PEAP, V=2
 (TLS client_hello)->
 <- EAP-Request/
 EAP-Type=PEAP, V=2
 (TLS server_hello,
 TLS certificate,
 [TLS server_key_exchange,]
 [TLS certificate_request,]
 TLS server_hello_done)
 EAP-Response/
 EAP-Type=PEAP, V=2
 ([TLS certificate,]
 TLS client_key_exchange,
 [TLS certificate_verify,]
 TLS change_cipher_spec,
 TLS finished) ->
 <- EAP-Request/

Palekar et al. Informational [Page 81]

INTERNET-DRAFT PEAPv2 8 October 2004

 EAP-Type=PEAP, V=2
 (TLS change_cipher_spec,
 TLS finished, EAP-TLV
 [EAP-Payload-TLV[
 EAP-Request/Identity]])

 TLS channel established
 (messages sent within the TLS channel)

 EAP-TLV [EAP-Payload-TLV
 [EAP-Response/Identity]] ->

 <- EAP-TLV [EAP-Payload-TLV
 [EAP-Request/EAP-Type=X]]]

 EAP-TLV [EAP-Payload-TLV
 [EAP-Response/EAP-Type=X]] ->

 <- EAP-TLV [EAP-Payload-TLV
 [EAP-Request/EAP-Type=X]]

 EAP-TLV [EAP-Payload-TLV
 [EAP-Response/EAP-Type=X]]->

 <- EAP-TLV [EAP Payload TLV [EAP-Type=Y],
 (Intermediate Result TLV (Success),
 Crypto-Binding-TLV
 (Version=0, Received-version=2,
 Nonce, B1_MAC))]

 // Next EAP conversation started after successful completion of
 previous method X. The Intermediate-Status and Crypto-Binding TLVs
 are sent in next packet to minimize round-trips. In this example,
 identity request is not sent before negotiating EAP-Type=Y.

 EAP-TLV [EAP-Payload-TLV [EAP-Type=Y],
 (Intermediate Result TLV (Success),
 Crypto-Binding-TLV (Version=0,
 Received-version=2, Nonce, B2_MAC))]->

 // Compound MAC calculated using Keys generated from
 EAP methods X and the TLS tunnel.

 <- EAP-TLV [EAP Payload TLV [
 EAP-Type=Y]]

 EAP-TLV[EAP Payload TLV
 [EAP-Type=Y]] ->

Palekar et al. Informational [Page 82]

INTERNET-DRAFT PEAPv2 8 October 2004

 <- EAP-TLV [Result-TLV (Success),
 Intermediate Result TLV (Success),
 Crypto-Binding-TLV
 (Version=0, Received-version=2,
 Nonce, B1_MAC))]

 EAP-TLV [(Result-TLV (Success),
 Intermediate Result TLV (Success),
 Crypto-Binding-TLV (Version=0,
 Received-version=2, Nonce, B2_MAC))]->

 // Compound MAC calculated using Keys generated from EAP methods X
 and Y and the TLS tunnel. // Compound Keys generated using Keys
 generated from EAP methods X and Y; and the TLS tunnel.

 TLS channel torn down (messages sent in cleartext)

 <- EAP-Success

Acknowledgments

 Thanks to Hakan Andersson, Jan-Ove Larsson and Magnus Nystrom of RSA
 Security; Bernard Aboba, Vivek Kamath, Stephen Bensley and Narendra
 Gidwani of Microsoft; Ilan Frenkel and Nancy Cam-Winget of Cisco;
 Jose Puthenkulam of Intel for their contributions and critiques.

 The compound binding exchange to address man-in-the-middle attack is
 based on the draft "The Compound Authentication Binding
 Problem"[CompoundBinding].

 The vast majority of the work by Simon Josefsson and Hakan Andersson
 was done while they were employed at RSA Laboratories.

Author Addresses

 Ashwin Palekar
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052

 Phone: +1 425 882 8080
 EMail: ashwinp@microsoft.com

 Dan Simon
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052

Palekar et al. Informational [Page 83]

INTERNET-DRAFT PEAPv2 8 October 2004

 Phone: +1 425 706 6711
 EMail: dansimon@microsoft.com

 Glen Zorn
 Cisco Systems
 500 108th Avenue N.E.
 Suite 500
 Bellevue, Washington 98004

 Phone: + 1 425 438 8210
 Fax: + 1 425 438 1848
 EMail: gwz@cisco.com

 Simon Josefsson
 Drottningholmsvagen 70
 112 42 Stockholm
 Sweden

 Phone: +46 8 619 04 22
 EMail: jas@extundo.com

 Hao Zhou
 Cisco Systems, Inc.
 4125 Highlander Parkway
 Richfield, OH 44286

 Phone: +1 330 523 2132
 Fax: +1 330 523 2239
 EMail: hzhou@cisco.com

 Joseph Salowey
 Cisco Systems
 2901 3rd Ave
 Seattle, WA 98121

 Phone: +1 206 256 3380
 EMail: jsalowey@cisco.com

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards- related documentation can be found in BCP-11. Copies of

https://datatracker.ietf.org/doc/html/bcp11

Palekar et al. Informational [Page 84]

INTERNET-DRAFT PEAPv2 8 October 2004

 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Open Issues

 Open issues with this specification are tracked on the following web
 site:

http://www.drizzle.com/~aboba/PEAP/

https://datatracker.ietf.org/doc/html/bcp78
http://www.drizzle.com/~aboba/PEAP/

Palekar et al. Informational [Page 85]

