
QUIC working group A. Joseph
Internet-Draft T. Li
Intended status: Informational UCLA
Expires: September 6, 2018 Z. He
 Y. Cui
 Tsinghua University
 L. Zhang
 UCLA
 March 5, 2018

A Comparison between SCTP and QUIC
draft-joseph-quic-comparison-quic-sctp-00

Abstract

 To cumulate design lessons from our protocol development efforts,
 this document provides a preliminary comparison between two transport
 protocol designs, Stream Control Transport Protocol (SCTP) and Quick
 UDP Internet Connections (QUIC). We identify their commonalities and
 differences, summarize the characteristics of QUIC which we believe
 represent progresses in transport protocol designs. We hope this
 draft useful in helping others to gain further understanding of both
 SCTP and QUIC, and in future protocol design efforts.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 6, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Joseph, et al. Expires September 6, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft QUIC and SCTP comparison March 2018

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Background . 3
3. A High Level Overview of the Two Protocols 4
3.1. SCTP . 4
3.2. QUIC . 4

4. A Comparative Examination of Specific Protocol Mechanisms . . 5
4.1. Packet Structure . 5
4.1.1. SCTP . 5
4.1.2. QUIC . 7

4.2. Connection Setup . 8
4.2.1. SCTP . 9
4.2.2. QUIC . 10

4.3. Substreams . 11
4.3.1. SCTP . 12
4.3.2. QUIC . 12

4.4. Fragmentation . 13
4.4.1. SCTP . 14
4.4.2. QUIC . 14

4.5. Reliability and Congestion Control 14
4.5.1. SCTP . 15
4.5.2. QUIC . 16

4.6. Flow Control . 17
4.6.1. SCTP . 18
4.6.2. QUIC . 18

4.7. Connection Teardown 19
4.7.1. SCTP . 19
4.7.2. QUIC . 19

4.8. Other Differences between QUIC and SCTP 19
5. Current Situations of SCTP and QUIC 20
6. Conclusions from the comparison 20
7. Contributors . 22
8. Informative References 22

 Authors' Addresses . 23

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Joseph, et al. Expires September 6, 2018 [Page 2]

Internet-Draft QUIC and SCTP comparison March 2018

1. Introduction

 Quick UDP Internet Connections (QUIC) builds upon the design lessons
 learned from many existing protocols. The purpose of this draft is
 to draw parallels and display differences between the two transport
 protocols, Stream Control Transport Protocol (SCTP) and Quick UDP
 Internet Connections (QUIC), with a hope to gain deeper insight from
 the comparison, extract general lessons, and trends.

 As such, this draft is not intended to be a deep dive into the inner
 working details of the protocols, but rather a high level view of
 similar core functionality and mechanisms of the protocols. These
 two protocols were developed years apart and for very different
 purposes, however as transport protocols they share a number of
 similarities. However it should be noted that at the time of this
 writing, the QUIC specification is still under active development.
 This means that parts of the specifications are still incomplete or
 missing at this time. This draft focuses on what has been documented
 so far; the reader should keep in mind that the QUIC protocol might
 have changed after the time of this draft's publication.

2. Background

 The SCTP protocol was originally developed in year 2000 to transport
 Public Switched Telephone Network (PTSN) signaling messages over IP;
 it was later adapted to be a general purpose transport protocol
 [RFC4960]. The motivation of developing a new transport protocol
 came from perceived drawbacks of using TCP for transmitting PTSN
 messages: HOL-Blocking, lack of host multi-homing support, mismatch
 between TCP's byte-stream data model and PTSN applications's message-
 oriented communication, and TCP's vulnerability to SYN attacks. SCTP
 uses multiple substreams to mitigate HOL blocking, enables each
 transport connection to utilize multiple interfaces, and reliably
 delivers application messages instead of byte streams.

 The development of the QUIC protocol was started by Jim Roskind's
 team at Google in 2012, aiming to remove identified performance
 bottlenecks in transport protocols. As Internet bandwidths continue
 to increase due to technology advances and infrastructure buildout,
 the Round Trip Time (RTT) became a physical upper bound of the speed
 of light. The existing transport protocols take multiple RTTs to
 deliver a web page's contents [QUIC-DESIGN]. Using multiple TCP
 connections to improve performance has its own limitations: it forces
 client applications to bind to many different sockets to send out
 multiple separate requests, resulting in redundant connection setup
 and bandwidth wastage as well as inefficient allocation of computer
 resources. QUIC developed an innovative design for connection setup
 that integrates transport protocol and TLS functions to minimize RTT.

https://datatracker.ietf.org/doc/html/rfc4960

Joseph, et al. Expires September 6, 2018 [Page 3]

Internet-Draft QUIC and SCTP comparison March 2018

 Similar to STCP, QUIC developed support for multiple substreams
 instead of using multiple transport connections[QUIC-DESIGN]. QUIC's
 predecessor was another transport protocol from Google called SPDY,
 which ran over a single TCP connection and routinely with SSL
 [QUIC-DESIGN]. The lessons learned from SPDY drove many of the
 design decisions for QUIC, including the decision to run over UDP
 instead of TCP to avoid TCP's HOL-Blocking, an innovative congestion
 control scheme, and considerations for mobile devices in connection
 teardown [QUIC-DESIGN].

3. A High Level Overview of the Two Protocols

3.1. SCTP

 A SCTP connection is comprised of an association between two
 endpoints, each is defined by a set of IP addresses and a port
 number. A SCTP connection is referred to as an association so the
 rest of this draft will use this term. While a primary IP address is
 used for each endpoint, each end may inform the other end a set of
 addresses it may use to transmit packets. Moving away from TCP's
 approach of one-header-fitting-all, STCP designed multiple separate
 data structures called "chunks" to carry association control
 information and applications data messages. SCTP communicates with
 an Upper Layer Protocol (ULP) through the use of message primitives
 ASSOCIATE and SHUTDOWN. These primitives are how applications are
 able to communicate with SCTP to setup and teardown association.

 SCTP supports multiple message substreams by letting each of the two
 endpoints negotiate with the other on the number of substreams they
 can support at the association setup time, and ensures in-order
 delivery of messages in substream to the ULP through the use of a
 substream sequence number. To provide reliable message delivery for
 all substreams, SCTP assigns each data chunk a unique Transmission
 Sequence Number (TSN). Note that the TSN is on per association
 basis, not per substream. It works in an identical way to TCP
 sequence number in ensuring reliable delivery, except that the former
 names a data chunk while the latter a data byte. A data may contain
 either a data message, or a segment of a data message. SCTP uses the
 same congestion avoidance and control mechanisms as TCP, and similar
 selectively acknowledgement scheme, except that it designed a
 dedicated SACK chunk, as opposed to TCP's use of its option field for
 SACK.

3.2. QUIC

 A QUIC connection is comprised of an association between two
 endpoints defined by a pair of IP address and port number (at the
 time of this writing, QUIC's multihoming/multipath support is still

Joseph, et al. Expires September 6, 2018 [Page 4]

Internet-Draft QUIC and SCTP comparison March 2018

 under development). The IP addresses and ports can change in the
 middle of a connection. A fundamental difference between QUIC and
 TCP or SCTP is that QUIC is a user space transport protocol, which
 allows rapid protocol revision without having to wait for system
 upgrades. To support rapid protocol revision, QUIC's connection
 setup goes through a negotiation process that involves determining
 the lowest common version supported between the two endpoints and a
 cryptographic handshake which incorporates TLS to provide a secure
 connection.

 Within a QUIC connection, substreams can be started at any time,
 excluding tear down phase. Either endpoint can start a substream,
 which can be either bidirectional or unidirectional. QUIC inherits
 TCP's byte stream data model. Dedicated control structures called
 "frames" are used to communicate with and carry byte data to
 endpoints.

 Similar to SCTP, QUIC has a dedicated SACK frame to carry selective
 acknowledgement, although the semantics of QUIC SACK differs from
 that of SCTP in important ways. SACK informs which packets are
 delivered to the other end; un-ACKed packets are considered lost. No
 QUIC packet is ever retransmitted, packet numbers always increases
 monotonically. From each received SACK frame, a QUIC endpoint can
 infer which byte frames have been received by the other end. To
 ensure reliable in-order data delivery of each byte stream to the
 application, the sender will retransmit the byte frames that are not
 acknowledged. The new frames may repackage the missing byte offsets.

 As another difference from SCTP, QUIC practices flow control both on
 a connection basis and on per substream basis, by advertising the max
 amount of data allowed on a connection, as well as per stream. If an
 endpoint transmits more than advertised, the entire connection is
 torn down.

4. A Comparative Examination of Specific Protocol Mechanisms

4.1. Packet Structure

 The packet structures of both SCTP and QUIC break away from TCP's
 one-header-fits-all design. Instead, they used dedicated control
 chunks for connections setup, teardown and SACK.

4.1.1. SCTP

 The SCTP [RFC4960] packet structure contains a common header
 (Figure 1) with attached DATA chunks (Figure 2) which is analogous to
 QUIC's Short Header (Figure 3) and STREAM frames (Figure 4). The
 common header contains fields for the set of source and destination

https://datatracker.ietf.org/doc/html/rfc4960

Joseph, et al. Expires September 6, 2018 [Page 5]

Internet-Draft QUIC and SCTP comparison March 2018

 IP addresses and ports, verification tag, and a checksum of the
 packet. The DATA chunk has a type and reserved fields of 0. The U
 bit set to 1 indicates that the data is unordered and the value in
 the Stream Sequence Number (SSN) can be ignored. The SSN indicates
 what number message the chunk contains for the related Stream, and
 also determines the order the messages will be delivered to the ULP
 (unless it is meant to be unordered). SSN always starts from 0 and
 increments up to 65535 with wrap around. The Transmission Sequence
 Number (TSN) enumerates the Chunks attached to the common header and
 increment sequentially with wrap around over the lifetime of an
 association. TSNs range from 0 to 4294967295, and can start at a
 random value in the range. TSNs are repeated during retransmission
 of packets to ensure reliable delivery. The Length field indicates
 the length of the DATA Chunk including the 16 bytes of the fields
 starting from the Type field. The Stream identifier is the number
 identifying the stream the chunk belongs to. The Payload Protocol
 Identifier is not relevant for the purposes of this paper and is not
 used by the SCTP protocol itself, but is intended for use by
 middleboxes. The User Data field contains user data which is padded
 at the end to a 4 byte boundary of all-zero bytes.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Common Header |
 +-+
 | Chunk #1 |
 +-+
 | ... |
 +-+
 | Chunk #n |
 +-+

 Figure 1: SCTP Packet Structure

Joseph, et al. Expires September 6, 2018 [Page 6]

Internet-Draft QUIC and SCTP comparison March 2018

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 0 | Reserved|U|B|E| Length |
 +-+
 | TSN |
 +-+
 | Stream Identifier S | Stream Sequence Number n |
 +-+
 | Payload Protocol Identifier |
 +-+
 | User Data (seq n of Stream S) |
 +-+

 Figure 2: SCTP DATA Chunk

4.1.2. QUIC

 The QUIC packet structure consists of a common header called a short
 header (Figure 3) and attached Frames in the protected payload
 (Figure 4). A user data payload bearing packet sent after connection
 is set up is called a STREAM frames (Figure 4), analogous to SCTP's
 DATA Chunks (Figure 2), and is the primary frame used for data
 transfer [QUIC-TRANSPORT]. The Type field indicates the type of
 Frame it is: the range 0x10-0x17 indicates a STREAM Frame. The lower
 three bites of the Type field also encode whether certain fields are
 in the frame. 0x04 is the OFF bit, if set to 1, there is an offset
 field, if set to 0, the frame starts from byte offset of 0 or there
 is no data. 0x02 is the Length bit, if set to 1, there is a length
 field, if set to 0, the length of the data extends to the end of the
 packet. Finally the 0x01 is the FIN bit, if set to 1, it is the
 final frame in a stream [QUIC-TRANSPORT]. The Stream ID identifies
 the stream the frame belongs to, as well as if the stream is
 bidirectional or unidirectional and if the server or the client
 created the stream. If the second least significant bit is 1, the
 stream is unidirectional, if it is 0, the stream is bidirectional.
 If the least significant bit is 1, the server initiated the stream,
 if it is 0, the client initiated the stream. The offset field
 indicates the byte offset that the STREAM Frame is carrying, and the
 length field indicates the length of the stream data. There can be
 multiple STREAM Frames per QUIC packet/header. [QUIC-TRANSPORT]

Joseph, et al. Expires September 6, 2018 [Page 7]

Internet-Draft QUIC and SCTP comparison March 2018

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 |0|C|K| Type (5)|
 +-+
 | |
 + [Connection ID (64)] +
 | |
 +-+
 | Packet Number (8/16/32) ...
 +-+
 | Protected Payload (*) ...
 +-+

 Figure 3: Short Header

 0 1 2 3
 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 | Type (8) |
 +-+
 | Stream ID (i) ...
 +-+
 | [Offset (i)] ...
 +-+
 | [Length (i)] ...
 +-+
 | Stream Data (*) ...
 +-+

 Figure 4: STREAM Frame

4.2. Connection Setup

 For connection setup, SCTP adopts the 4-way handshake with digitally
 signed state cookie for preventing denial-of-service attacks (SYN-
 flooding). The state cookie is sent by the server in response to the
 client's INIT message, and contains all of the state that the server
 needs to ensure that the association is valid, including Message
 Authentication Code (MAC) [RF2104], a timestamp, and the cookie
 lifespan. The cookie contains all the information needed for SCTP
 association setup, so the server's SCTP stack does not need to keep
 information about the associating client.

 For connection setup, QUIC directly incorporates TLS key negotiation
 process with the transport handshake, establishing secure connection
 using 1-RTT with successful version negotiation, and 0-RTT for
 connection resumptions. During initial connection setup, the server

Joseph, et al. Expires September 6, 2018 [Page 8]

Internet-Draft QUIC and SCTP comparison March 2018

 gives the client a cryptographic cookie known as Source Address Token
 (client IP and timestamp) for source address validation. It also
 sends the Server Config containing the server's long-term Diffie-
 Hellman public value and server preference. These information can be
 used for subsequent connections. This provides a secure and
 efficient way for establishing connections, yet unlike traditional
 syn-cookies for preventing syn-flood attack which are designed for
 single use, QUIC's longterm cookies might bring potentials for new
 types of attacks (e.g. replay attack). QUIC server also adopts
 stateless address validation, the cookie stores all state necessary
 to continue the connection.

4.2.1. SCTP

 While SCTP is similar to TCP where a connection is defined by a pair
 IP addresses and port numbers, SCTP is slightly different by defining
 a set of possible IP addresses and port numbers in its common header.
 This is to facilitate SCTP's multihoming features, since messages can
 be sent or received at any of these addresses, even though there is a
 primary address specified. A normal SCTP association begins when an
 endpoint "A" sends an INIT chunk to the other endpoint. The INIT
 chunk (Figure 5) will contain a Verification Tag value which is a
 random number between the range of 1 and 4294967295. The
 Verification Tag can be used as the initial TSN as well. The other
 endpoint "Z" will respond with an INIT ACK chunk containing its own
 Verification Tag as well as as generating and sending a State Cookie
 back. Endpoint "A" will then respond with a COOKIE ECHO chunk which
 might contain DATA chunks as well. Endpoint "Z" will acknowledged
 the COOKIE ECHO with a COOKIE ACK chunk, which can also be bundled
 with other DATA chunks. The ULP of each of the endpoints will then
 be notified that a successful association has been established.
 Within the INIT and INIT ACK chunks that were sent by each endpoint,
 the number of outbound and inbound streams accepted by each endpoint
 were communicated. The endpoints will take the minimum of each of
 their preferred outbound streams and the minimum inbound stream of
 the other endpoint, minus 1: min(local outbound stream, remote
 minimum inbound streamC) - 1. All SCTP substreams are
 unidirectional. The State Cookie that is sent out during connection
 setup contains a Message Authentication Code (MAC) [RF2104], a
 timestamp and the lifespan for the cookie. The entire SCTP
 association setup results in a 4-way handshake in order to avoid a
 SYN-flood situation. Once a connection is set up, it is possible
 that SCTP will fragment its chunks in order to avoid IP
 fragmentation. Fragmentation is done by a source host only and the
 peer endpoint will reassemble once it is received.

Joseph, et al. Expires September 6, 2018 [Page 9]

Internet-Draft QUIC and SCTP comparison March 2018

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 1 | Chunk Flags | Chunk Length |
 +-+
 | Initiate Tag |
 +-+
 | Advertised Receiver Window Credit (a_rwnd) |
 +-+
 | Number of Outbound Streams | Number of Inbound Streams |
 +-+
 | Initial TSN |
 +-+
 \ Optional/Variable-Length Parameters /
 +-+

 Figure 5: SCTP INIT Chunk

4.2.2. QUIC

 A normal QUIC connection begins with version negotiation between two
 endpoints. An Initial packet with a long header is sent out by a
 client to determine if both endpoints support the same version of
 QUIC. The Version Negotiation packet (Figure 6) is sent by the
 server if the client that sent out the initial packet is attempting
 to create a new connection and the client's version is not accepted
 by the server. If the Initial packet's version is supported by the
 server or the client responds to the server's Version Negotiation
 packet with a supported version, the handshake process continues.
 After a version is settled on by both endpoints, the transport and
 cryptographic handshake begins. Stream 0, is a reserved substream
 that is used for the cryptographic handshake process. The current
 version of QUIC uses TLS 1.3 to encrypt the connection and
 authenticate the server and optionally authenticate the client. QUIC
 is able to reduce handshake delay caused by RTT by combining the
 transport and cryptographic handshake together to provide a secure
 connection from the start of a connection. QUIC embeds the TLS
 functionality within the protocol itself, without having to run a
 separate TLS handshake and session after the transport handshake.
 During the cryptographic handshake, each endpoint advertises
 transport parameters that define the initial parameters for the
 connection. These transport parameters includes values that
 determine the maximum amount of data that can be transmitted per
 stream, as well as per connection data maximums. These values are
 updated during the lifetime of a connection to facilitate flow
 control. Once a connection is established, substreams can be created
 during any point of the connection lifetime. QUIC also supports both

Joseph, et al. Expires September 6, 2018 [Page 10]

Internet-Draft QUIC and SCTP comparison March 2018

 unidirectional and bidirectional substreams which is determined
 during sub stream setup.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 |1| Unused (7) |
 +-+
 | |
 + Connection ID (64) +
 | |
 +-+
 | Version (32) |
 +-+
 | Supported Version 1 (32) ...
 +-+
 | [Supported Version 2 (32)] ...
 +-+
 +-+
 | [Supported Version N (32)] ...
 +-+

 Figure 6: QUIC Version Negotiation Packet

4.3. Substreams

 One of the major features of both of these protocols are multiplexed
 streams. An issue with TCP is that a dropped packet can block
 message delivery for all application-level streams since TCP uses a
 single-byte stream abstraction. This blockage is called Head-of-Line
 Blocking. SCTP and QUIC solve for this by supporting multiplex
 streams within the protocol itself. If a dropped packet occurs for
 either protocol, in-order messages/byte streams can still be
 delivered for other streams if they are available.

 SCTP intended to get rid of HOL-Blocking by substreams, but its
 Transmission Sequence Number (TSN) couples together the transmission
 of all data chunks. For SCTP, each packet contains different data
 chunks from different streams identified by Stream ID (SID), if the
 data chunk of one streams is lost, the data of other streams should
 still be received by the application. However, a TSN is assigned to
 every data chunk in the association. For SCTP Cumulative ACK, the
 value of the Cumulative TSN ACK parameter is the last TSN received
 before a break in the sequence of received TSNs. The next TSN value
 following this one has not yet been received at the endpoint sending
 the SACK. This parameter therefore acknowledges receipt of all TSNs
 less than or equal to its value. As a result, in SCTP if a packet is

Joseph, et al. Expires September 6, 2018 [Page 11]

Internet-Draft QUIC and SCTP comparison March 2018

 lost, all the packets with TSN after this lost packet cannot be
 received until it is retransmitted.

 QUIC adopts two levels of numbering. User data is uniquely
 identified by stream ID and offset, it also has a monotonically
 increasing packet sequence number.The packet sequence number is used
 for congestion control and loss detection and it numbers all the
 packets (SCTP don't number control packets). QUIC selective ack,
 acknowledges packet sequence number of the last received packet, and
 QUIC retransmits the lost packet using a new sequence number. As a
 result, the congestion window could open up for more packets, and the
 lost packet does not affect the packets following it from being
 received, thus avoiding the HOL-Blocking problem. However, as QUIC
 SACK tells which packets get lost but does not retransmit the lost
 packet, QUIC has to keep internal mapping of which stream frame in
 which packet, to know which one needs to be retransmitted, which
 introduces additional processing.

4.3.1. SCTP

 SCTP substream setup requires the number of substreams as well as
 their Stream IDs be declared at association setup. SCTP does not
 have the functionality to start streams during a association since it
 does not differentiate between client-initiated and server-initiated
 streams. Additionally, streams persist through the lifetime of an
 active association. SCTP's INIT Chunk declares two fields, Number of
 Outbound Streams (OS) and Number of Inbound Streams (NIS), to help
 negotiate the number of streams to be created during an association.
 The number of streams is not negotiated in the traditional sense, but
 instead the minimum of the requested streams and offered streams is
 taken. For example, if a receiver advertises 6 streams in its MIS
 field, and a sender advertises 12 streams in its OS field, the number
 of streams to the receiver will be 6. If either of these fields is
 set to 0, the association will be aborted. If a sender is limited to
 less streams than was requested, it can communicate to its
 application layer it failed to secure the number of streams that was
 required, and the application can decide to continue the association
 or abort it. SCTP substreams are only unidirectional and each
 stream's sequence number must start from 0. Since streams are
 created during association setup, if the number of streams needs to
 be changed, the association needs to be torn down and re-setup.

4.3.2. QUIC

 QUIC has the functionality to start or teardown a substream during
 any point of the connection (aside from connection teardown). The
 parity of the Stream ID allows QUIC to spawn new substreams on either
 the client or server side without the need to undergo negotiations

Joseph, et al. Expires September 6, 2018 [Page 12]

Internet-Draft QUIC and SCTP comparison March 2018

 between each side to decide on an ID. Since parity is decided by the
 least significant bit, a client only picks even Stream IDs, and the
 server only picks odd Stream IDs. QUIC substreams support
 unidirectional and bidirectional streams which is determined by
 setting the second to least significant bit in the Stream ID. The
 bit reservations allow for streams to be started at anytime during
 the lifetime of a connection without the need for negotiation. Each
 endpoint is restricted to their own non-overlapping range of IDs,
 thus canceling out the need to negotiate for an ID in order to avoid
 conflicts.The protocol defines several transport parameters and
 frames to define and control the behavior of the streams. The
 MAX_STREAM_DATA frame is advertised by the receiver to flow control
 individual streams. If a peer attempts to send more data than is
 advertised, the connection is terminated. MAX_STREAM_ID is a similar
 frame advertised by the receiver to indicate the maximum number of
 streams allowed on the connection. If a peer attempts to start a
 stream with a Stream ID higher than the advertised maximum, the
 connection is terminated. The sender can communicate with the
 receiver that it is unable to send more data, or start a new stream
 through STREAM_BLOCKED and STREAM_ID_BLOCKED frames respectively.
 The receiver can advertise new data and stream limits any time during
 a connection and is bound to honor these limits, e.g. a receiver
 cannot advertise a higher limit and refuse it once a sender starts
 sending. An important implementation note is that if a QUIC packet
 is dropped, every stream that was in that packet is blocked. It is
 up to the QUIC implementation to determine the number of streams to
 be sent per packet to limit the occurrences of HOL-Blocking. QUIC
 needs to balance sending data for all its dream with the chance of
 stream blockage when a dropped packet occurs. Once an endpoint of a
 stream has finished transmitting its data, it will set the FIN bit on
 its last STREAM frame or the frame after the last STREAM frame to
 indicate the stream is closed in the direction of the endpoint,
 resulting in a half closed stream. Once both endpoints have sent
 STREAM frames with the FIN bit set, the stream is fully closed.

4.4. Fragmentation

 For data model, SCTP uses application-defined messages. However,
 QUIC adopts the bidirectional byte stream model of TCP, the reasoning
 of which is probably the desire of close coupling with HTTP/2 that
 was originally designed to run over TCP. Consequently, not only does
 it facilitate the movement of applications from TCP to QUIC, but also
 liberates QUIC from message fragmentation that SCTP has to take care
 of.

Joseph, et al. Expires September 6, 2018 [Page 13]

Internet-Draft QUIC and SCTP comparison March 2018

4.4.1. SCTP

 In order to avoid IP fragmentation, SCTP fragments its own chunks, so
 that its packets can fit under the Path MTU [QUIC]. Since SCTP
 relies on messages as its unit of data, it needs to determine how to
 fragment and reassemble its payload to keep the rest of the protocol
 functioning, meaning it needs to keep its headers unfragmented and
 handle reassembly of the data once it is received. SCTP achieves
 this by utilizing bit flags in the DATA Chunk header and numeric
 values in its TSN and SSN fields. The B bit set to 1 indicates that
 the chunk is the first fragment of a user message. The E bit set to
 1 indicates that the chunk is the last fragment of a user message.
 If both B and E are set to 1, then the message is not fragmented. If
 both B and E are set to 0, then the chunk is a middle fragment of the
 user message. The TSN field indicates the Transmission Sequence
 Number of the DATA Chunk which is used to identify and acknowledge
 successfully received Chunks. Each DATA Chunk in a packet shares a
 different sequential TSN and SSN, whereas each fragmented DATA Chunk
 must also shares a different sequential TSN, but the same SSN among
 the fragmented DATA Chunks containing the same message. A receiver
 will then be able to acknowledge all the Chunks it received with its
 corresponding TSN, and rebuild the underlying messages by matching
 DATA Chunks with payloads sharing the same SSN.

4.4.2. QUIC

 A QUIC packet must contain whole frames, and not have frames split up
 between packets. A QUIC packet must fit under the Path MTU
 [QUIC-TRANSPORT]. QUIC can resize packets without the need of
 complex mechanisms to track fragments of messages like in SCTP since
 every QUIC data payload is just a byte stream and is easily
 adjustable through changing byte offset field in the STREAM Frame.
 There is no message to fragment since the data is already at its most
 granular form. The actual size of a QUIC packet is determined by
 implementation of the protocol and how the application using it
 behaves. The current draft does not go into much detail on how to
 pack QUIC packets with frames aside from recommending to pack as many
 frames as possible to minimize per-packet bandwidth and computational
 cost [QUIC-TRANSPORT]. However a balance needs to occur. If there
 are too many frames in a packet, and the packet is lost, all those
 streams are blocked, if there are too little frames, there is
 increased per-packet bandwidth and computational cost.

4.5. Reliability and Congestion Control

 Reliable delivery in transport protocols is defined as providing the
 abstraction of guaranteeing delivery of every message on an active
 connection . Congestion control is defined to be how an endpoint

Joseph, et al. Expires September 6, 2018 [Page 14]

Internet-Draft QUIC and SCTP comparison March 2018

 limits the number of messages it sends out on a network in order to
 prevent the network from becoming clogged and dropping packets. QUIC
 and SCTP both provide reliable delivery as well as forms of
 congestion control. SCTP borrows most of its congestion control
 concepts from TCP and QUIC utilizes TCP's and its own mechanisms.
 The ACK blocks indicate ranges of packet numbers that were received
 below the Largest Acknowledged, with GAP blocks indicating gaps in
 the packet number series. This is unlike SCTP's Cumulative TSN ACK
 which tracks the lowest contiguous acknowledged TSN.

4.5.1. SCTP

 SCTP ensures reliable in-order delivery of data through the use of
 the TSN. Unlike QUIC's Packet Number, TSN is not a monotonically
 increasing value. TSNs are used to identify and acknowledge chunks
 by a receiver, and if a sender does not receive an acknowledgement in
 a certain amount of time, it knows what chunks to retransmit because
 of their associated TSN. TSNs are used to track missing chunks, and
 chunks are retransmitted with the same TSN that they had when they
 were originally dropped so the receiver knows it is no longer missing
 a chunk. This allows SCTP to guarantee reliable delivery of DATA
 Chunks. Since TSN is separate from SSN, the in-order delivery
 mechanism for streams is kept separate from the reliable delivery
 mechanism. SSN controls in-order delivery to the ULP, while TSN
 controls reliable delivery between endpoints. TSN is also agnostic
 to what stream it belongs to. SCTP keeps track of the Cumulative TSN
 ACK, the last TSN an endpoint has received before a break in the
 series of TSN values. Every TSN below the Cumulative TSN ACK value
 is contiguously acknowledged by the receiver. If a receiver has gaps
 in TSNs that were not received, it will communicate only what it has
 received, leaving the sender to determine what is missing. A
 receiver sends out a SACK Chunk (Figure 7) to acknowledge the receipt
 of TSNs. GAP blocks are attached to the SACK Chunk to acknowledge
 sequences of TSN values above the Cumulative TSN ACK. A GAP block
 indicates ranges of TSNs that are acknowledged by the receiver. Gap
 Ack Block Start indicates the inclusive start offset of TSNs from the
 Cumulative TSN ACK. Gap Ack Block End indicates the inclusive end
 offset of TSNs from the Cumulative TSN ACK. A sender determines what
 TSNs are missing through repeated GAP blocks containing the same gaps
 in TSN ranges, which indicate the same chunks are missing repeatedly.
 The sender will then retransmit the missing chunks. Congestion
 control in SCTP is governed by the same mechanisms that TCP utilizes
 such as slow start, fast retransmit and retransmission timer.

Joseph, et al. Expires September 6, 2018 [Page 15]

Internet-Draft QUIC and SCTP comparison March 2018

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 3 |Chunk Flags | Chunk Length |
 +-+
 | Cumulative TSN Ack |
 +-+
 | Advertised Receiver Window Credit (a_rwnd) |
 +-+
 | Number of Gap Ack Blocks = N | Number of Duplicate TSNs = X |
 +-+
 | Gap Ack Block #1 Start | Gap Ack Block #1 End |
 +-+
 \ ...
 +-+
 | Gap Ack Block #N Start | Gap Ack Block #N End |
 +-+
 | Duplicate TSN 1 |
 +-+
 \ ...
 +-+
 | Duplicate TSN X |
 +-+

 Figure 7: SCTP SACK Chunk

4.5.2. QUIC

 QUIC ensures reliable in-order delivery of data through the use of
 the byte offset field in STREAM frames. If a packet is dropped, the
 individual frames within the packet will be retransmitted, not the
 packet itself. This means that a new packet with a new packet number
 will be constructed, and the dropped frames will be attached and sent
 with it. The packet number in a QUIC packet is always monotonically
 increasing, or in other words, a duplicate packet number will never
 be sent making it easy to distinguish acknowledgements of
 retransmission from the original packets [QUIC-RECOVERY]. This plays
 into the stream abstraction concept that is present within QUIC:
 there is always a constant stream of data being sent on a connection.
 It is up to the implementation to decide how many packets to use to
 resend dropped frames. Additionally, since endpoints know which sent
 packets of theirs is missing, they know what byte offsets are
 missing, allowing them the ability to resize frames for transmission
 as they see fit. At time of writing, the QUIC draft does not specify
 how the frames are resized [QUIC-TRANSPORT]. The ACK Delay field
 indicates the time in microseconds that the largest acknowledged
 packet was received by which facilitates creating an accurate RTT
 timer [QUIC-RECOVERY]. The Largest Acknowledged field in the ACK

Joseph, et al. Expires September 6, 2018 [Page 16]

Internet-Draft QUIC and SCTP comparison March 2018

 Frame (Figure 8) indicates the largest packet number that was
 received. The reason QUIC tracks the latest packet number is due to
 the packet number always being monotonically increasing allowing
 transmission order to be easily tracked. SCTP tracks the lowest
 contiguous TSN in its Cumulative TSN ACK field since SCTP might
 retransmit TSNs which is not an issue with QUIC. Just as SCTP
 utilizes the same mechanisms as TCP for congestion control, so does
 QUIC, however with some important modifications. QUIC simplifies its
 congestion control and loss detection by splitting out its source of
 information for reliable delivery: stream id and byte offsets, from
 its source of information for transmission order: monotonically
 increasing packet numbers. SCTP and TCP both conflate reliable
 delivery and transmission order into one source of information, the
 TSNs. Another simplification that QUIC brings is that QUIC ACK's are
 always honored, and never reneged upon, unlike SCTP which uses a SACK
 similar to TCP and can be reneged [QUIC-RECOVERY]. TCP's congestion
 control algorithms such as slow start, fast retransmit, and RTT
 timers are still used in QUIC, just adapted to use its packet number
 as well as some other minute differences [QUIC-RECOVERY].

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Largest Acknowledged (i) ...
 +-+
 | ACK Delay (i) ...
 +-+
 | ACK Block Count (i) ...
 +-+
 | ACK Blocks (*) ...
 +-+

 Figure 8: QUIC ACK Frame

4.6. Flow Control

 Flow control is defined as the pressure or limit a receiving endpoint
 advertises to a sender in order to prevent the receiver from being
 overwhelmed and drop packets. Flow control is similar to congestion
 control, but whereas congestion control focuses on preventing
 congestion on the network or system, flow control focuses on
 preventing an endpoint from being overwhelmed. A common flow control
 concept is a sliding window, in which an endpoint advertises an
 amount of bytes its sending counterpart can transmit. Both of these
 protocols practice a form of sliding window. Unlike UIC, there is no
 flow control data that is sent between sender and receiver on a per
 stream basis, but rather flow control is done on a per association
 basis.

Joseph, et al. Expires September 6, 2018 [Page 17]

Internet-Draft QUIC and SCTP comparison March 2018

4.6.1. SCTP

 Flow Control in SCTP is done only on a per association basis using
 mechanisms similar to TCP as defined in TCP Congestion Control
 [RFC2581]. When a receiver sends out a SACK Chunk (Figure 7), it
 includes a field called Advertiser Receiver Window Credit (a_rwnd).
 This value represents the remaining available buffer space at the
 receiver. Since SACKs can be received out of order, a sender will
 not necessarily assume they have a_rwnd amount of buffer space to
 send. At the start of a SCTP association, each endpoint will receive
 the a_rwnd of its peer in the INIT (Figure 5) or INIT ACK Chunk, and
 will take that to be the actual receiving window (rwnd) of the
 corresponding endpoint. As the association lifetime continues, each
 endpoint will subtract the size of DATA chunks that are sent or
 retransmitted to a peer from the peer's rwnd. This is because the
 sender assumes the peer's buffer space will be taken up by the
 transmitted chunk. Each endpoint will also add the size of DATA
 chunks that are marked for retransmission. With each SACK an
 endpoint receives, it will update its rwnd according to a_rwnd in the
 SACK, minus any outstanding bytes from missing chunks that have not
 be acknowledged yet.

4.6.2. QUIC

 Flow Control in QUIC is done on both a connection and substream
 basis. The most important parameters for flow control in QUIC are
 the transport parameters MAX_DATA and MAX_STREAM_DATA parameters.
 These two parameters are communicated during connection setup, and
 also have corresponding Frames which can be communicated during a
 connection. Once a value is advertised for these parameters by an
 endpoint, the endpoint must honor it. MAX_DATA indicates the maximum
 amount of data that can be communicated on a connection.
 MAX_STREAM_DATA indicates the maximum amount of data that can be
 communicated on a stream basis. It is up to each endpoint to divide
 up the data between all of its streams. As the connection and stream
 lifetime continues, endpoints will advertise higher MAX_DATA and
 MAX_STREAM_DATA to flow control its sending peer. If either of these
 variables are disobeyed by a sender on any of the streams, the entire
 connection is torn down. An exception is made for Stream 0, which is
 reserved for the cryptographic handshake on setup. None of the byte
 usage of Stream 0 is counted towards the limits of the transport
 parameters [QUIC-TLS]. Since QUIC utilizes a byte stream paradigm
 and byte offsets are communicated in STREAM frames, data usage is
 easily calculated on both endpoints by recording largest received
 byte offsets. This leads to virtually no chance of an endpoint
 breaking this agreement unless there is a bug in its implementation
 or it is a malicious actor.

https://datatracker.ietf.org/doc/html/rfc2581

Joseph, et al. Expires September 6, 2018 [Page 18]

Internet-Draft QUIC and SCTP comparison March 2018

4.7. Connection Teardown

4.7.1. SCTP

 Once it is time for a SCTP association to end, the endpoints engage
 in a 3-way handshake to shutdown the association. The ULP will send
 out a SHUTDOWN primitive to the lower layer where it will wait for
 all its sent chunks to be acknowledged or retransmit missing ones.
 The endpoint will then send out a SHUTDOWN chunk to initiate a clean
 close of the association after it has confirmed its peer has received
 all sent data. On receipt of the SHUTDOWN chunk, the peer endpoint
 will stop accepting data from its ULP and confirm it has received all
 data and then respond with a SHUTDOWN-ACK. Finally, the initiating
 endpoint will send out a SHUTDOWN-Complete chunk to close the
 association.

4.7.2. QUIC

 Once it is time for a QUIC connection to shut down, an endpoint sends
 out a closing frame, CONNECTION_CLOSE or APPLICATION_CLOSE to its
 peer and enters a closing state in which it discards all internal
 state except what is required to build closing frames. If there are
 open substreams when the frame is received, the streams are
 implicitly closed. If the initiator of the shutdown receives packets
 while it is in a closing state, it replies to each of them with
 either a closing frame. The receiver of the closing frame enters a
 draining state in which it does not send anymore packets and discards
 internal state. Before the receiver enters the draining state, it
 can also send a closing frame. At most, a QUIC connection teardown
 is a two-way handshake unless there are dropped packets from the
 initiator. Another way the connection might close down is implicitly
 through no network activity, resulting in the endpoints timing out.

4.8. Other Differences between QUIC and SCTP

 SCTP supports multi-homing. Specifically, an endpoint can include
 multiple IP addresses in the INIT or INIT ACK chunk, so the other
 endpoint can establish a multi-path connection with the endpoint.
 When one of the connections times out, a chunk can be retransmitted
 through another active connection, increasing the resilience of SCTP
 connection. Nonetheless, QUIC itself does not support multi-homing.
 Instead, there exists an Multipath Extension for QUIC Draft working
 in progress to add multipath capability into QUIC protocol
 [MULTIPATH-QUIC] .

 QUIC greatly resembles the combination of TCP, TLS and HTTP/2. QUIC
 packets are always encrypted (except for the public header) and
 authenticated (including the public header). The encryption prevents

Joseph, et al. Expires September 6, 2018 [Page 19]

Internet-Draft QUIC and SCTP comparison March 2018

 middle box parsing the congestion information and breaking with any
 forward changes, which is currently a problem for TCP. The public
 header is required either for routing or for decrypting the packet so
 it is unencrypted. However, this packet is also fully authenticated,
 preventing in-network tampering. Any modification of the QUIC packet
 will cause the teardown of the connection. Nevertheless, SCTP
 protocol itself does not include encryption or authentication, just
 like TCP.

5. Current Situations of SCTP and QUIC

 Temporarily, SCTP is used mostly in the telecom industry. However,
 as for the IP network, the deployment of SCTP is not much widespread.
 In-network devices, for example, NAT gateways, does not support SCTP
 well. NAT gateways need to be upgraded to be SCTP-aware.
 Nevertheless, the cruel truth is that modification of middle boxes is
 very expensive, and internet service providers are supposed to seek
 their own interests to update the devices. As a matter of fact, some
 firewalls only allow TCP or UDP packets to pass through, which
 constrains SCTP to very small living space. Considering that MPTCP
 can meet such needs, there is less motivation to deploy SCTP. The
 worse thing is that, unlike MPTCP, the SCTP socket APIs differ
 greatly from TCP, and developers need to update their source code to
 deploy SCTP, thus significantly impeding the wide deployment of SCTP.

 Designed by Google, QUIC is now widely used in Chrome clients
 accessing Google services. QUIC is deployed as a substitution of
 SPDY, representing about 7% of the Internet traffic. QUIC works atop
 of UDP, so mostly in-network devices that support UDP will support
 QUIC. At least, it is more friendly to middleboxes than SCTP. Since
 QUIC works in the application layer, it is supposed to be upgraded
 much more frequently than TCP stack in kernel. Fortunately, QUIC
 provides a new set of APIs, which are not transparent to the upper
 applications. Similar to SCTP, developers also need to rewrite the
 source code to allow the former applications to use QUIC. Tech
 giants, like Tencent, are trying to deploy QUIC to provide better
 service for users. With the support of giants and communities, the
 deployment of QUIC is promising in the future.

6. Conclusions from the comparison

 QUIC has adopted a number of features from long years of protocol
 design efforts. QUIC and SCTP share some commonalities and
 differences. We conclude some design considerations of QUIC as
 following.

Joseph, et al. Expires September 6, 2018 [Page 20]

Internet-Draft QUIC and SCTP comparison March 2018

 o Latency: QUIC combines transport and crypto handshakes, utilizing
 cryptographic cookie for connection resumption, minimizing
 connection latency.

 o Security: QUIC packets are always encrypted (except for the public
 header) and authenticated (including the public header). QUIC
 also address the security issues inherent in allowing data
 exchange during the 0-rtt handshake, through the use of a security
 token for address validation. However, QUIC's use longterm
 cryptographic cookie and connection ID brings window for new types
 of attacks. Balancing tradeoff of gains and losses is always a
 part of protocol design.

 o Compatibility: QUIC runs in userspace, allowing fast deployment
 and experimentation. As it runs over UDP, it is compatible with
 most middlebox implementations. QUIC also adopts a fall back
 mechanism for normal TCP handshake incase one of the parties do
 not support the protocol. QUIC also adopts congestion control
 protocol to achieve fairness with existing TCP connections. The
 compatibility issue is one of the reasons why SCTP was not widely
 deployed.

 o Parallelism: Through stream multiplexing, the missing frames of
 one stream will not block the delivery of other streams payload
 data, avoiding HOL-Blocking problem, but also introduces
 additional processing, as QUIC has to keep internal mapping of
 which stream frame in which packet, to know which one needs to be
 retransmitted.

 o Flexibility: QUIC has a pluggable congestion control mechanism and
 has more signaling than TCP, which makes QUIC more informative for
 congestion control algorithms. It also provides opportunities for
 further experimentation of congestion control features.

 o Fine granularity: QUIC supports the traffic control both in stream
 and connection level, following HTTP/2.

 o Adjustability: The QUIC connection can survive IP address changes
 and NAT rebinding due to the stable connection ID during
 connection migration.

 o Lightness: QUIC adopts the bidirectional byte stream model of TCP,
 which facilitates the movement of applications from TCP to QUIC
 and liberates QUIC from message fragmentation that SCTP has to
 take care of.

Joseph, et al. Expires September 6, 2018 [Page 21]

Internet-Draft QUIC and SCTP comparison March 2018

 Hopefully these advantages of QUIC can serve as the general
 principles for future development of QUIC and the design of other
 incipient protocols.

7. Contributors

 Hang Shi
 Tsinghua University
 P.R. China
 Email: shihang7422166@gmail.com

 Yuming Hu
 Tsinghua University
 P.R. China
 Email: Kumius@foxmail.com

8. Informative References

 [MULTIPATH-QUIC]
 Coninck, Q. and O. Bonaventure, "Multipath Extension for
 QUIC, https://tools.ietf.org/html/

draft-deconinck-multipath-quic-00", draft-tsvwg-quic-
protocol-00 (work in progress), October 2017.

 [QUIC] Iyengar, J. and I. Swett, "QUIC: A UDP-Based Secure and
 Reliable Transport for HTTP/2,

https://tools.ietf.org/html/draft-tsvwg-quic-protocol-00",
draft-tsvwg-quic-protocol-00 (work in progress), June

 2015.

 [QUIC-DESIGN]
 "QUIC: Design Document and Specification Rationale, Jim
 Roskind, Chromium Contributor", 2012.

 [QUIC-RECOVERY]
 Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection
 and Congestion Control", draft-ietf-quic-recovery-09 (work
 in progress), January 2018.

 [QUIC-TLS]
 Thomson, M., Ed. and S. Turner, Ed., "Using Transport
 Layer Security (TLS) to Secure QUIC", draft-ietf-quic-

tls-09 (work in progress), January 2018.

https://tools.ietf.org/html/
https://datatracker.ietf.org/doc/html/draft-deconinck-multipath-quic-00
https://datatracker.ietf.org/doc/html/draft-tsvwg-quic-protocol-00
https://datatracker.ietf.org/doc/html/draft-tsvwg-quic-protocol-00
https://tools.ietf
https://datatracker.ietf.org/doc/html/draft-tsvwg-quic-protocol-00
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-09

Joseph, et al. Expires September 6, 2018 [Page 22]

Internet-Draft QUIC and SCTP comparison March 2018

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", draft-ietf-quic-

transport-09 (work in progress), January 2018.

 [RFC2581] Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
 Control", RFC 2581, DOI 10.17487/RFC2581, April 1999,
 <https://www.rfc-editor.org/info/rfc2581>.

 [RFC4896] Surtees, A., West, M., and A. Roach, "Signaling
 Compression (SigComp) Corrections and Clarifications",

RFC 4896, DOI 10.17487/RFC4896, June 2007,
 <https://www.rfc-editor.org/info/rfc4896>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
RFC 4960, DOI 10.17487/RFC4960, September 2007,

 <https://www.rfc-editor.org/info/rfc4960>.

Authors' Addresses

 Arun Joseph
 UCLA
 Los Angeles
 USA

 Email: ajoseps@ucla.edu

 Tianxiang Li
 UCLA
 Los Angeles
 USA

 Email: tianxiang@cs.ucla.edu

 Zihao He
 Tsinghua University
 Beijing 100084
 P.R.China

 Phone: +86-10-6278-5822
 Email: hezihao9512@gmail.com

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-09
https://datatracker.ietf.org/doc/html/rfc2581
https://www.rfc-editor.org/info/rfc2581
https://datatracker.ietf.org/doc/html/rfc4896
https://www.rfc-editor.org/info/rfc4896
https://datatracker.ietf.org/doc/html/rfc4960
https://www.rfc-editor.org/info/rfc4960

Joseph, et al. Expires September 6, 2018 [Page 23]

Internet-Draft QUIC and SCTP comparison March 2018

 Yong Cui
 Tsinghua University
 Beijing 100084
 P.R.China

 Phone: +86-10-6260-3059
 Email: cuiyong@tsinghua.edu.cn

 Lixia Zhang
 UCLA
 Los Angeles
 USA

 Email: lixia@cs.ucla.edu

Joseph, et al. Expires September 6, 2018 [Page 24]

