
DetNet Working Group J. Joung
Internet-Draft Sangmyung University
Intended status: Informational J. Ryoo
Expires: 27 April 2023 T. Cheung
 ETRI
 Y. Li
 Huawei
 P. Liu
 China Mobile
 24 October 2022

Asynchronous Deterministic Networking Framework for Large-Scale Networks
draft-joung-detnet-asynch-detnet-framework-01

Abstract

 This document describes an overall framework of Asynchronous
 Deterministic Networking (ADN) for large-scale networks. It
 specifies the functional architecture and requirements for providing
 latency and jitter bounds to high priority traffic, without strict
 time-synchronization of network nodes.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 27 April 2023.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.

Joung, et al. Expires 27 April 2023 [Page 1]

https://datatracker.ietf.org/doc/html/draft-joung-detnet-asynch-detnet-framework-01
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

Internet-Draft Asynchronous DetNet Framework October 2022

 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 4
2.1. Terms Used in This Document 4
2.2. Abbreviations . 4

3. Conventions Used in This Document 4
4. Framework for Latency Guarantee 5
4.1. Problem Statement . 5
4.2. Asynchronous Traffic Shaping (ATS) 7
4.3. Flow Aggregate Interleaved Regulators (FAIR) 7
4.3.1. Overview of the FAIR 7
4.3.2. The performance of the FAIR 8

4.4. Port-based Flow Aggregate Regulators (PFAR) 8
4.5. Work-conserving stateless core fair queuing (C-SCORE) . . 10

5. Framework for Jitter Guarantee 12
5.1. Problem statement . 12
5.2. Buffered network (BN) 13
5.3. Properties of the BN 15

 5.4. Frequency synchronization between the source and the
 buffer . 16

5.5. Omission of the timestamper 16
5.6. Mitigation of the increased E2E buffered latency 16

 5.7. Multi-sources single-destination flows' jitter control . 17
6. IANA Considerations . 17
7. Security Considerations 17
8. Acknowledgements . 18
9. Contributor . 18
10. References . 18
10.1. Normative References 18
10.2. Informative References 18

 Authors' Addresses . 21

1. Introduction

 Deterministic Networking (DetNet) provides a capability to carry
 specified unicast or multicast data flows for real-time applications
 with extremely low data loss rates and bounded latency within a
 network domain. The architecture of DetNet is defined in RFC 8655
 [RFC8655], and the overall framework for DetNet data plane is
 provided in RFC 8938 [RFC8938]. Various documents on DetNet IP
 (Internet Protocol) and MPLS (Multi-Protocol Label Switching) data

https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc8655
https://datatracker.ietf.org/doc/html/rfc8655
https://datatracker.ietf.org/doc/html/rfc8938
https://datatracker.ietf.org/doc/html/rfc8938

Joung, et al. Expires 27 April 2023 [Page 2]

Internet-Draft Asynchronous DetNet Framework October 2022

 planes and their interworking with Time-Sensitive Networking (TSN)
 have been standardized. Technical elements necessary to extend
 DetNet to a large-scale network spanning multiple administrative
 domains are identified in [I-D.liu-detnet-large-scale-requirements].

 This document considers the problem of guaranteeing both latency
 upper bounds and jitter upper bounds in large-scale networks with any
 type of topology, with random dynamic input traffic. The jitter is
 defined as the latency difference between two packets within a flow,
 not a difference from a clock signal or from an average latency, as
 is summarized in RFC 3393 [RFC3393].

 In large-scale networks, the end-nodes join and leave, and a large
 number of flows are dynamically generated and terminated. Achieving
 satisfactory deterministic performance in such environments would be
 challenging. The current Internet, which has adopted the DiffServ
 architecture, has the problem of the burst accumulation and the
 cyclic dependency, which is mainly due to FIFO queuing and strict
 priority scheduling. Cyclic dependency is defined as a situation
 wherein the graph of interference between flow paths has cycles
 [THOMAS]. The existence of such cyclic dependencies makes the proof
 of determinism a much more challenging issue and can lead to system
 instability, that is, unbounded delays [ANDREWS][BOUILLARD]. The
 Internet architecture does not have an explicit solution for the
 jitter bound as well. Solving the problem of latency and jitter as a
 joint optimization problem would be even more difficult.

 The basic philosophy behind the framework proposed in this document
 is to minimize the latency bounds first by taking advantage of the
 work conserving schedulers with regulators or stateless fair queuing
 schedulers, and then minimize the jitter bounds by adjusting the
 packet inter-departure times to reproduce the inter-arrival times, at
 the boundary of a network. We argue that this is simpler than trying
 to minimize the latency and the jitter at the same time. The direct
 benefit of such simplicity is its scalability.

 For the first problem of guaranteeing latency bound alone, the IEEE
 asynchronous traffic shaping (ATS) [IEEE802.1Qcr], the flow-aggregate
 interleaved regulators (FAIR) [FAIR][Y.3113] frameworks, the port-
 based flow aggregate regulators (PFAR) [ADN], and the work-conserving
 stateless core fair queuing (C-SCORE) are proposed as solutions. The
 key component of the ATS and the FAIR frameworks is the interleaved
 regulator (IR)), which is described in
 [I-D.ietf-detnet-bounded-latency]. The IR has a single queue for all
 flows of the same class from the same input port. The head of the
 queue (HOQ) is examined if the packet is eligible to exit the
 regulator. To decide whether it is eligible, the IR must maintain
 the individual flow states. The key component of the PFAR framework

https://datatracker.ietf.org/doc/html/rfc3393
https://datatracker.ietf.org/doc/html/rfc3393

Joung, et al. Expires 27 April 2023 [Page 3]

Internet-Draft Asynchronous DetNet Framework October 2022

 is the regulators for flow aggregates (FA) per port per class, which
 regulates the FA based on the sum of average rates and the sum of
 maximum bursts of the flows that belong to the FA. In the meantime,
 the key component of the C-SCORE is the packet state that is carried
 as meta-data. The C-SCORE does not need to maintain flow states at
 core nodes, yet it is one of the fair queuing schedulers. The
 service order of the packet is directly inferred from the packet
 state. It can be implemented based on per-input port FIFO queues.
 The meta-data to be carried in the packet header is simple and can be
 updated during the stay in the queue or before joining the queue.

 For the second problem of guaranteeing jitter bound, it is necessary
 to assume that the first problem is solved, that is, the network
 guarantees latency bounds. Furthermore, the network is required to
 specify the value of the latency bound for a flow. The end systems
 at the network boundary, or at the source and destination nodes, then
 can adjust the inter-departure times of packets, such that they are
 similar to their inter-arrival times. In order to identify the
 inter-arrival times at the destination node, or at the network edge
 near the destination, the packets are required to specify their
 arrival times, according to the clock at the source, or the network
 edge near the source. The clocks are not required to be time-
 synchronized with any other clocks in a network. In order to avoid a
 possible error due to a clock drift between a source and a
 destination, they are recommended to be frequency-synchronized.

 In this document, strict time-synchronization among network nodes is
 avoided. It is not easily achievable, especially over a large area
 network or across multiple DetNet domains. Asynchronous solutions
 suggested in this document can provide satisfactory latency bounds
 with careful design without complex pre-computation, configuration,
 and hardware support usually necessary for time synchronization.

2. Terminology

2.1. Terms Used in This Document

2.2. Abbreviations

3. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Joung, et al. Expires 27 April 2023 [Page 4]

Internet-Draft Asynchronous DetNet Framework October 2022

4. Framework for Latency Guarantee

4.1. Problem Statement

 In Section 4, we assume there are only two classes of traffic. The
 high priority traffic requires latency upper bound guarantee. All
 the other traffic is considered to be the low priority traffic, and
 be completely preempted by the high priority traffic. High priority
 (HP) traffic is our only focus.

 It is well understood that the necessary conditions for a flow to
 have a bounded latency inside a network, are that;

 * a flow entering a network conforms to a prescribed traffic
 specification (TSpec), including the arrival rate and the maximum
 burst size, and

 * all the network nodes serve the flow with a service rate which are
 greater than or equal to the arrival rate.

 These conditions make the resource reservation and the admission
 control mandatory. These two functions are considered given and out
 of scope of this document.

 Here, the notion of arrival and service rates represent sustainable
 or average values. A short-term discrepancy between these two rates
 contributes to the burst size increment, which can be accumulated as
 the flow passes through the downstream nodes. This results in an
 increase in the latency bound. Therefore, the value of accumulated
 burst size is a critical performance metric.

 The queuing and scheduling of a flow plays a key role in deciding the
 accumulated burst size. Ideally, the flows can be queued in separate
 queues and the queues are scheduled according to the flow rates. In
 this case a flow can be considered protected. With practical fair
 schedulers, such as the Deficit Round Robin (DRR), a protected flow
 still can be affected by the other flows as much as their maximum
 packet lengths.

 If we adopt a separate queue per flow at an output port, and assume
 identical flows from all the input ports, then the maximum burst size
 of a flow out of the port, Bout, is given as the following:

 Bout < Bin + (n-1)L*r/C,

Joung, et al. Expires 27 April 2023 [Page 5]

Internet-Draft Asynchronous DetNet Framework October 2022

 where Bout is the outgoing flow's maximum burst size, Bin is the
 incoming flow's maximum burst size, n is the number of the flows, L
 is the maximum packet size, r is the average rate of the flow, and C
 is the link capacity. This approach was taken in the integrated
 services (IntServ) framework [RFC2212].

 The separate queues in the aforementioned case can be too many to be
 handled in real time, especially at the core of large-scale networks.
 The common practice therefore is to put all the HP flows in a single
 queue, and serve them with higher priority than best effort traffic.
 It is also well known that a proper scheduling scheme, such as the
 strict priority (SP) scheduling can guarantee service rates larger
 than the arrival rates, therefore the latency can still be
 guaranteed. With such a single aggregate queue the flows are not
 considered protected, however. In this case a flow's burst size in a
 node can be increased proportionally to the sum of maximum burst
 sizes of the other flows in the queue. That is,

 Bout < Bin + (n-1)Bin*r/C.

 The second product term on the right-hand side represents the amount
 of increased maximum burst. It is dominated by the term (n-1)Bin,
 which is the maximum total burst from the other flows.

 Moreover, this increased burst affects the other flows' burst size at
 the next node, and this feedforward can continue indefinitely where a
 cycle is formed in a network. This phenomenon is called a cyclic
 dependency of a network. It is argued that the burst accumulation
 can explode into infinity, therefore the latency is no longer
 guaranteed.

 As such, a flow is required to be protected to a certain level, from
 the other flows' bursts, such that its burst accumulations are kept
 within a necessary value. By doing so, the other flows are also
 protected. The regulators or the fair queuing schedulers are
 proposed as solutions for such protection in this document. They can
 decrease the accumulated burst into a desirable level and can protect
 flows from others. In case of the regulators, however, if the
 regulation needs a separate queue per flow, then the scalability
 would be harmed just like the ideal IntServ case. In this document
 the IR or the regulations on flow aggregates are proposed.

 The key requirement for latency guarantee is therefore to have
 scalability and a certain level of flow protection.

https://datatracker.ietf.org/doc/html/rfc2212

Joung, et al. Expires 27 April 2023 [Page 6]

Internet-Draft Asynchronous DetNet Framework October 2022

4.2. Asynchronous Traffic Shaping (ATS)

 The first solution in this document for latency guarantee is the IEEE
 TSN TG's ATS technology. Essentially it is a combined effort of the
 flow aggregation per node per input/output ports pair per class, and
 the interleaved regulator per flow aggregate (FA). The IR examines
 the HOQ, identifies the flow the packet belongs to, and transfers the
 packet only when it is eligible according to the initial TSpec of the
 flow. This solution can have only one queue per FA, but suffers from
 having to maintain each individual flow state. The detailed
 description on ATS can be found in [IEEE802.1Qcr].

4.3. Flow Aggregate Interleaved Regulators (FAIR)

4.3.1. Overview of the FAIR

 In the FAIR framework, the network can be divided into several
 aggregation domains (ADs). HP flows of the same path within an AD
 are aggregated into an FA. IRs per FA are implemented at the
 boundaries of the ADs. An AD can consist of arbitrary number of
 nodes. The FA can be further subdivided based on the flow
 requirements and characteristics. For example, only video flows of
 the same path are aggregated into a single FA.

 Figure 1 shows an example architecture of the FAIR framework. The
 IRs at the AD boundaries suppress the burst accumulations across the
 ADs with the latency upper bounds intact as they do in IEEE TSN ATS,
 if the incoming flows are all properly regulated, and the AD
 guarantees the FIFO property to all the packets in the FA [LEBOUDEC].
 It is sufficient to put every FA into a single FIFO queue in a node,
 in order to maintain the FIFO property within an AD. However, in
 this case, if cycles are formed, the burst accumulations inside an AD
 can be accumulated indefinitely. If the topology does not include a
 cycle and the latency bound requirement is not stringent, then the
 FIFO queue and the SP scheduler would be allowable. Otherwise, the
 FAs are recommended to be treated with separated queues and fair-
 queuing schedulers for flow protection.

 .~~. +---+ .~~, +---+ .~~.
 +---+ [] |IR | [] |IR | [] +----+
 |Src|->[AD]->|per|->[AD]-> ...|per|... ->[AD]->|Dest|
 +---+ [] |FA | [] |FA | [] +----+
 '~~' +---+ '~~' +---+ '~~'

 Figure 1: FAIR Framework

Joung, et al. Expires 27 April 2023 [Page 7]

Internet-Draft Asynchronous DetNet Framework October 2022

4.3.2. The performance of the FAIR

 The FAIR guarantees an end-to-end delay bound with reduced complexity
 compared to the traditional flow-based approach. Numerical analysis
 shows that, with a careful selection of AD size, the FAIR with DRR
 schedulers yields smaller latency bounds than both the IntServ and
 the ATS [FAIR].

 The ATS can be considered as a special case of the FAIR with the FIFO
 schedulers, where all the ADs encompass only a single hop. The
 IntServ can also be considered as an extreme case of the FAIR with
 fair schedulers and queues per FA, with an AD corresponding to an
 entire network; therefore, regulators are unnecessary.

4.4. Port-based Flow Aggregate Regulators (PFAR)

 The IR in the ATS and the FAIR suffers from two major complex tasks;
 the flow state maintenance and the HOQ lookup to determine the flow
 to which the packet belongs. Both tasks involve real-time packet
 processing and queue management. As the number of flows increases,
 the IR operation may become burdensome as much as the per- flow
 regulators. Without maintaining individual flow states, however, the
 flows can be protected to a certain level, as is described in this
 section.

 The ATS and FAIR mitigates the burst increment by placing IRs behind
 a FIFO system. For example, consider an ATS node with a single queue
 at an output port for HP traffic. The IR assigned for an input port
 forms a single queue for the flows from the same input port. Further
 consider the set of incoming flows from the same input port of the
 ATS node. Let us call this set of flows the incoming flow aggregate
 (FAin). If we assume identical FAins from all the input ports, then
 the maximum burst size of an arbitrary set of flows out of the port,
 Bout, is given as the following:

 Bout < Bin + (p-1)B*r/C,

 where Bin is the sum of maximum burst sizes of the flows within the
 FAin, B is the sum of initial maximum burst sizes of the flows within
 the FAin, and p is the number of the ports in the node.

 The port-based FA (PFA) is defined as a set of HP flows in the same
 class, which share the input and output ports in a relay node, such
 as a switch or router. The only aggregation criteria for a PFA are
 the ports and the class. The port-based flow aggregate regulators
 (PFAR) framework puts a regulator for each PFA in an output port
 module, just before the class-based queuing/scheduling system of the
 output port module. The PFAR framework sees a PFA as a single flow

Joung, et al. Expires 27 April 2023 [Page 8]

Internet-Draft Asynchronous DetNet Framework October 2022

 with the "PFA-Tspec", {the sum of the maximum initial bursts; and the
 sum of the initial arrival rates} of the flows that are the elements
 of the PFA; and regulates the PFA to meet its PFA-Tspec.

 The PFARs can be placed at the output port of a node before the
 output SP scheduler. The architecture is similar to that suggested
 in the IEEE ATS, except that in the ATS, the IRs are placed instead
 of the PFARs.

 The burst increment of an FA in the PFAR architecture is identical to
 that in the ATS, which is given as;

 Bout < Bin + (p-1)B*r/C,

 where B is again the initial maximum burst size of FAs. However, the
 regulators in PFAR does introduce additional latency, which is given
 as

 D < (Bin - B)/r,

 where D is the latency within the regulator.

 Note that Bout is a function of (n-1)B, not (n-1)Bin; in other words,
 the burst size out of a node is affected only by the initial burst
 sizes of the other FAs from different input ports of the node. This
 property makes the D or Bout do not increase exponentially even in
 the existence of cyclic dependencies.

 With the PFAR, the HOQ flow identification process is unnecessary,
 and only the PFAs' states, instead of individual flows' states, must
 be maintained at a node. In this respect, the complexity of process
 of PFAR is reduced compared to IR of the ATS or the FAIR.

 In a recent study [ADN], it was also shown, through a numerical
 analysis with symmetrical networks with cycles, that PFAR, when
 implemented at every node, can achieve comparable latency bounds to
 the IEEE ATS technique.

 The ATS, the FAIR, and the PFAR frameworks maintain regulators per
 FA. The FAs in these frameworks are composed of the flows sharing
 the same ingress/egress ports of an AD. The ADs can encompass a
 single hop or multiple hops. The regulators can be the IR or the
 aggregate regulator. There can be other combinations of AD and
 regulator type, which could be further investigated and compared to
 the frameworks introduced in this document.

Joung, et al. Expires 27 April 2023 [Page 9]

Internet-Draft Asynchronous DetNet Framework October 2022

4.5. Work-conserving stateless core fair queuing (C-SCORE)

 The generalized processor sharing (GPS) [PAREKH], the weighted fair
 queuing (WFQ), the virtual clock (VC), and similar other schedulers
 utilize the concept of finish time (FT) that is the service order
 assigned to a packet. The packet with the minimum FT in a buffer is
 served first. We will call these works collectively as the fair
 queuing (FQ).

 As an example, the VC scheduler [ZHANG] defines the FT to be

 F(p) = max{F(p-1), A(p)} + L(p)/r, (1)

 where (p-1) and p are consecutive packets of the flow under
 observation, A(p)is the arrival time of p, L(p) is the length of p,
 and r is the flow service rate. The flow index is omitted.

 The key idea of the FQ is to calculate the service finish times of
 packets in an imaginary ideal fluid service model and use them as the
 service order in the real packet-based scheduler.

 While having the excellent flow protection property, the FQ needs to
 maintain the flow state, F(p-1). For every arriving packet, the flow
 it belongs to has to be identified and its previous packet's FT
 should be extracted. As the packet departs, the flow state, F(p),
 has to be updated as well.

 We consider a framework for constructing FTs for packets at core
 nodes without flow states. In a core node, the following conditions
 on FTs have to be met.

 C1) It has to keep the 'fair distance' of consecutive packets of a
 flow. That is; Fh(p) >= Fh(p-1) + L(p)/r, where Fh(p) is the
 F(p) at node h.

 C2) The order of FTs and the actual service order, within a flow,
 have to be kept. That is; Fh(p) > Fh(p-1) and Ch(p) > Ch(p-1),
 where Ch(p) is the actual service completion time of packet p at
 node h.

 C3) The time lapse at each hop has to be reflected. That is; Fh(p)
 >= F(h-1)(p), where F(h-1)(p) is the FT of p at the node h-1,
 the upstream node of h.

 C4) The FTs of a flow have to be aligned to the packet arrival
 times. That is; L(p)/r <= Fh(p)- Ah(p) < Delta.

Joung, et al. Expires 27 April 2023 [Page 10]

Internet-Draft Asynchronous DetNet Framework October 2022

 Delta can be any finite positive value [STILIADIS]. In other words,
 the Fh(p) should be larger than Ah(p)+L(p)/r, as in (1), yet still
 should grow at the same rate as Ah(p).

 In essence, (1) has to be approximated in core nodes. There can be
 many possible solutions to meet these conditions. We propose a
 generic framework for constructing FTs in core nodes, without flow
 state, in the following.

 We denote a 'node' to be an output port of a relay node.

 Requirement 1: In the entrance node, it is required to obtain the FTs
 with (1). That is to obtain F0(p) as in the VC, where 0 denotes the
 entrance node of the flow under observation.

 F0(p) = max{F0(p-1), A0(p)}+L(p)/r.

 Note that F0(p) keeps the fair distances from the FTs of consecutive
 packets of the flow.

 Requirement 2: It is required to increase the FT of a packet by an
 amount that depends on the node and the packet, dh(p), in a core node
 h.

 Fh(p) = F(h-1)(p) + d(h-1)(p).

 Requirement 3: It is required that dh(p) is a non-decreasing function
 of p, within a node busy period.

 Definition 1: A node busy period is a maximal interval between
 consecutive node idle periods. During a node idle period, the node
 has no packet to send.

 By Requirements 1, 2, and 3; Conditions 1), 2), and 3) are met.

 Requirement 4: It is required that Ah(p)+dh(p) >= A(h+1)(p).

 One example of dh(p) is a measured maximum latency of a packet in the
 node h up until the current packet p, since the start of a node busy
 period. Let us denote this local maximum latency with uh(p). It may
 be reset to an initial value during a node idle period. An example
 of the initial value of uh(p) is the propagation delay from node h to
 (h+1). By letting dh(p)=uh(p), Requirement 4 is satisfied.

 dh(p) may not be a function of p, and dependent only on the node.
 Then it could be denoted as dh.

Joung, et al. Expires 27 April 2023 [Page 11]

Internet-Draft Asynchronous DetNet Framework October 2022

 One example of dh is letting dh = Uh, where Uh is the latency upper
 bound in node h for any p. Uh can be a theoretical one, or be
 obtained by long-term measurements. By letting dh(p)=Uh, Requirement
 4 is satisfied.

 If Requirement 4 is satisfied then it can be guaranteed Fh(p) >=
 Ah(p)+L(p)/r, for all h>=0, and it can be proven that Condition 4) is
 met.

 In a core node, the service order of packets from the same input port
 can be preserved. That is, if Ah(p)> Ah(p') then Ch(p)>Ch(p') for
 packets p and p' that travel together the nodes (h-1) and h. By
 preserving the service order of packets from the same input port,
 using per-input port FIFO queues is possible. An example
 implementation would be as the follows: The output port module is
 composed of per-input port FIFO queues. As a packet enters the FIFO
 queue according to its input port, it should join the queue at the
 tail and be marked with its FT. The scheduler will examine the
 smallest FT among the packets at the HoQ of the FIFO queues.

 Note that Ah(p)> Ah(p') does not guarantee Fh(p)>Fh(p') when p and p'
 belong to different flows. For example, p' may have a smaller FT but
 arrive later while p is in service. However, it is proven that this
 service completion time discrepancy, C0(p)-F0(p), between real packet
 system and ideal fluid system is bounded by Lmax/C [PAREKH], where
 Lmax is the maximum packet length over all the flows, and C is the
 link capacity.

 The meta-data to carry in a packet are Fh(p) and dh(p). These are
 dynamic and thus need to be updated at every hop. Note that if dh(p)
 = dh then it can also be signaled out-of-band between the neighboring
 nodes. Fh(p) can be obtained by a simple summation of two meta-data,
 and updated during the time interval between the packet arrival and
 its reaching HoQ of the FIFO queue.

 The proposed FT construction framework has advantages of simple FIFO-
 based implementation and simple meta-data management. We call this
 solution the work conserving stateless core fair queuing (C-SCORE),
 which can be compared to the existing non-work conserving scheme
 [STOICA].

5. Framework for Jitter Guarantee

5.1. Problem statement

 The problem of guaranteeing jitter bounds in arbitrarily sized
 networks with any type of topology with random dynamic input traffic
 is considered.

Joung, et al. Expires 27 April 2023 [Page 12]

Internet-Draft Asynchronous DetNet Framework October 2022

 There are several possible solutions to guarantee jitter bounds in
 packet networks, such as IEEE TSN's cyclic queuing and forwarding
 (CQF) [IEEE802.1Qch], its asynchronous variations
 [I-D.yizhou-detnet-ipv6-options-for-cqf-variant], and the latency-
 based forwarding (LBF) [LBF].

 The CQF requires time-synchronization across every node in the
 network including the source. It is not scalable to a large network
 with significant propagation delays between the nodes. The
 asynchronous CQFs are scalable, but they may not satisfy
 applications' jitter requirements. This is because their jitter
 bounds cannot be controlled as desired, but are only determined by
 the cycle time, which should be large enough to accommodate all the
 traffic to be forwarded.

 The systems with slotted operations such as the CQF and its
 variations turn the problem of packet scheduling into the problem of
 scheduling flows to fit into slots. The difficulty of such a slot
 scheduling is a significant drawback in large scale dynamic networks
 with irregular traffic generations and various propagation delays.

 The LBF is a framework of the forwarding action decision based on the
 flow and packet status, such as the delay budget left for a packet in
 a node. The LBF does not specify the actions to take according to
 the status. It suggests a packet slow down or speedup by changing
 the service order, by pushing packets into any desirable position of
 a first out queue, as a possible action to take. In essence, by
 having latency budget information of every packet, the LBF is
 expected to maintain the latency and jitter within desired bounds.
 The processing latency required in LBF includes times 1) to lookup
 the latency budget information on every packet header, 2) to decide
 the queue position of the packet, 3) to modify the queue linked list,
 and 4) to update the budget information on the packet upon
 transmission. This processing latency, however, can affect the
 scalability especially in high speed core networks.

 The ATS, the FAIR, and the PFAR utilize the regulation function to
 proactively prevent the possible burst accumulation in the downstream
 nodes. It is not clear whether the LBF can take such preventive
 action. If so the LBF can also act as a regulator and yield a
 similar latency bound.

5.2. Buffered network (BN)

 The BN framework in this document for jitter bound guarantee is
 composed of

 * a network that guarantees latency upper bounds;

Joung, et al. Expires 27 April 2023 [Page 13]

Internet-Draft Asynchronous DetNet Framework October 2022

 * a timestamper for packets with a clock that is not necessarily
 synchronized with the other nodes, which resides in between,
 including the source and the network ingress interface; and

 * a buffer that can hold the packets for a predetermined interval,
 which resides in between, including the destination and the
 network egress interface.

 Figure 2 depicts the overall architecture of the BN framework for
 jitter-bound guarantees [BN]. Only a single flow is depicted between
 the source and destination in Figure 2. The arrival (an), departure
 (bn), and buffer-out (cn) times of the nth packet of a flow are
 denoted. The end-to-end (E2E) latency and the E2E buffered latency
 are defined as (bn-an) and (cn-an), respectively.

 +--------------+
 +-----+an +-------------+ | Network with |bn +--------+cn +-------+
 | Src |-->| Timestamper |-->| latency |-->| Buffer |-->| Dest. |
 +-----+ +-------------+ | guarantee | +--------+ +-------+
 +--------------+
 |<--------------- E2E latency ------>|
 |<--------------- E2E buffered latency ---------->|

 Figure 2: Buffered Network (BN) Framework for Jitter Guarantee

 The buffer supports as many as the number of the flows destined for
 the destination. The destination shown in Figure 2 can be an end
 station or another deterministic network. The buffer holds packets
 in a flow according to predefined intervals. The decision of the
 buffering intervals involves the time-stamp value within each packet.

 The network in between the time-stamper and the buffer can be of
 arbitrarily sized network. The input traffic can be dynamic. It is
 required that the network be able to guarantee and identify the E2E
 latency upper bounds of the flows. The network is also required to
 let the buffer be aware of the E2E latency upper bounds of the flows
 it has to process. It is recommended that the E2E latency lower
 bound information is provided by the network as well. The lower
 bound may be contributed from the transmission and propagation delays
 within the network.

 The time-stamper marks on the packets their arrival times. The time-
 stamping function can use the real-time transport protocol (RTP) over
 the user datagram protocol (UDP) or the transmission control protocol
 (TCP). Either the source or network ingress interface can stamp the
 packet. In the case where the source stamps, the timestamp value is
 the packet departure time from the source, which is only a
 propagation time away from the packet arrival time to the network.

Joung, et al. Expires 27 April 2023 [Page 14]

Internet-Draft Asynchronous DetNet Framework October 2022

 The source and destination do not need to share a synchronized clock.
 All we need to know is the differences between the time stamps, that
 is, the information about the inter-arrival times.

5.3. Properties of the BN

 Let the arrival time of the nth packet of a flow be an. Similarly,
 let bn be the departure time from the network of the nth packet.
 Then, a1 and b1 are the arrival and departure times of the first
 packet of the flow, respectively. The first packet of a flow is
 defined as the first packet generated by the source, among all the
 packets that belong to the flow. Further, let cn be the buffer-out
 time of the nth packet of the flow. Let us define m as the jitter
 control parameter, which will be described later in detail.

 Since buffers can be without cut-through capability, the processing
 delay within a buffer has to be taken in account. Let gn be the
 processing delay within the buffer of the nth packet of the flow.
 The gn includes the time to look up the timestamp and to store/
 forward the packet. However, it does not include an intentional
 buffer-holding interval. By definition, cn - bn >= gn. Let
 max_n(gn)=g, the maximum processing delay for the flow in the buffer.
 It is assumed that a buffer can identify the value of g. Let U and W
 be the latency upper and lower bounds guaranteed to the flow by the
 network. Let m be the jitter control parameter, W+g <= m.

 The rules for the buffer-holding interval decision are given as
 follows:

 * c1=(b1+m-W),

 * cn=max{(bn+g), (c1+an-a1)}, for n > 1.

 The second rule governing the cn states that a packet should be held
 in the buffer to make its inter-buffer-out time, (cn-c1), equal to
 the inter-arrival time, (an-a1). However, when its departure from
 the network is too late, the inter-buffer-out time should be larger
 than the inter-arrival time, then hold the packet as much as the
 maximum processing delay in the buffer, that is, cn=bn+g. The buffer
 does not need to know the exact values of an or a1. It is sufficient
 to determine the difference between these values, which can be easily
 obtained by subtracting the timestamp values of the two packets.

 The following theorems holds [ADN].

 Theorem 1 (Upper bound of E2E buffered latency). The latency from
 the packet arrival to the buffer-out times (cn-an), is upper bounded
 by (U-W+m).

Joung, et al. Expires 27 April 2023 [Page 15]

Internet-Draft Asynchronous DetNet Framework October 2022

 Theorem 2 (Lower bound of E2E buffered latency). The latency from
 the packet arrival to the buffer-out times (cn-an), is lower bounded
 by m.

 Theorem 3 (Upper bound of jitter). The jitter is upper bounded by
 max{0, (U+g-m)}.

 By setting m=(U+g), we can achieve zero jitter. In this case, the
 E2E buffered latency bound becomes (2U+g-W), which is roughly twice
 the E2E latency bound. In contrast, if we set m to its minimum
 possible value W+g, then the jitter bound becomes (U-W), which is
 roughly equal to U, while the E2E buffered latency bound becomes U,
 which is the same as the E2E latency bound.

 The parameter m directly controls the holding interval of the first
 packet. It plays a critical role in determining the jitter and the
 buffered latency upper bounds of a flow in the BN framework. The
 larger the m, the smaller the jitter bound, and the larger the
 latency bound. With a sufficiently large m, we can guarantee zero
 jitter, at the cost of an increased latency bound.

5.4. Frequency synchronization between the source and the buffer

 Clock drift refers to phenomena wherein a clock does not run at
 exactly the same rate as a reference clock. If we do not frequency-
 synchronize the clocks of different nodes in a network, clock drift
 is unavoidable. Consequently, jitter occurs owing to the clock
 frequency difference or clock drift between the source (timestamper)
 and the buffer. Therefore, it is recommended to frequency-
 synchronize the source (timestamper) and the buffer.

5.5. Omission of the timestamper

 For isochronous traffic whose inter-arrival times are well-known
 fixed values, and the network can preserve the FIFO property for such
 traffic, then the timestampers can be omitted.

 Otherwise the FIFO property cannot be guaranteed, then a sequence
 number field in the packet header would be enough to replace the
 timestamper.

5.6. Mitigation of the increased E2E buffered latency

 The increased E2E buffered latency bound by the proposed framework,
 from U to almost 2U, can be mitigated by one of the added
 functionalities given as follows.

Joung, et al. Expires 27 April 2023 [Page 16]

Internet-Draft Asynchronous DetNet Framework October 2022

 1) First, one can measure the E2E latency of a flow's first packet
 exactly, and buffer it to make its E2E buffered latency be U. Then,
 by following the rules given in Section 5.3, every subsequent packet
 will experience the same E2E buffered latency, which is U, with zero
 jitter. An example of the exact latency measurement may be performed
 by time-synchronization between the source (timestamper) and the
 buffer. However, how to measure the latency is for further
 investigation.

 2) Second, one can expedite the first packet's service with a special
 treatment, to make its latency lower, compared to the other packets
 of the flow. If we can make the first packet's latency to be a small
 value d, then every packet will experience the same buffered latency
 d+U, with zero jitter. Considering that the E2E latency bound is
 calculated from the worst case in which rare events occur
 simultaneously, however, the first packet's latency is likely to be
 far less than what the bound suggests. Therefore, the special
 treatment to the first packet may be ineffective in real
 implementations.

5.7. Multi-sources single-destination flows' jitter control

 The BN framework can also be used for jitter control among multiple
 sources' flows having a single destination. When a session is
 composed of more than one sources, physically or virtually separated,
 the buffer at the boundary can mitigate the latency variations of
 packets from different sources due to different routes or network
 treatments. Such a scenario may arise in cases such as

 1) that a central unit controls multiple devices for a coordinated
 execution in smart factories, or

 2) multi-user conferencing applications, in which multiple
 devices/users physically separated can have a difficulty in real-
 time interactions.

 The sources, or the ingress boundary nodes of the network, need to be
 synchronized with each other in order for the time-stamps from
 separated sources to be able to identify the absolute arrival times.

6. IANA Considerations

 There are no IANA actions required by this document.

7. Security Considerations

 This section will be described later.

Joung, et al. Expires 27 April 2023 [Page 17]

Internet-Draft Asynchronous DetNet Framework October 2022

8. Acknowledgements

9. Contributor

10. References

10.1. Normative References

 [I-D.ietf-detnet-bounded-latency]
 Finn, N., Boudec, J. L., Mohammadpour, E., Zhang, J., and
 B. Varga, "DetNet Bounded Latency", Work in Progress,
 Internet-Draft, draft-ietf-detnet-bounded-latency-10, 8
 April 2022, <https://www.ietf.org/archive/id/draft-ietf-

detnet-bounded-latency-10.txt>.

 [I-D.liu-detnet-large-scale-requirements]
 Liu, P., Li, Y., Eckert, T., Xiong, Q., Ryoo, J., Zhu, S.,
 and X. Geng, "Requirements for Large-Scale Deterministic
 Networks", Work in Progress, Internet-Draft, draft-liu-

detnet-large-scale-requirements-05, 20 October 2022,
 <https://datatracker.ietf.org/api/v1/doc/document/draft-

liu-detnet-large-scale-requirements/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8655] Finn, N., Thubert, P., Varga, B., and J. Farkas,
 "Deterministic Networking Architecture", RFC 8655,
 DOI 10.17487/RFC8655, October 2019,
 <https://www.rfc-editor.org/info/rfc8655>.

 [RFC8938] Varga, B., Ed., Farkas, J., Berger, L., Malis, A., and S.
 Bryant, "Deterministic Networking (DetNet) Data Plane
 Framework", RFC 8938, DOI 10.17487/RFC8938, November 2020,
 <https://www.rfc-editor.org/info/rfc8938>.

10.2. Informative References

https://datatracker.ietf.org/doc/html/draft-ietf-detnet-bounded-latency-10
https://www.ietf.org/archive/id/draft-ietf-detnet-bounded-latency-10.txt
https://www.ietf.org/archive/id/draft-ietf-detnet-bounded-latency-10.txt
https://datatracker.ietf.org/doc/html/draft-liu-detnet-large-scale-requirements-05
https://datatracker.ietf.org/doc/html/draft-liu-detnet-large-scale-requirements-05
https://datatracker.ietf.org/api/v1/doc/document/draft-liu-detnet-large-scale-requirements/
https://datatracker.ietf.org/api/v1/doc/document/draft-liu-detnet-large-scale-requirements/
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8655
https://www.rfc-editor.org/info/rfc8655
https://datatracker.ietf.org/doc/html/rfc8938
https://www.rfc-editor.org/info/rfc8938

Joung, et al. Expires 27 April 2023 [Page 18]

Internet-Draft Asynchronous DetNet Framework October 2022

 [ADN] Joung, J., Kwon, J., Ryoo, J., and T. Cheung,
 "Asynchronous Deterministic Network Based on the DiffServ
 Architecture", IEEE Access, vol. 10, pp. 15068-15083,
 doi:10.1109/ACCESS.2022.3146398, 2022.

 [ANDREWS] Andrews, M., "Instability of FIFO in the permanent
 sessions model at arbitrarily small network loads", ACM
 Trans. Algorithms, vol. 5, no. 3, pp. 1-29, doi:
 10.1145/1541885.1541894, July 2009.

 [BN] Joung, J. and J. Kwon, "Zero jitter for deterministic
 networks without time-synchronization", IEEE Access, vol.
 9, pp. 49398-49414, doi:10.1109/ACCESS.2021.3068515, 2021.

 [BOUILLARD]
 Bouillard, A., Boyer, M., and E. Le Corronc,
 "Deterministic network calculus: From theory to practical
 implementation", in Networks and Telecommunications.
 Hoboken, NJ, USA: Wiley, doi: 10.1002/9781119440284, 2018.

 [FAIR] Joung, J., "Framework for delay guarantee in multi-domain
 networks based on interleaved regulators",
 Electronics, vol. 9, no. 3, p. 436,
 doi:10.3390/electronics9030436, March 2020.

 [I-D.yizhou-detnet-ipv6-options-for-cqf-variant]
 Li, Y., Ren, S., Li, G., Yang, F., Ryoo, J., and P. Liu,
 "IPv6 Options for Cyclic Queuing and Forwarding Variants",
 Work in Progress, Internet-Draft, draft-yizhou-detnet-

ipv6-options-for-cqf-variant-00, 19 June 2022,
 <https://www.ietf.org/archive/id/draft-yizhou-detnet-ipv6-

options-for-cqf-variant-00.txt>.

 [IEEE802.1Qch]
 IEEE, "IEEE Standard for Local and metropolitan area
 networks -- Bridges and Bridged Networks - Amendment 29:
 Cyclic Queuing and Forwarding", IEEE 802.1Qch-2017,
 DOI 10.1109/IEEESTD.2017.7961303, 28 June 2017,
 <https://doi.org/10.1109/IEEESTD.2017.7961303>.

 [IEEE802.1Qcr]
 IEEE, "IEEE Standard for Local and metropolitan area
 networks -- Bridges and Bridged Networks - Amendment 34:
 Asynchronous Traffic Shaping", IEEE 802.1Qcr-2020,
 DOI 10.1109/IEEESTD.2020.9253013, 6 November 2020,
 <https://doi.org/10.1109/IEEESTD.2020.9253013>.

https://datatracker.ietf.org/doc/html/draft-yizhou-detnet-ipv6-options-for-cqf-variant-00
https://datatracker.ietf.org/doc/html/draft-yizhou-detnet-ipv6-options-for-cqf-variant-00
https://www.ietf.org/archive/id/draft-yizhou-detnet-ipv6-options-for-cqf-variant-00.txt
https://www.ietf.org/archive/id/draft-yizhou-detnet-ipv6-options-for-cqf-variant-00.txt
https://doi.org/10.1109/IEEESTD.2017.7961303
https://doi.org/10.1109/IEEESTD.2020.9253013

Joung, et al. Expires 27 April 2023 [Page 19]

Internet-Draft Asynchronous DetNet Framework October 2022

 [LBF] Clenm, A. and T. Eckert, "High-precision latency
 forwarding over packet-programmable networks", NOMS 2020
 - IEEE/IFIP Network Operations and Management Symposium,
 April 2020.

 [LEBOUDEC] Le Boudec, J., "A theory of traffic regulators for
 deterministic networks with application to interleaved
 regulators", IEEE/ACM Trans. Networking, vol. 26, no. 6,
 pp. 2721-2733, doi:10.1109/TNET.2018.2875191, December
 2019.

 [PAREKH] Parekh, A. and R. Gallager, "A generalized processor
 sharing approach to flow control in integrated services
 networks: the single-node case", IEEE/ACM Trans.
 Networking, vol. 1, no. 3, pp. 344-357, June 1993.

 [RFC2212] Shenker, S., Partridge, C., and R. Guerin, "Specification
 of Guaranteed Quality of Service", RFC 2212,
 DOI 10.17487/RFC2212, September 1997,
 <https://www.rfc-editor.org/info/rfc2212>.

 [RFC3393] Demichelis, C. and P. Chimento, "IP Packet Delay Variation
 Metric for IP Performance Metrics (IPPM)", RFC 3393,
 DOI 10.17487/RFC3393, November 2002,
 <https://www.rfc-editor.org/info/rfc3393>.

 [STILIADIS]
 Stiliadis, D. and A. Anujan, "Rate-proportional servers: A
 design methodology for fair queueing algorithms", IEEE/ACM
 Trans. Networking, vol. 6, no. 2, pp. 164-174, 1998.

 [STOICA] Stoica, I. and H. Zhang, "Providing guaranteed services
 without per flow management", ACM SIGCOMM Computer
 Communication Review, vol. 29, no. 4, pp. 81-94, 1999.

 [THOMAS] Thomas, L., Le Boudec, J., and A. Mifdaoui, "On cyclic
 dependencies and regulators in time-sensitive networks",
 in Proc. IEEE Real-Time Syst. Symp. (RTSS), York, U.K.,
 pp. 299-311, December 2019.

 [Y.3113] International Telecommunication Union, "Framework for
 Latency Guarantee in Large Scale Networks Including
 IMT-2020 Network", ITU-T Recommendation Y.3113, February
 2021.

 [ZHANG] Zhang, L., "Virtual clock: A new traffic control algorithm
 for packet switching networks", in Proc. ACM symposium on
 Communications architectures & protocols, pp. 19-29, 1990.

https://datatracker.ietf.org/doc/html/rfc2212
https://www.rfc-editor.org/info/rfc2212
https://datatracker.ietf.org/doc/html/rfc3393
https://www.rfc-editor.org/info/rfc3393

Joung, et al. Expires 27 April 2023 [Page 20]

Internet-Draft Asynchronous DetNet Framework October 2022

Authors' Addresses

 Jinoo Joung
 Sangmyung University
 Email: jjoung@smu.ac.kr

 Jeong-dong Ryoo
 ETRI
 Email: ryoo@etri.re.kr

 Taesik Cheung
 ETRI
 Email: cts@etri.re.kr

 Yizhou Li
 Huawei
 Email: liyizhou@huawei.com

 Peng Liu
 China Mobile
 Email: liupengyjy@chinamobile.com

Joung, et al. Expires 27 April 2023 [Page 21]

