
JSON Working Group U. Carion
Internet-Draft April 28, 2019
Intended status: Standards Track
Expires: October 30, 2019

JSON Schema Language
draft-json-schema-language-00

Abstract

 JavaScript Object Notation (JSON) Schema Language is a portable
 method for describing the format of JSON data and the errors
 associated with ill-formed data.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 30, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Carion Expires October 30, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft JSON Schema Language April 2019

Table of Contents

1. Introduction . 2
2. Conventions . 3
3. Terminology . 3
4. Syntax . 3
4.1. Keywords . 3
4.2. Forms . 4
4.3. Additional restrictions to prevent ambiguity 5
4.4. Evaluation context and reference resolution 6

5. Semantics . 8
5.1. Configuration . 8
5.1.1. Strict schema semantics 8
5.1.2. Strict instance semantics 8

5.2. Errors . 8
5.3. Evaluation . 9
5.3.1. Empty form . 9
5.3.2. Ref form . 9
5.3.3. Type form . 10
5.3.4. Elements form . 11
5.3.5. Properties form 12
5.3.6. Values form . 14
5.3.7. Discriminator form 15

6. IANA Considerations . 18
7. Security Considerations 18
8. Normative References . 19
Appendix A. Acknowledgments 19

 Author's Address . 19

1. Introduction

 JSON Schema Language is a schema language for JSON data. This
 document specifies:

 o When a JSON object is a correct JSON Schema Language schema

 o When a JSON document is valid with respect to a correct JSON
 Schema Language schema

 o A standardized form of errors to produce when validating a JSON
 value

 JSON Schema Language is centered around the question of validating a
 JSON value (an "instance") against a JSON object (a "schema"), within
 the context of a collection of other schemas (an "evaluation
 context").

Carion Expires October 30, 2019 [Page 2]

Internet-Draft JSON Schema Language April 2019

2. Conventions

 The keywords *MUST*, *MUST NOT*, *REQUIRED*, *SHALL*, *SHALL NOT*,
 SHOULD, *SHOULD NOT*, *RECOMMENDED*, *MAY*, and *OPTIONAL*, when
 they appear in this document, are to be interpreted as described in
 [RFC2119].

 The terms "absolute-URI" and "URI-reference", when they appear in
 this document, are to be understood as they are defined in [RFC3986].

 The term "JSON Pointer", when it appears in this document, is to be
 understood as it is defined in [RFC6901].

3. Terminology

 o instance: A JSON value being validated.

 o schema: A JSON object describing the form of valid instances.

 o evaluation context: A collection of schemas which may refer to one
 another.

 o validation error: A JSON object representing a reason why an
 instance is invalid.

4. Syntax

 This section specifies when a JSON document is a correct schema.

4.1. Keywords

 Some member names of a schema are reserved, and carry special
 meaning. These member names are called keywords. Correct schemas
 MUST satisfy the following requirements:

 o "id": If a schema has a member named "id", its corresponding value
 MUST be a JSON string encoding an absolute-URI.

 o "definitions": If a schema has a member named "definitions", its
 corresponding value *MUST* be a JSON object. The values of this
 object *MUST* all be correct schemas.

 o "ref": If a schema has a member named "ref", its corresponding
 value *MUST* be a JSON string encoding a URI-reference.

 o "type": If a schema has a member named "type", its corresponding
 value *MUST* be a JSON string encoding one of the values "null",
 "boolean", "number", or "string".

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc6901

Carion Expires October 30, 2019 [Page 3]

Internet-Draft JSON Schema Language April 2019

 o "elements": If a schema has a member named "elements", its
 corresponding value *MUST* be a JSON object. This object *MUST*
 be a correct schema.

 o "properties": If a schema has a member named "properties", its
 corresponding value *MUST* be a JSON object. The values of this
 object *MUST* all be correct schemas.

 o "optionalProperties": If a schema has a member named
 "optionalProperties", its corresponding value *MUST* be a JSON
 object. The values of this object *MUST* all be correct schemas.

 o "values": If a schema has a member named "values", its
 corresponding value *MUST* be a JSON object. This object *MUST*
 be a correct schema.

 o "discriminator": If a schema has a member named "discriminator",
 its corresponding value *MUST* be a JSON object. This object
 MUST have exactly two members:

 * A member with the name "tag", whose corresponding value *MUST*
 be a JSON string.

 * A member with the name "mapping", whose corresponding value
 MUST be a JSON object. The values of this object *MUST* all
 be correct schemas.

4.2. Forms

 Only certain combinations of schema keywords are correct. These
 valid combinations are called "forms". Correct schemas *MUST* fall
 into exactly one of the following forms:

 o The "empty" form: the schema may have members with the name "id"
 and/or "definitions", but none of the other keywords listed in

Section 4.1.

 o The "ref" form: the schema may have members with the name "id",
 "definitions", and/or "ref", but none of the other keywords listed
 in Section 4.1.

 o The "type" form: the schema may have members with the name "id",
 "definitions", and/or "type", but none of the other keywords
 listed in Section 4.1.

 o The "elements" form: the schema may have members with the name
 "id", "definitions", and/or "elements", but none of the other
 keywords listed in Section 4.1.

Carion Expires October 30, 2019 [Page 4]

Internet-Draft JSON Schema Language April 2019

 o The "properties" form: the schema may have members with the name
 "id", "definitions", "properties", and/or "optionalProperties",
 but none of the other keywords listed in Section 4.1.

 o The "values" form: the schema may have members with the name "id",
 "definitions", and/or "values", but none of the other keywords
 listed in Section 4.1.

 o The "discriminator" form: the schema may have members with the
 name "id", "definitions", and/or "discriminator", but none of the
 other keywords listed in Section 4.1.

4.3. Additional restrictions to prevent ambiguity

 To prevent ambiguous or unsatisfiable schemas during evaluation (see
Section 5.3), there are two additional constraints that all JSON

 documents must satisfy to be a valid schema:

 1. If a schema both "properties" and "optionalProperties" members,
 the "properties" and "optionalProperties" values *MUST NOT* share
 any member names in common.

 Without this restriction, it could be ambiguous whether a
 property is required or not.

 2. If a schema has a "discriminator" member, all of the values of
 "mapping" within "discriminator" *MUST* be of the "properties"
 form described in Section 4.2. Furthermore, these schemas within
 "mapping" *MUST NOT* have a member in "properties" or
 "optionalProperties" whose name equals that of "tag"'s within
 "discriminator".

 Without this restriction, it could be possible for a schema to
 require that an instance be simultaneously an object and not an
 object. Additionally, schemas might also give contradictory
 requirements by describing the same instance member through both
 "tag" and "properties".

 To illustrate the first restriction, the following JSON document is
 not a valid schema, as "foo" appears both in "properties" and
 "optionalProperties":

 {
 "properties": { "foo": {} },
 "optionalProperties": { "foo": {} }
 }

Carion Expires October 30, 2019 [Page 5]

Internet-Draft JSON Schema Language April 2019

 To illsturate the second restriction, the following JSON document is
 not a valid schema because one of the members of "mapping" is not of
 the "properties" form:

 {
 "discriminator": {
 "tag": "foo",
 "mapping": {
 "a": { "elements": {} }
 }
 }
 }

 Finally, the following JSON document is not a valid schema because
 one of the members of "mapping" has a "properties" member whose value
 equals that of "tag"'s:

 {
 "discriminator": {
 "tag": "foo",
 "mapping": {
 "a": { "properties": { "foo": { "type": "number" } } }
 }
 }
 }

4.4. Evaluation context and reference resolution

 An evaluation context is a collection of schemas which may refer to
 one another. An evaluation context is correct if:

 o All of its constituent schemas are correct,

 o No two constituent schemas have the same "id" value, and

 o No more than one schema lacks an "id" value.

 If a schema is correct and it has a member named "ref", then this
 member is said to be a reference. The reference of a correct schema
 MUST be resolvable. Reference resolution is defined as follows:

 1. By Section 4.1, a schema may be contained by another schema.
 Reference resolution uses the "root" of a schema to determine a
 base URI. The "root" of a given schema is the immediate element
 of an evaluation context which contains the given schema. All
 schemas are, for this definition, considered to contain
 themselves.

Carion Expires October 30, 2019 [Page 6]

Internet-Draft JSON Schema Language April 2019

 2. By Section 4.1, the value of the reference must be a URI-
 reference. This URI-reference is resolved using the process
 described in [RFC3986] to produce a resolved URI. If the root of
 a schema has a member named "id", then that member's
 corresponding value shall be used as the base URI for the URI
 resolution process; otherwise, no base URI is used.

 If the URI-reference cannot be resolved, then the reference is
 unresolvable.

 3. Take the URI from (2), and remove its fragment part, if present.

 4. Find the element of the evaluation context which has a member
 named "id" and whose value equals the URI from (3). If there
 does not exist such a schema, then the reference is unresolvable.

 5. If URI from (2) has no fragment, then the reference resolves to
 the schema from (4).

 6. Otherwise, the schema from (4) must have a member named
 "definitions"; if it does not, then the reference is
 unresolvable. Furthermore, the "definitions" value must have a
 member whose name equals the fragment of the URI from (2); if it
 does not, then the reference is unresolvable. If it does have
 such a member, then the reference resolves to this member's
 value.

 For example, if an evaluation context contains two schemas:

 {
 "id": "http://example.com",
 "ref": "/foo#a"
 }

 {
 "id": "http://example.com/foo",
 "definitions": {
 "a": {
 "ref": "#"
 },
 "b": {
 "id": "http://example.com/bar",
 "ref": "#"
 }
 }
 }

https://datatracker.ietf.org/doc/html/rfc3986

Carion Expires October 30, 2019 [Page 7]

Internet-Draft JSON Schema Language April 2019

 Then the reference with value "/foo#a" refers to the "a" definition
 of the schema with ID "http://example.com/foo". Both of the
 references with value "#" refer the root schema with ID
 "http://example.com/foo". The "id" keyword of the "b" definition is
 irrelevant, as it occurs outside of a root schema.

5. Semantics

 This section specifies when an instance is valid against a correct
 schema, within the context of an evaluation context. This section
 also specifies a standardized form of errors to produce when
 validating an instance.

5.1. Configuration

 Users will have different desired behavior with respect to
 unspecified members in a schema or instance. Two distinct sets of
 semantics (one for schemas, another for instances), determine whether
 unspecified members are acceptable.

5.1.1. Strict schema semantics

 When evaluation is using strict schema semantics, then a correct
 schema *MUST NOT* contain members whose names are outside the list of
 keywords described in Section 4.1. When evaluation is not using
 strict schema semantics, then a correct schema *MAY* contain members
 whose names are outside this list.

 Implementations *MAY* allow users to choose whether to use strict
 schema semantics. Implementations *SHOULD* document whether they use
 strict schema semantics by default.

5.1.2. Strict instance semantics

 See Section 5.3.5 for how strict instance semantics affects whether
 an instance is valid with respect to a schema.

 Implementations *MAY* allow users to choose whether to use strict
 instance semantics. Implementations *SHOULD* document whether they
 use strict instance semantics by default.

5.2. Errors

 To facilitate consistent validation error handling, this document
 specifies a standard error format. Implementations *SHOULD* support
 producing errors in this standard form.

Carion Expires October 30, 2019 [Page 8]

Internet-Draft JSON Schema Language April 2019

 The standard error format is a JSON array. The order of the elements
 of this array is not specified. The elements of this array are JSON
 objects with up to three members:

 o A member with the name "instancePath", whose value is a JSON
 string containing a JSON Pointer. This JSON Pointer will point to
 the part of the instance that was rejected.

 o A member with the name "schemaPath", whose value is a JSON string
 containing a JSON Pointer. This JSON Pointer will point to the
 part of the schema that rejected the instance.

 o A member with the name "schemaURI", whose value is an absolute-
 URI. This URI will be the "id" value of the root schema of the
 schema that rejected the instance. See Section 4.4 for a
 definition of a schema's root. If the root schema lacks an "id"
 value, then the "schemaURI" member shall be omitted.

 The values for "instancePath" and "schemaPath" depend on the form of
 the schema, and are described in detail in Section 5.3.

5.3. Evaluation

 Whether an instance is valid against a schema depends upon the form
 of the schema. This section describes how each form validates
 instances.

5.3.1. Empty form

 If a schema is of the "empty" form, then it accepts all instances.

5.3.2. Ref form

 The "ref" form is meant to enable schema re-use.

 If a schema is of the "ref" form, then it accepts an instance if and
 only if the schema which the "ref" member resolves to accepts the
 instance. The standard errors to produce are the same as those that
 the referent schema produces. The resolution of a "ref" member is
 described in Section 4.4.

 For example, if we evaluate the instance:

 "example"

 Against the schema:

Carion Expires October 30, 2019 [Page 9]

Internet-Draft JSON Schema Language April 2019

 {
 "ref": "http://example.com"
 }

 Within an evaluating context containing the schema:

 {
 "id": "http://example.com",
 "type": "number"
 }

 Then the standard errors are:

 [
 {
 "instancePath": "",
 "schemaPath": "/type",
 "schemaURI": "http://example.com"
 }
]

 See Section 5.3.3 for how the "type" member produces errors, as the
 errors in the example above compose upon "type" errors.

5.3.3. Type form

 The "type" form is meant to describe the primitive data types of
 JSON.

 If a schema is of the "type" form, then:

 o If the value of the "type" member is "null", then the instance is
 accepted if it equals "null".

 o If the value of the "type" member is "boolean", then the instance
 is accepted if it equals "true" or "false".

 o If the value of the "type" member is "number", then the instance
 is accepted if it is a JSON number.

 o If the value of the "type" member is "string", then the instance
 is accepted if it is a JSON string.

 If the instance is not accepted, then the standard error for this
 case shall have an "instancePath" pointing to the instance, and a
 "schemaPath" pointing to the "type" member.

 For example, if we evaluate the instance:

Carion Expires October 30, 2019 [Page 10]

Internet-Draft JSON Schema Language April 2019

 "example"

 Against the schema:

 { "type": "number" }

 Then the standard errors are:

 [{ "instancePath": "", "schemaPath": "/type" }]

5.3.4. Elements form

 The "elements" form is meant to describe JSON arrays representing
 homogeneous data. When a schema is of the "elements" form, it
 validates:

 o That the instance is an array, and

 o That all of the elements of the array are of the same type.

 If a schema is of the "elements" form, then:

 1. If the instance is not a JSON array, then the instance is
 rejected. The standard error shall have an "instancePath"
 pointing to the instance, and a "schemaPath" pointing to the
 "elements" member.

 2. Otherwise, the instance is accepted if each element of the
 instance is accepted by the value of the "elements" member. The
 standard error shall be the concatenation of the standard errors
 from evaluating each element of the instance against the value of
 the "elements" member.

 For example, if we have the schema:

 {
 "elements": {
 "type": "number"
 }
 }

 Then if we evaluate the instance:

 "example"

 Against this schema, the standard errors are:

 [{ "instancePath": "", "schemaPath": "/elements" }]

Carion Expires October 30, 2019 [Page 11]

Internet-Draft JSON Schema Language April 2019

 If instead we evaluate the instance:

 [1, 2, "foo", 3, "bar"]

 The standard errors are:

 [
 { "instancePath": "/2", "schemaPath": "/elements/type" },
 { "instancePath": "/4", "schemaPath": "/elements/type" }
]

5.3.5. Properties form

 The "properties" form is meant to describe JSON objects being used in
 a fashion similar to structs in C-like languages. When a schema is
 of the "properties" form, it validates:

 o That the instance is an object,

 o That the instance has a set of required properties, each
 satisfying their own respective schema, and

 o That the instance may have a set of optional properties that, if
 present in the instance, satisfy their own respective schema.

 If a schema is of the "properties" form, then:

 1. If the instance is not a JSON object, then the instance is
 rejected.

 The standard error for this case has an "instancePath" pointing
 to the instance. If the schema has a "properties" member, then
 the "schemaPath" of the error shall point to the "properties"
 member. Otherwise, "schemaPath" shall point to the
 "optionalProperties" member.

 2. If the instance is a JSON object, and the schema has a
 "properties" member, then for each member name of the
 "properties" of the schema, a member of the same name must appear
 in the instance. Otherwise, the instance is rejected.

 The standard error for this case has an "instancePath" pointing
 to the instance, and a "schemaPath" pointing to the member of
 "properties" whose name lacks a counterpart in the instance.

 3. If the instance is a JSON object, then for each member of the
 instance, find a member of the same name in the "properties" or
 "optionalProperties" of the schema.

Carion Expires October 30, 2019 [Page 12]

Internet-Draft JSON Schema Language April 2019

 * If no such member in the "properties" or "optionalProperties"
 exists, and validation is using strict instance semantics,
 then the instance is rejected.

 The standard error for this case has an "instancePath"
 pointing to the member of the instance lacking a counterpart
 in the schema, and a "schemaPath" pointing to the schema.

 * If such a member in the "properties" or "optionalProperties"
 does exist, then the value of the member from the instance
 must be accepted by the value of the corresponding member from
 the schema. Otherwise, the instance is rejected.

 The standard error for this case is the concatenation of the
 errors from evaluating the member of the instance against the
 member of the schema.

 An instance may have errors arising from both (2) and (3). In this
 case, the standard errors should be concatenated together.

 For example, if we have the schema:

 {
 "properties": {
 "a": { "type": "string" },
 "b": { "type": "string" }
 },
 "optionalProperties": {
 "c": { "type": "string" },
 "d": { "type": "string" }
 }
 }

 Then if we evaluate the instance:

 "example"

 Against this schema, then the standard errors are:

 [{ "instancePath": "", "schemaPath": "/properties" }]

 If instead we evalute the instance:

 { "b": 3, "c": 3, "e": 3 }

 The standard errors, using strict instance semantics, are:

Carion Expires October 30, 2019 [Page 13]

Internet-Draft JSON Schema Language April 2019

 [
 { "instancePath": "",
 "schemaPath": "/properties/a" },
 { "instancePath": "/b",
 "schemaPath": "/properties/b/type" },
 { "instancePath": "/c",
 "schemaPath": "/optionalProperties/c/type" },
 { "instancePath": "/e",
 "schemaPath": "" }
]

 If we the same instance were evaluated, but without strict instance
 semantics, the final element of the above array of errors would not
 be present.

5.3.6. Values form

 The "values" form is meant to describe JSON objects being used as an
 associative array mapping arbitrary strings to values all of the same
 type. When a schema is of the "properties" form, it validates:

 o That the instance is an object, and

 o That the values of the instance all satisfy the same schema.

 If a schema is of the "values" form, then:

 1. If the instance is not a JSON object, then the instance is
 rejected. The standard error shall have an "instancePath"
 pointing to the instance, and a "schemaPath" pointing to the
 "values" member.

 2. Otherwise, the instance is accepted if the value of each member
 of the instance is accepted by the value of the "values" member.
 The standard error shall be the concatenation of the standard
 errors from evaluating the value of each member of the instance
 against the value of the "values" member.

 For example, if we have the schema:

 {
 "values": {
 "type": "number"
 }
 }

 Then if we evaluate the instance:

Carion Expires October 30, 2019 [Page 14]

Internet-Draft JSON Schema Language April 2019

 "example"

 Against this schema, the standard errors are:

 [{ "instancePath": "", "schemaPath": "/values" }]

 If instead we evaluate the instance:

 { "a": 1, "b": 2, "c": "foo", "d": 3, "e": "bar" }

 The standard errors are:

 [
 { "instancePath": "/c", "schemaPath": "/values/type" },
 { "instancePath": "/e", "schemaPath": "/values/type" }
]

5.3.7. Discriminator form

 The "discriminator" form is meant to describe JSON objects being used
 in a fashion similar to a discriminated union construct in C-like
 languages. When a schema is of the "disciminator" type, it
 validates:

 o That the instance is an object,

 o That the instance has a particular "disciminator" property,

 o That this "discriminator" value is a string within a set of valid
 values, and

 o That the instance satisfies another schema, where this other
 schema is chosen based on the value of the "discriminator"
 property.

 If a schema is of the "disciminator" form, then:

 1. If the instance is not a JSON object, then the instance is
 rejected. The standard error shall have an "instancePath"
 pointing to the instance, and a "schemaPath" pointing to the
 "discriminator" member.

 2. If the instance is a JSON object and lacks a member whose name
 equals the "tag" value of the "discriminator" of the schema, then
 the instance is rejected.

Carion Expires October 30, 2019 [Page 15]

Internet-Draft JSON Schema Language April 2019

 The standard error to produce in this case has an "instancePath"
 pointing to the instance, and a "schemaPath" pointing to the
 "tag" member of the "disciminator" member of the schema.

 3. If the instance is a JSON object and has a member whose name
 equals the "tag" value of the "discriminator" of the schema, but
 that member's value is not a string, then the instance is
 rejected.

 The standard error to produce in this case has an "instancePath"
 pointing to the member of the instance corresponding to "tag",
 and a "schemaPath" pointing to the "tag" member of the
 discriminator.

 4. If the instance is a JSON object and has a member whose name
 equals the "tag" value of the "discriminator" of the schema and
 whose value is a string, but that member's value is not equal to
 any of the member names in the "mapping" of the "discriminator",
 then the instance is rejected.

 The standard error to produce in this case has an "instancePath"
 pointing to the member of the instance corresponding to "tag",
 and a "schemaPath" pointing to the "mapping" member of the
 "discriminator" member of the schema.

 5. If the instance is a JSON object and has a member whose name
 equals the "tag" value of the "discriminator" of the schema, and
 that member's value is equal to one of the member names in the
 "mapping" of the "discriminator", then the instance must satisfy
 this corresponding schema in "mapping". Otherwise, the instance
 is rejected.

 The standard errors to produce in this case are those produced by
 evaluating the instance against the schema within the "mapping".

 For example, if we have the schema:

Carion Expires October 30, 2019 [Page 16]

Internet-Draft JSON Schema Language April 2019

 {
 "discriminator": {
 "tag": "version",
 "mapping": {
 "v1": {
 "properties": {
 "a": { "type": "number" }
 }
 },
 "v2": {
 "properties": {
 "a": { "type": "string" }
 }
 }
 }
 }
 }

 Then if we evaluate the instance:

 "example"

 Against this schema, the standard errors are:

 [{ "instancePath": "", "schemaPath": "/discriminator" }]

 If we instead evaluate the instance:

 {}

 Then the standard errors are:

 [{ "instancePath": "", "schemaPath": "/discriminator/tag" }]

 If we instead evaluate the instance:

 { "version": 1 }

 Then the standard errors are:

 [{ "instancePath": "/version", "schemaPath": "/discriminator/tag" }]

 If we instead evaluate the instance:

 {
 "version": "v3"
 }

Carion Expires October 30, 2019 [Page 17]

Internet-Draft JSON Schema Language April 2019

 Then the standard errors are:

 [
 { "instancePath": "/version",
 "schemaPath": "/discriminator/mapping" }
]

 Finally, if the instance evaluated were:

 {
 "version": "v2",
 "a": 3
 }

 Then the standard errors are:

 [
 {
 "instancePath": "/a",
 "schemaPath": "/discriminator/mapping/v2/properties/a/type"
 }
]

6. IANA Considerations

 No IANA considerations.

7. Security Considerations

 Implementations of JSON Schema Language will necessarily be
 manipulating JSON data. Therefore, the security considerations of
 [RFC8259] are all relevant here.

 Implementations which evaluate user-inputted schemas *SHOULD*
 implement mechanisms to detect, and abort, circular references which
 might cause a naive implementation to go into an infinite loop.
 Without such mechanisms, implementations may be vulnerable to denial-
 of-service attacks.

 Implementations of JSON Schema Language *SHOULD NOT* naively attempt
 to fetch and evaluate schemas when they are referred to using the
 "ref" keyword. Doing so could lead to denial of service. Instead,
 implementations should only fetch schemas through secure channels,
 and should only fetch and evaluate schemas from trusted sources.

https://datatracker.ietf.org/doc/html/rfc8259

Carion Expires October 30, 2019 [Page 18]

Internet-Draft JSON Schema Language April 2019

8. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC6901] Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,
 "JavaScript Object Notation (JSON) Pointer", RFC 6901,
 DOI 10.17487/RFC6901, April 2013,
 <https://www.rfc-editor.org/info/rfc6901>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

Appendix A. Acknowledgments

 Thanks to Gary Court, Francis Galiegue, Kris Zyp, Geraint Luff, Jason
 Desrosiers, Daniel Perrett, Erik Wilde, Ben Hutton, Evgeny
 Poberezkin, Brad Bowman, Gowry Sankar, Donald Pipowitch, Dave Finlay,
 Denis Laxalde, Henry Andrews, and Austin Wright for their work on the
 initial drafts of JSON Schema, which inspired JSON Schema Language.

Author's Address

 Ulysse Carion

 Email: ulyssecarion@gmail.com

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://datatracker.ietf.org/doc/html/rfc8259
https://www.rfc-editor.org/info/rfc8259

Carion Expires October 30, 2019 [Page 19]

