
JSON D. Crockford
Internet Draft JSON.org
draft-jsonorg-json-00.txt January, 2006
Intended status: Informational
Expires: June 10, 2006

JSON

Status of this Memo

 This document may not be modified, and derivative works of it
 may not be created, except to publish it as an RFC and to
 translate it into languages other than English.

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet Draft will expire on June 10, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 JSON (JavaScript Object Notation) is a light-weight, text-based,
 language-independent, data interchange format. It was derived from
 ECMA 262 (The ECMAScript Programming Language Standard), Third
 Edition. JSON defines a small set of formatting rules for the
 portable representation of structured data.

Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

https://datatracker.ietf.org/doc/html/draft-jsonorg-json-00.txt
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC-2119.

 The syntax diagrams in this document are to be interpreted as
 described in RFC-2234.

1. Introduction

 JSON, or JavaScript Object Notation, is a text format for the
 serialization of structured data. It is derived from the object
 literals of JavaScript, as defined in ECMA 262 (The ECMAScript
 Programming Language Standard), Third Edition (1999).

 JSON can represent four primitive types (strings, numbers, booleans,
 and null) and two structured types (objects and arrays).

 A string is a sequence of zero or more Unicode characters.

 An object is an unordered collection of zero or more name/value
 pairs, where a name is a string, and a value is a string, number,
 boolean, null, object, or array.

 An array is an ordered sequence of zero or more values.

 The terms "object" and "array" come from the conventions of
 JavaScript.

2. JSON Grammar

 A JSON text is a sequence of tokens. The set of tokens includes six
 structural characters, strings, numbers, and three literal names.

 These are the six structural characters:

 <begin-object> = %x7B ; { left brace

 <end-object> = %x7D ; } right brace

 <begin-array> = %x5B ; [left bracket

 <end-array> = %x5D ;] right brace

 <name-separator> = %x3A ; : colon

 <value-separator> = %x2C ; , comma

 2.1. Whitespace

 The tokens may be separated by any combination of these whitespace
 characters:

 space U+0020 Space

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2234

 TAB U+0009 Horizontal tab
 LF U+000A Line feed or New line
 CR U+000D Carriage return

 Insignificant whitespace must not be placed within a
 multicharacter token (a literal name, number, or string). A space
 character in a string is significant.

 2.2. Values

 A JSON value can be a object, array, number, or string, or one of
 the literal names true, false, or null. The literal names must be
 in lower case. No other literal names are allowed.

 <value> = <string> / <number> / <object> / <array> /
 <true> / <false> / <null>

 <true> = %x74.72.75.65 ; true

 <false> = %x66.61.6c.73.65 ; false

 <null> = %x6e.75.6c.6c ; null

 2.3. Objects

 An object structure is represented as a pair of curly braces
 surrounding zero or more name/value pairs (or members). A name is
 a string. A single colon comes after each name, separating the
 name from the value. A single comma separates a value from a
 following name.

 <object> = <begin-object> [<member>
 *(<value-separator> <member>)] <end-object>

 <member> = <string> <name-separator> <value>

 2.4. Arrays

 An array structure is represented as square brackets surrounding
 zero or more values (or elements). Elements are separated by
 commas.

 <array> = <begin-array> [<value>
 *(<value-separator> <value>)] <end-array>

 2.5. Numbers

 The representation of numbers is similar to that used in
 programming languages. A number contains an integer component
 (which may be prefixed with an optional minus sign (U+002D)),
 which may be followed by a fraction part and/or an exponent part.

 Octal and hex forms are not allowed. Leading zeros are not allowed
 as that could lead to confusion.

 A fraction part is a decimal point (U+002E) followed by one or
 more digits.

 An exponent part begins with the letter E in upper or lower case
 (U+0045 or U+0065), which may be followed by a plus (U+002B) or
 minus (U+002D). The E and optional sign are followed by one or
 more digits.

 Numeric values that cannot be represented as sequences of digits
 (such as Infinity and NaN) are not permitted.

 <number> = ["-"] <int> [<frac>] [<exp>]

 <int> = "0" / (<digit1-9> *<digit>)

 <frac> = "." 1*<digit>

 <exp> = ("e" / "E") ["-" / "+"] 1*<digit>

 <digit> = "0" / "1" / "2" / "3" / "4" /
 "5" / "6" / "7" / "8" / "9"

 <digit1-9> = "1" / "2" / "3" / "4" /
 "5" / "6" / "7" / "8" / "9"

 2.6. Strings

 The representation of strings is similar to conventions used in
 the C family of programming languages. A string begins and ends
 with quotation marks (U+0022). All Unicode characters can be
 placed within the quotation marks except for the characters which
 must be escaped: quotation mark (U+0022), reverse virgule
 (U+005C), and the control characters (U+0000 through U+001F).

 Any character may be escaped. If the character is in the Basic
 Multilingual Plane (U+0000 through U+FFFF) then it may be
 represented as a six-character sequence: a reverse virgule
 followed by the lower case letter u (U+0075) followed by four
 hexadecimal digits which encode the character's code point. The
 hexadecimal letters a though f can be in upper or lower case. So,
 for example, a string containing only a single reverse virgule
 character may be represented as "\u005C".

 Alternatively, there are two-character sequence escape
 representations of some popular characters. So, for example, a
 string containing only a single reverse virgule character may be
 represented more compactly as "\\".

 Short Long

 form form
 \" \u0022 quotation mark
 \\ \u005C reverse virgule or backslash
 \/ \u002F virgule or slash
 \b \u0008 backspace
 \f \u000C form feed
 \n \u000A line feed or new line
 \r \u000D carriage return
 \t \u0009 tab

 To escape an extended character that is not in the Basic
 Multilingual Plane, then the character is represented as a
 twelve-character sequence, encoding the UTF-16 surrogate pair. So,
 for example, a string containing only the G clef character
 (U+1D11E) may be represented as "\uD834\uDD1E".

 A space in a string is treated as a space character, not as
 insignificant whitespace.

 <string> = <quotation-mark> *<char> <quotation-mark>

 <quotation-mark> = %x22 ; "

 <escape> = %x5C ; \

 <char> =
 <unescaped> /
 <escape> (
 %x22 / ; " quotation mark
 %x5C / ; \ reverse virgule
 %x2F / ; / virgule
 %x62 / ; b backspace
 %x66 / ; f form feed
 %x6E / ; n line feed
 %x72 / ; r carriage return
 %x74 / ; t tab
 %x75 4<hex-digit>) ; uXXXX

 <hex-digit> = <digit> / "a" / "b" / "c" / "d" / "e" / "f" /
 "A" / "B" / "C" / "D" / "E" / "F"

 <unescaped> = %x20-21 / %x23-5B / %x5D-10FFFF

3. Parsers

 A JSON parser transforms a JSON text into another representation. A
 JSON parser MUST accept all texts that conform to the JSON grammar.
 A JSON parser MAY accept non-JSON forms or extensions.

 An implementation may set limits on the size of texts that it
 accepts. An implementation may set limits on the maximum depth of
 nesting. An implementation may set limits on the range of numbers.

 An implementation may set limits on the length and character contents
 of strings.

4. Generators

 A JSON generator produces JSON text. The resulting text MUST strictly
 conform to the JSON grammar.

5. IANA Considerations

 The MIME media type for JSON text is text/json.

6. Security Considerations

 Since JSON is a subset of JavaScript, the eval() function (which
 compiles and execute a text) can be used as a JSON parser. This
 should only done if the text is known to be safe. A regular
 expression can be used to prove that the text contains only JSON
 tokens. A text containing only JSON tokens is safe to eval because
 the JSON subset of JavaScript is safe.

Author's Address

 Douglas Crockford
 JSON.org
 Contact Email: douglas@crockford.com

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Disclaimer of Validity

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

 This Internet-Draft will expire on June 10, 2006.

https://datatracker.ietf.org/doc/html/bcp78

