
INTERNET DRAFT M. Kadansky, D. Chiu,
 J. Wesley, J.Provino
draft-kadansky-tram-02.txt Sun Microsystems Laboratories
 January 2000
 Expires: July 2000

Tree-based Reliable Multicast (TRAM)

Status of this Memo

 This document is an Internet-Draft and is NOT offered in accordance
 with Section 10 of RFC2026, and the author does not provide the IETF
 with any rights other than to publish as an Internet-Draft.

 This document is an updated (and renamed) version of an Internet-
 Draft titled draft-kadansky-tram-01.txt.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This paper describes TRAM, a scalable reliable multicast transport
 protocol. TRAM is designed to support bulk data transfer from a
 single sender to many receivers. A dynamically formed repair tree
 provides local error recovery allowing the multicast group to support
 a large number of receivers. TRAM provides flow control, congestion
 control, and other adaptive techniques necessary to operate
 efficiently with other protocols. Several bulk data applications
 have been implemented with TRAM. TRAM has been tested and simulated
 in a number of network environments.

 This update contains a new flow and congestion control section, an
 updated and expanded security section, updated packet formats to

TRAM [Page 1]

https://datatracker.ietf.org/doc/html/draft-kadansky-tram-02.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
https://datatracker.ietf.org/doc/html/draft-kadansky-tram-01.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 accommodate IPV6 addressing, and several other minor updates.

Table of Contents

 1 Introduction
 1.1 Terminology
 2 TRAM Components
 2.1 Sender
 2.2 Receivers
 2.3 Repair Heads
 2.3.1 Eager Repair Heads
 2.3.2 Reluctant Repair Heads
 3 Key Protocol Elements
 3.1 Transport Parameters
 3.2 Session Id
 3.3 Data Message
 3.4 Sequence Number
 3.4.1 Subtree Sequence Number
 3.5 Acknowledgment
 3.6 Beacon
 3.7 TTL
 4 TRAM Operation
 4.1 Starting a TRAM Session
 4.2 Tree Formation
 4.2.1 Selecting the Best Repair Head
 4.2.2 Repair Head Capacity
 4.2.3 Repair Head Discovery
 4.2.3.1 Bi-directional Multicast Networks
 4.2.3.2 Uni-directional Multicast Networks
 4.2.3.3 Discovery Mechanism Configuration
 4.2.4 Binding
 4.2.5 LAN Tree Formation
 4.3 Tree Maintenance
 4.3.1 Tracking Repair Heads
 4.3.2 Tracking Children
 4.3.3 Removing a Child
 4.3.4 Leaving the Repair Group
 4.3.5 Switching Repair Heads
 4.3.6 Pruning
 4.4 Packet Loss Recovery
 4.5 Rate-based Transmission
 4.6 Flow and Congestion Control
 4.6.1 Data Rate Adjustments
 4.6.1.1 Slow Start
 4.6.1.2 Steady State
 4.6.2 Congestion Detection and Feedback
 4.6.3 Congestion Window Adjustments at the Receivers
 4.6.4 Flow Control Information in Acknowledgment Messages

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 2]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 4.6.4.1 Highest Allowed Seqno
 4.6.4.2 Slowness Measure
 4.6.5 Retransmission Data Rate
 4.7 Session Keep-alive
 4.8 Late Join
 4.9 End of Transmission
 5 Security
 6 Packet Formats
 7 Discussion Regarding RFC2357
 7.1 Performance Analysis and Discussion
 7.2 Security Discussion
 8 Limitations and Future Work
 9 References
 Acknowledgments
 Appendix: A Table of Transport Parameters
 Authors' Addresses

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt
https://datatracker.ietf.org/doc/html/rfc2357

TRAM [Page 3]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

1 Introduction

 Distributing significant amounts of identical data from a single
 sender to multiple receivers can take considerable time and bandwidth
 if the sender must send a separate copy to each receiver. IP
 multicasting allows a sender to distribute data to all interested
 parties while minimizing the use of network resources. Many
 applications, however, require reliable data delivery which can be
 supported by a reliable multicast transport protocol.

 TRAM is designed to provide multicast reliability that scales to a
 large receiver population. TRAM ensures reliability by using a
 selective acknowledgment mechanism, and scalability by adopting a
 hierarchical tree-based repair mechanism. The hierarchical tree
 avoids acknowledgement implosion and inefficient global repairs by
 localized repairs.

 The receivers and the sender of a multicast session dynamically form
 repair groups. These repair groups are linked together
 hierarchically to form a tree with the sender at the root of the
 tree. The use of a hierarchical tree has been shown to be the most
 scalable way of supporting reliable multicast transmissions [SURVEY],
 and is adopted by many other reliable multicast protocols, for
 example RMTP-II [RMTP].

 Every repair group has a receiver that functions as a group head; the
 rest function as group members. These members are said to be
 affiliated with their head. Except for the sender, every repair
 group head in the system is a member of some other repair group. All
 members receive data multicast by the sender. The group members
 report lost and successfully received messages to the group head
 using a selective acknowledgment mechanism similar to TCP's [SACK].
 The repair heads cache every data message received and retransmit
 them at a child's request. A group member may re-affiliate with a
 different head to improve repair effectiveness and efficiency. This
 dynamic nature of the tree allows it to react to changes in the
 underlying network infrastructure without sacrificing reliability.

 TRAM has intentionally been kept as lightweight as possible. TRAM has
 been developed as part of a larger project, the Java(tm) Reliable
 Multicast(tm) Service [JRMS]. The JRM Service includes support for a
 wide range of features desirable for reliable multicast: group
 management, security, receiver customization of data, session
 advertisement, address allocation, etc. The JRM Service also
 includes a protocol-independent API, designed to support multiple
 transport protocols.

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 4]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

1.1 Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

2. TRAM Components

2.1 Sender

 The Sender is the root of the multicast repair tree in TRAM. It
 transmits the data on the multicast address, initiates and controls
 the formation of the multicast repair tree, and receives and
 processes congestion reports from its immediate members.

2.2 Receivers

 All members other than the sender are receivers in TRAM. Some of the
 receivers will retransmit lost packets for other receivers - they are
 called repair heads.

2.3 Repair Heads

 Each repair head has a set of members for which it provides
 retransmission service. These members are referred to as the children
 of the repair head. The repair head keeps track of the packets its
 children have received and those that they missed. The repair head
 caches a packet until all of its children have acknowledged it. If a
 child reports that a packet is missing, the repair head retransmits
 the packet to all of its children by multicasting with appropriate
 TTL scope.

2.3.1 Eager Repair Heads

 Eager heads are members that have been specifically configured to be
 repair heads. An eager head is expected to have sufficient system
 resources to cache data packets and service retransmission requests
 effectively.

 The Sender is always an eager head.

2.3.2 Reluctant Repair Heads

 Reluctant heads are repair heads that only accept members and perform
 repairs if an eager head is not available in the area. Reluctant
 heads solicit members to join their repair group just like eager
 heads. However, members select reluctant heads only if they do not
 hear from any nearby eager heads.

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt
https://datatracker.ietf.org/doc/html/rfc2119

TRAM [Page 5]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 The default member role (memberRole) is RELUCTANT_HEAD. Members must
 be explicitly configured to be EAGER_HEAD or RECEIVER_ONLY members.

3. Key Protocol Elements

3.1 Transport Parameters

 TRAM is started at each member with a number of transport parameters.
 A complete list of these parameters and their default values is
 included in the Appendix. The following descriptions will refer to
 these parameters by name.

 Some transport parameters are common to all group members. For
 example, the multicast address, port number, minAckWindow,
 maxAckWindow, minDataRate, and maxDataRate. These group-wide
 parameters are typically created once and distributed to all members
 of the group, for example using SAP (Session Announcement Protocol
 [SAP]).

 Some transport parameters are local, and their values can vary from
 member to member. An example is transportMode. TransportMode can be
 set to SEND_ONLY, RECEIVE_ONLY, SEND_RECEIVE, or REPAIR_NODE,
 depending on whether the member is a sender, receiver, both a sender
 and receiver, or a repair node only.

3.2 Session Id

 The sender generates a sessionId to uniquely identify each session.
 This id is used to detect multicast address collisions, as well as
 sender restarts.

3.3 Data Message

 A Data Message contains a payload and a TRAM protocol header. The
 protocol header contains information such as sessionId.

 The sender transmits Data Messages using a rate between a minimum and
 maximum rate (minDataRate and maxDataRate) as specified in the
 transport parameters.

 The sender's current rate is included in the Date Message header. It
 is used to compute a number of timers, for example, the ackInterval
 (see section 4.4) and the repair head's retransmission suppression
 timer (see section 4.6.5).

3.4 Sequence Number

 Each data packet sent contains a sequence number. The first data

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 6]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 packet sent contains sequence number 1. This is incremented for each
 subsequent data packet. Members detect missing packets based on the
 packet sequence numbers received. Sequence numbers allow the
 receivers to pass the data packets up to the application in the same
 order they were sent. Setting the transport parameter ordered to
 TRUE selects ordered delivery of data packets to the application.

3.4.1 Subtree Sequence Number

 While sequence number is a token to identify a data packet, subtree
 sequence number is used to define a subset of the sequence number
 space (from 1 to the subtree sequence number) that represent the
 packets received by all receivers in a subtree. This information is
 passed from repair head to repair head so that the sender (the root
 of the repair tree) knows which packets have been received by all the
 receivers.

3.5 Acknowledgment

 Receivers send unicast Acknowledgment Messages to their repair head.
 The Acknowledgment Message contains a sequence number that indicates
 all data packets up to (but not including) this number have been
 received. The Acknowledgment Message can optionally contain a bit
 mask to indicate missing packets.

 The ackWindow is the number of packets a member receives before
 sending a new Acknowledgment Message to its repair head. The
 parameter ackWindow is configured as part of the transport profile.
 A higher value of ackWindow tends to increase the efficiency of the
 transport protocol since fewer control (non-data) packets will be
 exchanged. The value of ackWindow is also used as a lower bound of
 the congestion window, hence it plays an important role in the
 congestion control algorithm as described in the flow control section
 (4.6).

 A related transport parameter is the ackInterval, which is
 dynamically computed based on ackWindow, the current data rate, and
 maximum packet size, to be the current expected time to receive an
 ackWindow of packets (plus a fudge factor, see section 4.4). The
 Acknowledgment Message may be triggered by the expiration of
 ackInterval timers. The value of ackInterval is also used to set
 timers for tree maintenance control messages, as described in section

4.3.

3.6 Beacon

 The sender uses Beacon Messages to signal the start and end of a
 multicast session. The sender also transmits Beacon Messages after

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 7]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 data transmission has started if the application stops sending data
 for a period of time. These Beacon Messages act as filler to notify
 members that the session is still active. Flag bits are used to
 indicate the purpose of the Beacon Message.

 Like Data Messages, Beacon Messages are always multicast to the
 entire group.

3.7 TTL

 All multicast packets, including Beacon Messages, Data Messages and
 their retransmissions, and other control packets, are transmitted
 with specifically chosen Time To Live (TTL) values. TTL determines
 the distance into the network a packet will travel.

 Beacon and Data Messages have a TTL large enough to reach all
 members. This TTL is referred to as the sessionTTL. Only those
 receivers that receive the Beacon Messages should join the repair
 tree.

 Repair heads set the TTL small enough to only reach their children.
 This TTL is referred to as the repair TTL.

4.0 TRAM Operation

4.1 Starting a TRAM Session

 The Sender transmits Beacon Messages to initiate the session. The
 Beacon Message is sent to the entire multicast group at regular
 intervals (beaconInterval). Members begin the tree formation process
 when they receive a Beacon or Data Message.

 After data transmission begins, the sender transmits Beacon Messages
 only when there is a gap in the application's data stream (see
 description in Section 4.7).

4.2 Tree Formation

 The repair tree in TRAM provides the structure for local repair
 groups. The repair groups localize repair and control messages, and
 provide a feedback path from members to the sender. A repair head
 manages its repair group. Repair group management includes accepting
 new members, keeping track of children, retransmission of requested
 data packets, and aggregation of feedback messages from members.

4.2.1 Selecting the Best Repair Head

 Each member selects the best repair head it can find. The best

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 8]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 repair head is the closest available head with the most children
 already attached. The multicast TTL value required to reach the
 member from the repair head defines the distance between them. A
 closer head requires a smaller TTL value. Eager heads are selected
 over reluctant heads if everything else is equal. Selecting a close
 repair head limits the distance multicast repair packets will travel
 into nearby networks. It also localizes control traffic between
 members and their repair heads.

 Selecting a repair head with the most children minimizes the number
 of repair heads. Reducing the number of repair heads minimizes the
 number of control messages.

 Other criteria used to break ties are: greatest maxChildren, and
 lowest IP address.

4.2.2 Repair Head Capacity (maxChildren)

 Repair heads limit the number of children they support to
 maxChildren. The default is 32 children per repair head. Once the
 repair head has accepted its maximum number of children, it stops
 accepting new members until a change in membership causes the member
 count to go below this limit.

 Since the repair tree is critical to the operation of TRAM, each
 repair head MUST reserve several slots for other repair heads. This
 guarantees the growth of the repair tree.

4.2.3 Repair Head Discovery

 Receivers discover repair heads by using multicast solicitation and
 advertisement control messages. Some networks such as satellite based
 networks support multicast capability only in one direction. Such
 networks typically have slow back-channels that may not support
 multicast. This is referred to as a uni-directional multicast
 network, as opposed to a bi-directional multicast network.

 There are two basic mechanisms for repair head discovery:

 o member-solicited head advertisement
 o unsolicited head advertisement

 The member-solicited approach is used for bi-directional multicast
 networks. The unsolicited approach is more suitable for uni-
 directional multicast networks.

4.2.3.1 Bi-directional Multicast Networks

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 9]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 All members in bi-directional multicast networks can communicate with
 every other member via multicast. For such environments, TRAM
 supports a member-solicited repair head discovery algorithm to
 dynamically build the repair tree.

 Receivers join the multicast group and remain idle until the
 multicast session is detected to be active. Reception of a Beacon
 Message or a Data Message from the sender signifies an active
 session. When the session becomes active, the members look for repair
 heads using a multicast Member Solicit Message. A repair head that is
 already attached to the repair tree and is able to handle additional
 members SHOULD respond to a Member Solicit Message by multicasting a
 Head Advertisement Message. The TTL used in this response is the same
 used in the Member Solicit Message. If the TTL value required to
 reach the member is greater than the TTL used to reach the repair
 head, the Head Advertisements with the TTL from the first Member
 Solicit Message will not reach the member. Future Member Solicit
 Messages will have increased TTL values. Eventually the TTL will be
 large enough for the Head Advertisement Message to reach the member.
 Repair heads that have not joined the repair tree MUST ignore Member
 Solicit Messages.

 The receiver listens for Head Advertisements after sending the Member
 Solicit Message. If one or more Head Advertisements are received
 during a solicitInterval, the best repair head among them is
 selected. If no Head Advertisements are received, the receiver sends
 another Member Solicit Message with a larger TTL (incremented by the
 transport parameter solicitTTLInc). The process of sending the
 message with an increasing TTL value continues until a response is
 received. This process is known as Expanding Ring Search [TMTP].

4.2.3.2 Uni-directional Multicast Networks

 Uni-directional multicast networks have links that support multicast
 in one direction. For such networks, TRAM uses an unsolicited head
 advertisement algorithm for head discovery. This method only requires
 multicast capability from the repair head to the children.

 In a uni-directional multicast network, repair heads multicast Head
 Advertisement Messages announcing their existence. These messages are
 sent at regular intervals with an increasing TTL value
 (advertiseTTLInc). This is repeated until the value of TTL reaches
 advertiseLimit.

 The sender computes this interval, known as the Head Advertisement
 Interval, as follows:

 HAI = max(.5 second, (Heads * HASize) / maxAdvertiseBW1)

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 10]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 Heads: Number of currently advertising heads - this
 information is aggregated and propagated to the
 sender by every repair head (via Acknowledgment
 Messages).
 HASize: Head Advertisement packet size
 maxAdvertiseBW1: Head Advertisement bandwidth (bytes/second)
 - configured

 The computed HAI is included in every Beacon and Data Message. This
 gives the sender control over the bandwidth used for head discovery.
 This is critical because there is no congestion control for tree
 formation messages. The sender reduces the rate at which each head
 advertises itself as the number of advertising heads increase.

 This formula limits the amount of Head Advertisement traffic to a
 sender-specified bandwidth based on the number of advertising heads.
 Another transport parameter, maxAdvertiseBW2, is used to compute the
 HAI suitable for the time after data transmission has started.

 Receivers join the multicast group and remain idle until the
 multicast session becomes active. Then each receiver listens for Head
 Advertisements for an Advertisement Listen Interval, computed as 60
 seconds or 3 times the Head Advertisement Interval (HAI), whichever
 is smaller. The receivers MUST ignore the HAI value reported in a
 retransmitted data message.

 If any Head Advertisements are received during this interval, the
 best repair head is selected. If no head advertisements are received,
 the receiver continues listening.

4.2.3.3 Discovery Mechanism Configuration

 First, each member is configured with the transport parameter
 memberRole. If the memberRole is not RECEIVER_ONLY, then this member
 is a potential head.

 Another parameter, treeScheme, controls which algorithm to use for
 discovering repair heads. It can have the following values:

 o HEAD_ADVERTISE - This means all heads voluntarily advertise as
 described in 4.2.3.2.
 o MEMBER_SOLICIT - This means heads only advertise upon receiving Member
 Solicitation Messages, as described in 4.2.3.1.
 o COMBINED - This means using HEAD_ADVERTISE before data transmission
 starts and MEMBER_SOLICIT after data transmission has started.

 The above parameters control which tree-formation algorithm is used

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 11]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 by the whole multicast group. Each receiver or repair head may also
 discover local configuration parameters (for example from a local
 configuration file). The local configuration information may tell a
 receiver whether to solicit, which potential heads to use (via given
 IP addresses and reserved port numbers); it may also tell a receiver
 whether to be a repair head, whether to advertise and how many
 members to take.

 The combination of the global and local configuration parameters
 selects automatic tree-formation, static tree formation, or a
 combination of automatic and static tree formation.

4.2.4 Binding

 After selecting the best repair head using one of the above head
 discovery schemes, the receiver proposes to be a child of the
 selected repair head with a unicast Head Bind Message.

 If the repair head has not reached its capacity, it responds to the
 Head Bind Message with a unicast Accept Member Message; otherwise, it
 responds with a unicast Reject Member Message. Accepting a child
 requires the repair head to cache the received Data Messages until
 the child acknowledges them. Depending on the lateJoinPref transport
 parameter (detailed in Section 4.8), the Accept Member Message sent
 by the repair head MUST indicate the starting sequence number of the
 message from which data reliability is assured. The Accept Member
 Message also contains an optional Bit Mask field for the head to
 guarantee repair of additional non-contiguous packets.

4.2.5 LAN Tree Formation

 When several members reside on the same LAN, TRAM attempts to create
 a repair group on the LAN. This confines the control traffic to the
 LAN and minimizes the number of heads on the LAN. Members elect a
 single repair head called the root LAN head. The root LAN head joins
 the rest of the repair tree as described above.

 The root LAN head is elected as follows: potential heads on the LAN
 send out Head Advertisement Messages with a TTL of 1 and LANState set
 to Volunteering. An eager advertising head with the greatest
 capacity (maxChildren) is elected root LAN head. If there are two or
 more advertising heads with the same capacity, the one with the
 lowest IP address is elected. If there are no eager heads
 advertising, a reluctant head is elected. This method is compatible
 with the method for selecting the best head described in Section

4.2.1. After a period of one Head Advertisement Interval (HAI), the
 elected root LAN head changes its LANState to LAN_HEAD.

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 12]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 Potential root LAN heads listen for half of the HAI before sending
 out an advertisement. If a better volunteer or an elected root LAN
 head is heard from, the potential root LAN head suppresses its
 advertisement.

 If the number of members on the LAN equals or exceeds the capacity of
 the root LAN head, additional heads, called LAN heads, are elected
 from the members affiliated with the root LAN head. The root LAN
 head or current LAN head announces the election using the Elect LAN
 Head flag in the Head Advertisement Message. This ensures that new
 members on the LAN will be able to affiliate with a LAN head if one
 is available.

 Like all heads, LAN heads reserve slots for children that are also
 potential heads. In addition, LAN heads must reserve slots for
 potential heads that are also LAN members, in order to be able to
 grow the LAN tree.

 Once LAN heads are elected, only the single LAN head that has room
 for more children continues to send Head Advertisement Messages. Two
 types of these messages are sent.

 The first type has a TTL of 1 and LAN State set to LAN HEAD. These
 are intended to inform LAN members about the availability of a LAN
 head.

 The other type are Head Advertisements sent to inform off-LAN members
 of the availability of this head. As described in the above
 sections, depending on the value of treeScheme, these Head
 Advertisement Messages may be triggered by the receipt of Member
 Solicitation Messages, or may be unsolicited. These allow off-LAN
 members to affiliate with the LAN head while suppressing excess Head
 Advertisement Messages from other LAN members.

 This LAN Tree formation method is used when the allowLANTrees
 transport parameter is set to TRUE. The default value is FALSE.

4.3 Tree Maintenance

 TRAM continuously adapts the repair tree to accommodate members
 joining and leaving. TRAM also adjusts the tree to changing
 conditions within the network. Repair heads and their children must
 continuously monitor each other's performance. A repair head SHOULD
 remove a child that is unresponsive or cannot keep up with the
 sender's minDataRate. A child can select a new repair head if its
 current repair head is not responding, or a better one is available.
 This continuous maintenance allows the tree to dynamically adapt to

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 13]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 changing membership and network conditions.

4.3.1 Tracking Repair Heads

 Each head multicasts a Hello Message to its repair group once per
 helloInterval, as a form of keep-alive. After data transmission
 starts, a repair head multicasts a Hello Message before the
 expiration of a helloInterval when it has received an ackWindow of
 new data packets. Whenever a repair head performs a retransmission,
 however, it is counted as if it has sent a Hello Message, since the
 retransmission serves to assure its children their head is still
 active.

 To make the tree maintenance overhead commensurate with the rate of
 data transmission, the helloInterval is set to the value of
 ackInterval (see description in 3.5 and 4.4), with a minimum of 3
 seconds:

 helloInterval = max(3, ackInterval)

 The Hello Message is sent to the same multicast address and port as
 the multicast session. The TTL of the Hello Messages, however, is set
 to the TTL of the repair group, which is the TTL needed to reach the
 farthest child in the group.

 If a child does not receive a retransmission or Hello Message from
 its repair head during a helloInterval, it sets the Hello Not
 Received flag in the next Acknowledgment Message it sends. If no
 Hello or Retransmission Message is received in (maxHelloMisses *
 helloInterval), the child attempts to locate a new repair head.

 When the repair head receives an Acknowledgment Message with the
 Hello Not Received flag set, it MUST immediately respond to the child
 with a Unicast Hello Message.

 Changes in network conditions can cause the members to lose Hello or
 Retransmission messages. This can happen when the changes in the
 network require the repair head to use a TTL that is larger than the
 previously used value. To adapt to such changes, the repair head
 increases its repair TTL by repairTTLInc in response to an
 Acknowledgment Message with the Hello Not Received flag set.

 The repair TTL can also become larger than necessary. To fine tune
 the repair TTL, every child computes its actual TTL distance from the
 head. To enable this computation, the repair head includes the
 current repair TTL value in every multicast control message sent to
 the group. While the repair TTL value assigned in the IP header gets
 decremented on a hop by hop basis, the TTL in the TRAM header remains

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 14]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 unchanged. The difference between the TRAM header value and the IP
 header value gives the actual TTL distance. Each child then reports
 the actual TTL distance via the Actual TTL field in the
 Acknowledgment Message. The repair heads update each child's TTL
 distance based on this value. When necessary, the repair heads MUST
 update the repair TTL in addition to updating a child's TTL distance.

4.3.2 Tracking Children

 Repair heads must identify children that become inactive. A repair
 head knows that a child is alive and well if it receives
 Acknowledgment Messages from it for every ackWindow of packets. If a
 child's last acknowledged sequence number is more than two ackWindows
 behind the sequence number of the latest packet received at the head,
 it includes that child in the Member Address List of its next
 Multicast Hello Message. This indicates to those in the Member
 Address List that their head has not heard from them recently. The
 children listed MUST respond immediately with an Acknowledgment
 Message. The repair head repeats this process two more times. If it
 has still not heard from the child, it SHOULD remove this child from
 the repair group.

4.3.3 Removing a Child

 To remove a child from a repair group, the repair head sends the
 child a Unicast Hello Message with the Member Disowned flag set. The
 child must rejoin the repair tree in order to get retransmissions.

4.3.4 Leaving the Repair Group

 Any member that is not a repair head can leave the group at any time.
 The member sends an Acknowledgment Message to its repair head with
 the Terminate Membership flag set. The repair head removes this child
 from its member list.

 If the member trying to leave the group is a repair head, it SHOULD
 first send its children a Hello Message with the HState field set to
 Resigning. This signals the members to locate a new repair head.
 Members find new repair heads with the methods described in the
 following subsection. Once all of the repair head's children have
 terminated their membership, the repair head can leave the group.

4.3.5 Switching Repair Heads

 A member can switch to a new repair head if a better repair head is
 found. If the current repair head is unresponsive, a new repair head
 is chosen as quickly as possible. A member SHOULD switch to a new
 repair head if a closer one is found or if the current head is

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 15]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 resigning. In this case, care must be taken to switch to the new one
 only after all outstanding repairs are received from the old repair
 head. The new repair head may not be able to provide repairs for
 packets received prior to the member affiliating.

 Hello and Head Advertisement Messages aid in the detection of
 alternative repair heads in a region. Members SHOULD listen to Hello
 Messages of other heads in the region not only to learn about better
 heads but also to maintain a backup repair head list. This backup
 repair head list enables quicker switching when the current repair
 head becomes unresponsive. The HState reported in the Hello Message
 enables members to cache only those repairs heads that are currently
 accepting members.

 A repair head who has lost its own head MUST not accept new members
 until it has re-affiliated to a new head.

 Switching repair heads without checking their level in the tree can
 result in forming loops that are detached from the rest of the repair
 tree. To prevent loops from occurring, TRAM specifies a RxLevel
 parameter that indicates the tree level at which a member or a repair
 head is operating. The sender is at RxLevel 1, its members at RxLevel
 2 and so on. When a repair head attempts to switch its own repair
 head, it MUST choose a repair head whose RxLevel is lower than or
 equal to its own. If the reason for the switch is loss of its
 parent, then the repair head tries to locate a new head for 30
 seconds before transitioning to the resigning state.

 A head reports its RxLevel periodically via the Hello Message. A
 member always tracks the head's RxLevel and assigns its RxLevel to be
 one more than the RxLevel reported by its head. When re-affiliating,
 if a head sees the RxLevel in the Accept Member Message is higher
 than its own RxLevel, it MUST proceed to terminate the membership. A
 member with no children does not need to perform the RxLevel checks
 when re-affiliating, as it is a leaf node in the tree hierarchy.

 The process for affiliating with a new repair head is the same as the
 initial bind procedure with the following exception. If the member's
 current repair head is unresponsive and it has one or more missing
 packets, the member MAY send a Head Bind request to all of the repair
 heads that it knows about. The member checks each Accept Member
 Message it receives for a repair head that still has the missing
 packets available. The member can request retransmission of the
 missing packets from this repair node. It MUST then select the best
 repair head from those that accepted it and send an Acknowledgment
 Message with the Terminate Membership flag set to all of the others.

4.3.6 Pruning

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 16]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 The repair heads must keep track of all members they serve. If one of
 its children goes off-line, a repair head MUST detect this in time to
 prune the child from the repair tree before its repair cache fills
 up.

 The repair heads MUST also detect the condition when one (or more) of
 their members cannot keep up with the sender's minDataRate. This is
 done by computing a session wide slowness measure described in

section 4.6.4.2.

 The sender adjusts its data transmission rate in reaction to
 receivers' feedback on congestion (described in Section 4.6). When
 the sender starts to operate at minDataRate, the members are told of
 this condition via the following two pieces of information in the
 Beacon or Data Messages.

 o Prune Members flag
 o global slowness measure

 The global slowness measure is the aggregated value of the slowness
 measure of all the receivers (see section 4.6.4).

 Upon seeing the Prune Members signal, a repair head proceeds to prune
 a member only if this member's slowness measure corresponds to that
 indicated with the Prune signal, and this member's slowness measure
 corresponds to its own rather than one of its descendents.

4.4 Packet Loss Recovery

 The job of packet loss recovery is distributed among the repair
 heads. Each repair head receives Acknowledgment Messages from all
 its children. The repair heads use this information to retransmit
 lost packets to their children, and flush their caches.

 Members send Acknowledgment Messages to their repair heads on
 ackWindow boundaries. The first Acknowledgment Message is sent on a
 random packet within the window. This distributes the Acknowledgment
 Messages sent from all children of a repair head across the entire
 window. For example:

 If ackWindow is 32 packets, a receiver chooses a random initial
 packet between 1 and 32 to start sending Acknowledgment Messages to
 its repair head. If the first Acknowledgment Message is sent when
 packet 3 arrives, the next Acknowledgment Message is sent when packet
 35 arrives, when packet 67 arrives, etc.

 Each receiver computes ackInterval after sending an Acknowledgement
 Message:

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 17]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 ackInterval = 1.5 * ackWindow * maxPacketSize / rate

 The current data rate is derived from the Data Message header. The
 newly computed ackInterval value is used to set a timer. At the
 expiration of the timer, an Acknowledgment Message is sent if there
 are missing packets at this receiver.

 As noted in section 4.3.2, a complementary mechanism that ensures
 each receiver sends Acknowledgment Messages in the presence of packet
 losses is for the repair head to probe the receivers with its Hello
 Message by including the member who is behind in the Member Address
 List. This mechanism covers the case when the member lost many
 packets and does not realize it is behind.

4.5 Rate Based Transmission

 TRAM transmits data packets using a rate-based traffic shaper, which
 computes the amount of time to delay each packet in order to achieve
 the current data rate. Basically, the delay is computed as:

 packet size / current rate

 The overhead in processing the packet is subtracted from this delay.
 TRAM then sleeps for the calculated period, sends the packet, and the
 cycle continues.

 The implementation of this traffic shaper must also take into
 consideration a possibly inaccurate sleep function. For a detailed
 discussion of this subject, see [Experiences].

4.6 Flow and Congestion Control

 The term flow and congestion control are used interchangeably, as we
 have a single unified algorithm to regulate the speed of transmission
 to meet network congestion as well as receiver limitations.

 There are two flow control parameters both of which are adjusted
 dynamically: data rate and congestion window. The values of these
 parameters are constrained by the following configurable parameters:

 o minDataRate
 o maxDataRate
 o ackWindow

 The congestion window is not allowed to shrink below ackWindow, and
 grow above maxCongWindow times ackWindow. The value of maxCongWindow
 may be set to 4 or 5 in the implementation (and does not need to be
 configurable).

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 18]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 The data rate will not stray outside of the minDataRate and
 maxDataRate range. An implementation may choose to enforce a
 hardwired lower limit to data rate, for example 1 Kbytes/second, or 1
 packet/second.

 The congestion window is kept and adjusted at every receiver. Each
 receiver reports back its congestion window to the sender (via repair
 heads) in the form of a highest allowed sequence number to send,
 which is part of the Acknowledgement Message. This value is
 aggregated (via repair heads) at the sender as a single
 highestAllowedSeqno value.

 Before each new data packet is sent, the sender checks for the
 following condition:

 new sequence number > highestAllowedSeqno

 If this is true, the sender temporarily sends data at the
 minDataRate. When new acks cause this condition to become false, the
 sender reverts back to sending data at the current data rate.

 The current data rate is maintained at the sender, and adjusted once
 per ackWindow depending on whether there is (aggregated) congestion
 reported from the receivers. The data rate adjustment is more
 aggressive initially (during the slow start phase), and returns to a
 TCP-compatible (additive increase and multiplicative decrease)
 algorithm in the steady state phase.

 The details of these algorithms are described in the following
 subsections.

4.6.1 Data Rate Adjustments

 The sender's algorithm for adjusting the data rate is different
 during the slow start and the subsequent steady state phases.

4.6.1.1 Slow Start

 The sender initially starts sending data using the following
 parameters:

 rate = (maxDataRate + minDataRate) / 2
 rateIncr = (maxDataRate - minDataRate) / 10
 highestAllowedSeqno = ackWindow

 For each ackWindow of acknowledged packets, if there is no congestion
 report, recalculate the following:

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 19]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 rate = rate + rateIncr

 At the first report of congestion, the slow start phase is over. The
 sender recalculates the following:

 oldrate = rate
 rate = max(0.5*rate, minDataRate)
 rateIncr = (oldrate - rate) / 4

4.6.1.2 Steady State

 When the sender receives a Congestion Message for an ackWindow, it
 reduces the data rate by a fraction (rateDecr), or to the
 minDataRate, whichever is greater. Future Congestion Messages for
 this ackWindow or previous ackWindows SHOULD be ignored.

 rate = max(rateDecr*rate, minDataRate)

 A reasonable value for rateDecr is 0.75.

 In the absence of congestion reports, the sender increases its rate
 by rateIncr (as determined in the slow start phase). This allows the
 sender to quickly increase its rate back up to where it had operated
 prior to the congestion. The new rate is capped by the maxDataRate
 value.

 rate = min(rate + rateIncr, maxDataRate)

 Successive rate increases SHOULD be separated by at least ackWindow
 packet transmissions, without receiving congestion reports.

4.6.2 Congestion Detection and Feedback

 In TRAM, receivers detect and signal congestion when the number of
 outstanding missing packets increases from one ackWindow to the next.
 When this occurs, a Congestion Message for the most recent ackWindow
 is sent to the member's repair head. The repair head MUST immediately
 forward a new Congestion Message up the repair tree unless a
 congestion report for that ackWindow or a later ackWindow has already
 been forwarded. This reduces the number of Congestion Messages
 arriving at the sender.

 Repair heads can also generate congestion reports based on their
 cache occupancy. The cache has a Threshold, an implementation-
 specific parameter typically set to half of maxCache; the cache also
 has a High Water Mark which is initially set to equal to the
 Threshold. When the cache occupancy reaches High Water Mark, a
 Congestion Message for the current ackWindow is generated, and the

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 20]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 "High Water Mark" is incremented by ackWindow. When the cache
 occupancy falls below Threshold again, the value of High Water Mark
 is adjusted back down to Threshold. The Congestion Messages
 triggered by high cache occupancy are treated the same way as those
 generated by missing packets.

4.6.3 Congestion window Adjustment at the Receivers

 The receivers all adjust the congestion window once per ackWindow of
 packets without congestion. Initially,

 congestion window = ackWindow

 Receivers also have a slow start phase during which the congestion
 window is adjusted more aggressively (once per ackWindow of packets):

 congestion window = 2 * congestion window

 As soon as the first congestion condition is detected, they enter the
 steady state phase. In this phase, the congestion window adjustment
 is more gradual. When there is no congestion in an ackWindow:

 congestion window = congestion window + congWindowIncr

 where congWindowIncr is an implementation constant. The recommended
 value for this parameter is 1 or 2.

 Each time there is congestion in a particular ackWindow of packets,
 the receivers reduce the congestion window by an among equal to the
 number of lost packets, still maintaining the congestion window
 within the bounds of (ackWindow, maxCongWindow*ackWindow).

 The window adjustment is used to cut down the amount of future packet
 losses. Maintaining fairness with other flows is the job of rate
 adjustments. Therefore it is not necessary to reduce the congWindow
 size by a multiplicative factor as in TCP.

4.6.4 Flow Control Information in Acknowledgment Messages

 In addition to sending Congestion Reports when there is congestion,
 the receivers embed the following flow control related information in
 the Acknowledgment Messages:

 o highestAllowedSeqno
 o slownessMeasure

4.6.4.1 Highest Allowed Seqno

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 21]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 The value of highestAllowedSeqno is directly derived from the
 congestion window maintained at the receiver:

 highestAllowedSeqno = highestReceivedSeqno + congestion window

 Each repair head aggregates the value of highestAllowedSeqno as
 follows:

 highestAllowedSeqno = min (highestAllowedSeqno(i), i=ith member)

 and include the value in the Acknowledgment Message to its parent.

 4.6.4.2 Slowness Measure

 Each receiver also participates in the calculation to determine the
 slowest receiver in the whole multicast session. This is done by
 each receiver calculating its own slowness measure. In general,
 there are a number of ways to characterize slowness of a receiver.
 One such measure is the percentage of packets lost (PPL) which is
 chosen for TRAM.

 At each receiver, a local percentage of packets lost (PPL) count is
 computed once per ackWindow packets using an exponential moving
 average:

 PPL(k+1) = 0.75 * PPL(k) + 0.25 * PPL(of current ackWindow)

 where k is the kth ackWindow. This allows the algorithm to discover
 the slowest member that has been slow recently rather than based on a
 long term basis.

 At each repair head, the highest value of PPL of all its members
 (including the head itself) is computed, and forwarded up the repair
 tree. The aggregation is:

 PPL = max (PPL(i), i=ith member)

 Included in the Acknowledgment Message are the value of the
 aggregated slowness measure, as well as a flag indicating whether the
 value is the slowness of the reporting receiver or one of its
 descendants.

4.6.5 Retransmission Data Rate

 The sender retransmits packets to its repair group at the current
 data rate. Retransmissions are sent before new data.

 Repair heads send retransmissions at the current data rate which the

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 22]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 sender includes in the header of data packets.

 The repair heads also try to avoid sending duplicate retransmissions.
 This is done by keeping a log of recently sent retransmissions
 (remembering the sequence number and time of retransmission). When a
 new retransmission is about to be sent, it is checked against the
 recent retransmission log. If the same sequence numbered packet has
 been sent within

 suppression timer = 1.5 (packetsize * ackWindow) / rate

 the retransmission is suppressed.

4.7 Session Keep-alive

 In some sessions, application data may arrive in bursts, rather than
 all be available at once. In this case, the sender sends Beacon
 Messages as a form of session keep-alive.

 The sender uses an implementation-specific way to determine the
 beginning of an idle period. For example, one way is to wait for 3
 times the the inter-packet-departure time (as described in Section

4.5) before sending the first filler Beacon Message. The wait,
 however, should not exceed a beaconInterval.

 Once the sender determines an idle period has begun, it sends a
 Beacon Message with the F flag set. The sequence number included in
 this message is the sequence number of the latest Data Message sent.
 Additional filler Beacon Messages are sent every beaconInterval.

 When a member receives a filler Beacon Message, it SHOULD check to
 see if it has any missing packets up to the sequence number in the
 Beacon Message. If so, it should send an Acknowledgment Message
 requesting repair.

 A random delay SHOULD be observed before sending this Acknowledgment
 Message so as not to congest the repair heads.

 When a receiver does not receive any Data Messages or filler Beacon
 Messages for more than 5 beaconIntervals, it MAY consider that the
 sender has aborted.

4.8 Late Join

 A member joining after the sender has started transmitting data may
 select the following options for recovering data previously sent:

 o NO_RECOVERY - Don't recover anything sent before the receiver

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 23]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 joined the repair tree. The start of the data stream for this
 receiver is the first Data Message that the receiver received
 after joining the repair tree.
 o LIMITED_RECOVERY - Recover as much data as possible. This
 option allows the receiver to request retransmission of all the
 data packets that the repair head has cached.
 o FULL_RECOVERY - Recover all data sent so far. This is normally
 not supported. If a member must receiver all or nothing, this
 option should be selected.

 The option is selected using the transport parameter lateJoinPref.
 The default is NO_RECOVERY. All these options require that the
 receiver join the multicast repair tree before any data is forwarded
 to the application. This insures that all subsequent data can be
 received reliably.

4.9 End Of Transmission

 Receivers must be able to determine when the session has completed to
 ensure they have received all the data before exiting.

 When the sender application completes, end of transmission is
 signaled throughout the multicast group. The sender notifies all
 members of session completion with a Beacon Message that has the
 Transmission Done flag set. This packet also includes the sequence
 number of the last data packet sent. The sender transmits this packet
 once per beaconInterval until all of its children acknowledge the
 receipt of all packets sent.

 A member sends an Acknowledgment Message immediately after receiving
 a Beacon Message with the Transmission Done flag set. If there are no
 missing packets, the member sends an Acknowledgment Message with the
 Terminate Membership flag set; otherwise, retransmissions of missing
 packets are requested.

 If the member is a repair head, it MUST wait for all of its children
 to acknowledge and terminate their membership. During the time a head
 waits for its children to acknowledge, every Hello Message sent MUST
 contain the final sequence number and the Transmission Done flag set.
 Those children that failed to receive the Beacon Message react to the
 Hello Message in the same manner as the Beacon Message. The Hello
 Messages are sent once every helloInterval after Transmission Done
 has been signaled by the sender or head. Continuation of Transmission
 Done signaling via the Hello Message eliminates the need for the
 sender to send Beacon Messages until every receiver of the session
 completes.

 The members that require retransmissions of data MUST send

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 24]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 retransmission requests in response to every Beacon Message or Hello
 Message with a Transmission Done flag set.

 If a repair head does not receive an Acknowledgment Message from a
 child within a helloInterval, it includes that child's address in its
 next Multicast Hello Message. Children that find their addresses
 listed in the Hello Message MUST respond with an Acknowledgment
 Message. A repair head SHOULD disown a child that has not responded
 for 3 helloIntervals.

 A repair head completes its head responsibilities when each child has
 either acknowledged all the packets or been disowned.

5. Security

 The fundamental security issues that are to be addressed in an end to
 end solution that uses a transport protocol such as TRAM, UDP/IP,
 TCP/IP are -

 1. Data Confidentiality - Prevent unauthorized parties from viewing
 the data.
 2. Data Integrity - Ensure messages are not altered during transit.
 3. Authentication - Ensure data originated from the expected
sender.
 4. Access Control - Ensure only authorized parties have access to
the
 data.
 5. Denial of Service(DoS)- Prevent disruption of a session by people with
 malicious intent.
 6. Non-Repudiation - Ability to prove that a transaction, or an
 operation etc., took place when the party
 initiating the transaction/operation denies
 ever having initiated the operation.

 Addressing all of the above issues at the transport layer can overly
 complicate the transport protocol. For instance, support for Denial
 of Service in multicast cannot be completely addressed by the
 transport layer alone even if complexity was not an issue. Support
 for Non-repudiation requires collecting details of every transaction
 and archiving the same for retrieval at a later time. Even though the
 transport can assist in gathering data, the issues of data management
 (archiving, retrieval and presentation) is outside the scope of a
 transport protocol.

 In an attempt to reduce the burden on the transport protocol, TRAM
 addresses the above security issues as a multilayer solution. That
 is, TRAM handles those issues that are best addressed at the
 transport layer and leaves other issues to be addressed by the layers

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

 above it. The issues that are supported by the transport in TRAM are

TRAM [Page 25]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 data integrity, sender authentication and some aspects of DoS.

 A reliable transport layer has to keep track of data that is received
 so as to detect data loss and seek retransmissions. A robust tracking
 mechanism is required to prevent the transport from malfunctioning.
 Mechanisms to detect and discard masquerading/spoofing packets has to
 be supported at the transport layer to make the tracking system
 robust. Data Integrity and sender authentication aid in providing the
 required robustness to the tracking system. Data integrity and sender
 authentication checks are together performed by one module. This
 module is referred as the signature module in the rest of the
 document.

 Preventing DoS attacks is extremely difficult in the current IP
 multicast infrastructure. While DoS cannot be prevented, TRAM
 supports some mechanisms to detect and discard DoS packets.

 Support for data confidentiality may require mechanisms to handle
 encryption key changes during an ongoing session. The area of
 encryption key distribution and management of the same in multicast
 is very challenging and is an area of active research. The area of
 key management and support for data privacy is offloaded to be
 performed by a module above the transport. This approach enables the
 layer performing the encryption key management to use the services of
 the underlying reliable transport layer for distributing key updates
 efficiently. In TRAM's model, the encryption key update messages and
 the session data messages can be interleaved and sent on the same
 multicast address (and thereby share the sequence number space).
 Sharing the same sequence number space synchronizes the key
 distribution with key usage, especially when the message delivered is
 ordered. In other words, when a data message encrypted with a new key
 arrives, the new key should have also been delivered.

 TRAM considers access control operation to be outside its scope.
 Multicast applications using TRAM will have to address this issue in
 their space.

 TRAM does not specify the details of the algorithms used in the
 signature module. From TRAM's perspective, the signature module is a
 separate module (adopting a bump-on-the-side stack approach) whose
 services are utilized as the packets are sent to the network and
 received from the network via a well-defined interface (API). The
 details of distributing the authentication keys and other details
 required to initialize the signature module are considered to be done
 via out-of-band means. Further, TRAM recommends the use of asymmetric
 keys to perform sender authentication. This is to prevent payload
 substitutions and masquerading packet problems that occur as a result
 of using symmetric keys in a multicast environment.

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 26]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 TRAM identifies two modes of sender authentication. In the first
 mode, all the multicast messages sent by the sender/source of the
 multicast session to the entire multicast group (session scope) carry
 sender authentication information. In the second mode, every TRAM
 message exchanged by every node in the system carries sender
 authentication information (example - exchange of control messages
 between a head and a member). The first mode is simpler and quicker
 but is open to DoS attacks. DoS attacks such as feeding false
 congestion control messages, seeking unnecessary retransmissions,
 using up member slots in a repair node, etc., can be easily launched
 in this mode. The second mode is more secure since every message is
 authenticated but it suffers from added complexity (every participant
 has to know many other participants' authentication keys to
 successfully build a tree and exchange messages) and slowness as a
 result of additional processing. TRAM currently supports the first
 mode. The mechanics of supporting the second mode is currently being
 researched and the details of the adopted mechanism will be detailed
 in a future revision of this draft.

 Support for the first mode of sender authentication requires the
 Beacon and Data message to carry the authentication information. The
 authentication information is attached at the end. The message
 SubType field in the multicast data message is considered to be a
 mutable field. The SubType field is modified in transit by a repair
 node performing repairs. The mutable fields are required to be
 zero'd before computing and verifying the authentication information.

 Sender authentication operation/steps:

 The following describes the authentication process at a TRAM sender:
 o TRAM builds a TRAM data packet using the data provided by the
 application (that is, adds a TRAM header).
 o Clears the mutable fields in the header of the built packet.
 o Uses the signature module services to compute the authentication
 information for the packet.
 o replaces the mutable fields with actual values.
 o adds the authentication information to the end of the data packet
 o schedules the packet for transmission.

 The following describes the authentication process at a TRAM
 receiver:
 o TRAM strips the authentication information part of the incoming
 message.
 o The mutable fields are set to 0 after making copies of the
 original values.
 o The received data part (without the authentication information), the
 authentication information and id of the sender that generated the
 message are passed to the signature module.

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 27]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 o The signature module uses the id to access the appropriate key to
 verify the authentication information.
 o The signature module provides "discard" or "forward" signals
 to the transport layer depending on the results of the authentication
 verification tests.

TRAM [Page 28]

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

6. Packet Formats

 For all the packet formats defined in the following subsections, the
 Version Number field is set to 2.

6.1 Beacon Message (multicast)

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version Number| Message Type | Sub Type |V| 0 |F|D|P|
 +-+
 | Session Id |
 +-+
 | Length | Head Advertisement Interval |
 +-+
 | Sequence Number |
 +-+
 | Source IP Address (Variable) |
 ~ ~
 +-+
 | |
 + Authentication Information (optional) +
 ~ ~
 +-+

 Message Type: 1

 Message SubType: 1

 Flags:

 P: Set when slow members are to be pruned.
 D: Set when transmission is done.
 F: Set when used as a filler message.
 V: Set when the Source IP address is a IPV6 address.

 Session Id: The identifier for the current session.

 Length: The packet's length.

 Head Advertisement Interval: The number of seconds between
 transmission of Head Advertisement Messages.
 A value of zero disables unsolicited head
 advertisements.

 Sequence Number: The packet sequence number of the last packet
 sent. If the Transmission Done flag is set, this
 field indicates the last sequence number; if data

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 29]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 transmission has not started, this field is zero.

 Source IP Address: IP address of the multicast source (4 bytes for
 IPV4 and 16 bytes for IPV6).

 Authentication
 Information : Authentication Information of the message.

TRAM [Page 30]

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

6.2 Head Advertisement Message (multicast)

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version Number| Message Type | Sub Type |V| 0 |L|
 +-+
 | Session Id |
 +-+
 | Length | TTL | HState| MRole |
 +-+
 | RxLevel | LAN State | Unicast Port |
 +-+
 | Direct Member Count | Capacity |
 +-+
 | Source Address (Variable) |
 ~ ~
 +-+

 Message Type: 1

 Message SubType: 3

 Flags:

 L: When set elect Lan Head.
 V: Set when the Source IP address is a IPV6 address.

 Session Id: The identifier for the current session.

 Length: The packet's length.

 TTL: TTL value this packet was sent with. A receiver subtracts
 the TTL value in the IP header from this TTL to determine
 the distance to its repair head.

 HState:

 Accepting Members: 1
 Accepting Potential Heads: 2
 Not Accepting Members: 3

 Member Role:

 Receiver Only: 1
 Eager Head: 2
 Reluctant Head: 3

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 31]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 RxLevel: The level of this member in the repair tree
 hierarchy.

 LAN State:

 Disabled: 1
 Volunteering: 2
 LAN Head: 3
 LAN Member: 4

 Unicast Port: Unicast port number to communicate with this
 member.

 Direct Member Count: Total number of children for this repair
 head.

 Capacity: The maximum number of children this head
 is configured to serve.

 Source Address: IP address of the multicast source (4 bytes
 for IPV4 and 16 bytes for IPV6).

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 32]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

6.3 Member Solicit Message (multicast)

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version Number| Message Type | Sub Type |V| 0 |
 +-+
 | Session Id |
 +-+
 | Length | TTL | MRole | Rsvd |
 +-+
 | RxLevel | Reserved | Unicast Port |
 +-+
 | Source Address (Variable) |
 ~ ~
 +-+

 Message Type: 1

 Message SubType: 4

 Flags:
 V: Set when the Source IP address is a IPV6 address.

 Session Id: The identifier for the current session.

 Length: The packet's length.

 TTL: The original Time to Live used to send this
 message.

 Member Role:

 Receiver Only: 1
 Eager Head: 2
 Reluctant Head: 3

 RxLevel: The level of this member in the repair tree
 hierarchy.

 Unicast Port: Port number that this member is using for
 unicast communications.

 Source Address: IP address of the multicast source (4 bytes
 for IPV4 and 16 bytes for IPV6).

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 33]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

6.4 Head Bind Message (unicast)

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version Number| Message Type | Sub Type |V| 0 |
 +-+
 | Session Id |
 +-+
 | Length | TTL | MRole | Rsvd |
 +-+
 | Direct Members | Indirect Members |
 +-+
 | Source Address (Variable) |
 ~ ~
 +-+

 Message Type: 3

 Message SubType: 6

 Flags:
 V: Set when the Source IP address is a IPV6 address.

 Session Id: The identifier for the current session.

 Length: The packet's length.

 TTL: Member computed TTL distance from the head.

 Member Role:

 Receiver Only: 1
 Eager Head: 2
 Reluctant Head: 3

 Direct Members: Number of children directly reporting to this
 member.

 Indirect Members: Number of members indirectly reporting to
 this member. This includes all members below
 this point in the tree.

 Source Address: IP Address of the multicast source (4 bytes
 for IPV4 and 16 bytes for IPV6).

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 34]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

6.5 Accept Member Message (unicast)

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version Number| Message Type | Sub Type |V| 0 |
 +-+
 | Session Id |
 +-+
 | Length | BitMask Length| RxLevel |
 +-+
 | Starting Sequence Number |
 +-+
 | Source Address (Variable) |
 ~ ~
 +-+
 | BitMask |
 ~ ... ~
 +-+

 Message Type: 3

 Message SubType: 1

 Flags:
 V: Set when the Source IP address is a IPV6 address.

 Session Id: The identifier for the current session.

 Length: The packet's length.

 BitMask Length: Number of valid bits in the BitMask field.

 RxLevel: The level of this member in the repair
 tree hierarchy.

 Starting Sequence The base sequence number from which this repair
 Number: head provides retransmission if requested.

 Multicast Address: The multicast address this repair head is
 supporting.

 Source Address: IP address of the multicast source (4 bytes
 for IPV4 and 16 bytes for IPV6).

 BitMask: A bit mask indicating selected data packets
 earlier than the Starting Sequence Number
 available for repair. The first bit corresponds

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 35]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 to (Starting Sequence Number - BitMask Length).

TRAM [Page 36]

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

6.6 Reject Member Message (unicast)

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version Number| Message Type | Sub Type |V| 0 |
 +-+
 | Session Id |
 +-+
 | Length | Reason Code | Reserved |
 +-+
 | Source Address (Variable) |
 ~ ~
 +-+

 Message Type: 3

 Message SubType: 2

 Flags:
 V: Set when the Source IP address is a IPV6 address.

 Session Id: The identifier for the current session.

 Length: The packet's length.

 Reason Code:

 Accepting Potential Heads: 1
 Membership Full: 2
 TTL Out Of Limit: 3
 Resigning: 4

 Source Address: IP address of the multicast source (4 bytes
 for IPV4 and 16 bytes for IPV6).

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 37]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

6.7 Multicast Hello Message (multicast)

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version Number| Message Type | Sub Type |V| 0 |D|A|
 +-+
 | Session Id |
 +-+
 | Length | TTL | HState| Rsvd |
 +-+
 | Reserved | Ack Member Cnt| RxLevel |
 +-+
 | Unicast Port Number | Member Count | Reserved |
 +-+
 | Lowest Sequence Number in Cache |
 +-+
 | Highest Sequence Number seen/reported |
 +-+
 | Source Address (Variable) |
 ~ ~
 +-+
 | Member Address List |
 ~ ... ~
 +-+

 Message Type: 1

 Message SubType: 2

 Flags:
 A: Immediate Acknowledgment requested from members listed
 in Member Address List field
 D: Set to indicate Transmission Done, in which case the
 Sequence Number field contains the sequence number for
 the last packet of the session.
 V: Set when the Source IP address is a IPV6 address.

 Session Id: The identifier for the current session.

 Length: The packet's length.

 TTL: The repair TTL used by this head.

 HState: (Head State)

 Accepting Members: 1

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 38]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 Accepting Potential Heads: 2
 Not Accepting Members: 3
 Resigning: 4

 Ack Member Count: Number of members listed in the Member
 Address Field. This field is valid if the
 Acknowledgment flag is set.

 RxLevel: The level of this member in the repair tree
 hierarchy.

 Unicast Port: Unicast port number used in communicating
 with this member.

 Member Count: Total number of members under this member in
 the tree.

 Lowest Sequence Lowest sequence number data packet in the cache.
 Number: When the data transmission has not started,
 this field will be set to zero.

 Highest Sequence Highest sequence number data packet received(in
cache)
 Number: or detected. When the D flag is set, the sequence
 number is the last packet sent by the sender.
 When the data transmission has not started,
 this field will be set to zero.

 Source Address: IP address of the multicast source (4 bytes
 for IPV4 and 16 bytes for IPV6).

 Member Address List: List of IP Addresses of members that must
 respond to the head. This field is set if
 the Acknowledgment flag is set.

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 39]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

6.8 Unicast Hello Message (unicast)

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version Number| Message Type | Sub Type |V| 0 |D|
 +-+
 | Session Id |
 +-+
 | Length | RxLevel | Reserved |
 +-+
 | Source Address (Variable) |
 ~ ~
 +-+

 Message Type: 3

 Message SubType: 3

 Flags:

 D: set when the Member is Disowned
 V: Set when the Source IP address is a IPV6 address.

 Session Id: The identifier for the current session.

 Length: The packet's length.

 RxLevel: The level of this member in the repair tree
 hierarchy.

 Source Address: IP address of the multicast source (4 bytes
 for IPV4 and 16 bytes for IPV6).

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 40]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

6.9 Data Message (multicast)

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version Number| Message Type | Sub Type |V| 0 |R|D|P|
 +-+
 | Session Id |
 +-+
 | Length | Head Advertisement Interval |
 +-+
 | Sequence Number |
 +-+
 | Data Length | Current ACK Window |
 +-+
 | RESERVED |
 +-+
 | Flow Control Information |
 +-+
 | Data Rate |
 +-+
 | Source Address (Variable) |
 ~ ~
 +-+
 | Data |
 ~ ~
 +-+
 | |
 + Authentication Information (optional) +
 ~ ~
 +-+

 Message Type: 2

 Message SubType:
 Original 1
 Retransmission 2

 Flags:
 P: Set when slow members are to be pruned.
 D: Set when the complete data transmission is done.
 R: Set when members should reset their flow control information.
 V: Set when the Source IP address is a IPV6 address.

 Session Id: The identifier for the current session.

 Length: The packet's length, comprising of packet
 header, Data and Signature(if any).

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 41]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 Head Advertisement Interval: The number of seconds between
 transmissions of Head Advertisement Messages.
 A value of zero disables unsolicited Head
 Advertisements.

 Sequence Number: Packet sequence number, starting from 1.

 Data Length: Length of the Application data.

 Current ACK Window: Sender requests each receiver to send an ACK
 once every Current ACK Window

 Flow Control Information: Flow control information for the slowest
 member of the group. The flow control information
 is used to help determine which slow member to prune.
 This information is only meaningful when the P
 flag is also set.

 Data Rate: The data transmission rate at the time this packet
 was sent.

 Source Address: IP address of the multicast source (4 bytes
 for IPV4 and 16 bytes for IPV6).

 Data: Application data.

 Authentication
 Information : Authentication Information of the message.

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 42]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

6.10 Acknowledgment Message (unicast)

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version Number| Message Type | Sub Type |V| 0 |S|T|H|
 +-+
 | Session Id |
 +-+
 | Length | BitMask Length |
 +-+
 | Actual TTL | Reserved | Reserved |
 +-+
 | Starting Sequence Number |
 +-+
 | Direct Member Count | Indirect Member Count |
 +-+
 | Direct Heads Advertising | Indirect Heads Advertising |
 +-+
 | Highest Sequence Number Allowed |
 +-+
 | Flow Control Information |
 +-+
 | Source Address (Variable) |
 ~ ~
 +-+
 | BitMask ... |
 ~ ~
 +-+

 Message Type: 3

 Message SubType: 4

 Flags:
 H: Hello Message not received
 T: Terminate Membership
 S: Flow Control Information pertains to a sub-tree member
 rather than the system which sent the ACK.
 V: Set when the Source IP address is a IPV6 address.

 Session Id: The identifier for the current
 session.

 Length: The packet's length.

 BitMask Length: Length in bits of valid bits in the

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 43]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 BitMask field.

 Actual TTL: The TTL distance from this member to
 its head, computed as the difference
 between the original TTL and the
 residue TTL of the head's Multicast
 Hello Message.

 Starting Sequence Number: Base sequence number for the BitMask.
 If the data transmission has not
 started, this field will be set to zero.

 Direct Member Count: Number of children

 Indirect Member Count: Number of indirect members.

 Direct Heads Advertising: Number of children that are currently
 advertising that they are a head.

 Indirect Heads Advertising: Number of indirect members currently
 advertising that they are a head.

 Highest Sequence Allowed: Highest sequence number for the sender
 is allowed to send at the current data rate.

 Flow Control Information: Number reresenting how bad data reception
 is for this member.

 Source Address: IP address of the multicast source (4 bytes
 for IPV4 and 16 bytes for IPV6).

 BitMask: Bitmask representing missing and
 received packets.

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 44]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

6.11 Congestion Message (unicast)

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version Number| Message Type | Sub Type |V| 0 |
 +-+
 | Session Id |
 +-+
 | Length | Reserved |
 +-+
 | Sequence Number |
 +-+
 | Source Address (Variable) |
 ~ ~
 +-+

 Message Type: 3

 Message SubType: 5

 Flags:
 V: Set when the Source IP address is a IPV6 address.

 Session Id: The identifier for the current session.

 Length: The packet's length.

 Sequence Number: Last received sequence number. This
 identifies the ackWindow that
 congestion is being reported for.

 Source Address: IP address of the multicast source (4 bytes
 for IPV4 and 16 bytes for IPV6).

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 45]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

7. Discussion Regarding RFC2357

RFC2357 suggests a number of technical criteria for evaluating a
 reliable multicast transport protocol. In this section, we discuss
 some of these issues relating to TRAM.

7.1 Performance Analysis and Discussion

 The design of TRAM was supported by simulation studies. A description
 of these simulation studies can be found in [TRAM1].

 We developed a simple simulation and visualization model for tree
 building in Java which can directly interface to the tree building
 part of the implementation.

 We also developed a separate model for studying flow and congestion
 control algorithms using the Network Simulator (NS) - a public domain
 tool. Initial simulation results show that TRAM shares network
 resources with TCP in a fair way [TRAM2]. We intend to participate
 in developing a suite of reference simulation scenarios for reliable
 multicast and demonstrate how well TRAM behaves in those contexts.

 We believe, however, simulations only characterize protocol behaviors
 for specific network topologies and dynamics. While it is very
 difficult to conclusively describe a protocol's scalability,
 stability and fairness properties, below are some additional
 observations:

 a) scalability

 TRAM can scale to potentially very large numbers of receivers if all
 the receivers have adequate bandwidth (greater than the minimum data
 rate) between themselves and the sender at all times during the
 session. Our simulation studies showed that in a 200 node network
 with some network dynamics, TRAM behaved robustly. Simulation for
 larger networks and other reference scenarios [SCENARIOS] are
 underway.

 b) Fairness with TCP

 The following parameters of TRAM can be externally configured:
 o minDataRate (1000 bytes/sec)
 o maxDataRate (64K bytes/sec)
 o ackWindow (32)
 The values in parentheses are default settings. Given a particular
 setting for these parameters, TRAM tries to be as fair with TCP as
 possible. As discussed earlier, TRAM uses algorithms similar to TCP,
 and simulation results are reported in [TRAM2].

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt
https://datatracker.ietf.org/doc/html/rfc2357
https://datatracker.ietf.org/doc/html/rfc2357

TRAM [Page 46]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 In an intranet or a network with differentiated services, these
 external parameters allow the service operator to do resource
 allocation out-of-band, for example, by setting minDataRate and
 maxDataRate to the same predetermined value.

 When the minDataRate and maxDataRate are set to be equal, a constant
 data rate is used. It is most desirable to set this constant rate to
 be the lowest rate that satisfies the application's need. Setting the
 rate higher than necessary only increases the chance of some
 receivers being forced to be pruned from the reliability service.

 The ackWindow allows the user to select a particular level of
 efficiency, as the ratio of control traffic to data traffic is
 roughly proportional to the ackWindow size. While a large ackWindow
 allows the transport to be more efficient, it also makes it less
 responsive to congestion.

 The ackWindow parameter also bounds the congestion window to be
 within the range [ackWindow, maxCongWindow*ackWindow]. The value of
 maxCongWindow is an implementation-specific constant (suitably set to
 4 or 5).

 When used in the public Internet, we encourage users to use parameter
 settings that let the internal algorithms adjust the rate and window
 to operate at a TCP-friendly level.

 c) limiting factors

 The following factors have been observed to affect TRAM's scalability
 o Different and varying bandwidth
 TRAM adapts the transmission rate to satisfy the slowest link
 (or minDataRate). When the capacity of receivers and other
 network resources vary wildly and/or have wide fluctuations
 over time, TRAM could be obliged to operate at minDataRate and
 potentially prune many members.
 o Sub-optimal repair tree
 When the repair tree is sub-optimal, the efficiency of the
 repair mechanism and the feedback mechanism diminishes. The
 whole system could have very low efficiency when losses occur.
 o Long feedback delay
 The congestion control algorithm depends on feedback from all
 receivers. When the number of receivers grows and spreads
 sparsely in the network, the feedback latency increases quickly.
 This slows down the sender's ability to quickly react to
 congestion, or increases the likelihood of rate oscillations.

7.2 Security Discussion

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 47]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 The authors are actively working on this problem, as well as
 participating in the IRTF Secure Multicast Working Group (SMuG). An
 updated version of this Draft will include the security
 specifications.

8 Limitations and Future Work

 The design of TRAM was based on a number of choices that make it more
 suitable for certain applications and not others. Some limitations
 include:

 o Single Sender - Many data distribution applications (e.g.
 Pay-per-view and stock information distribution) require only
 a single sender, whereas many collaborative applications (e.g.
 shared whiteboard) would require multiple senders. Going from
 single-sender to multiple-sender increases the complexity of the
 design and the overhead of the protocol. While currently
 limited to single sender, TRAM is part of a framework [JRMS]
 that supports multiple-protocol selection and a common API.
 o Reliance on TTL - To minimize the need for manual configuration,
 TRAM comes with automatic repair-tree formation and maintenance.
 Many of the automated algorithms are based on using TTL as a
 measure of distance. In networks where TTL is not a good
 measure of distance, some of TRAM's algorithm may operate in
 non-optimal conditions. In such scenarios, it would be
 necessary to fall back to using manual configurations to define
 the repair tree.
 o Security - Secure multicast is still very much a research
 problem. While parts of the security mechanisms are intertwined
 with transport (e.g. authentication), other aspects can be
 decoupled and shared by different transports (e.g. key
 management). As noted before, TRAM will be integrated with open
 security mechanisms as standards emerge.

 Finally, multicast congestion control is also expected to be updated
 as more research is done on this hard problem.

9 References

 [EXPERIENCES] Chiu D. M, M. Kadansky, J. Provino, J. Wesley,
 "Experiences in Programming a Traffic Shaper", Sun Microsystems
 Laboratories Technical Report TR-99-77,

http://www.sun.com/research/techrep/1999/abstract-77.html.

 [JRMS] Kadansky M., S. Hanna, and P. Rosenzweig, "The Java Reliable
 Multicast Service: A Reliable Multicast Library", Sun Microsystems
 Laboratories Technical Report SMLI TR-98-68, September 1998.

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt
http://www.sun.com/research/techrep/1999/abstract-77.html

TRAM [Page 48]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 [RMTP] Whetten B., M. Basavaiah, S. Paul, T.Montgomery, N.Rastogi,
 J.Conlan and T. Yeh, "The RMTP-II Protocol", draft-whetten-rmtp-ii-

00.txt, Internet Draft, IETF, April 1998,
http://www.talarian.com/rmtp-ii

 [SACK] Mathis M., J. Mahdavi, S. Floyd, and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [SAP] Handley M., "SAP - Session Announcement Protocol", work in
 progress.

 [SCENARIOS] Handley M., "Reference Simulations for Reliable Multicast
 Congestion Control Schemes", talk at Reliable Multicast IRTF meeting
 in London, July 1998.

 [SURVEY] Levine B. and J. Garcia-Lune-Aceves, "A Comparison of Known
 Classes of Reliable Multicast Protocols", University of California,
 Santa Cruz, 1996.

 [TMTP] Yavatkar R., J.Griffioen and M. Sudan, "A Reliable
 Dissemination Protocol for Interactive Collaborative Applications",
 University of Kentucky, 1995.

 [TRAM1] Chiu D. M., S. Hurst, M. Kadansky and J. Wesley, "TRAM: A
 Tree-based Reliable Multicast Protocol", Sun Microsystems
 Laboratories Technical Report SMLI TR-98-66, September 1998.

 [TRAM2] Chiu D. M, M. Kadansky, J. Provino, J. Wesley, "A Flow
 Control Algorithm for ACK-based Reliable Multicast", paper under
 preparation.

Acknowledgments

 The authors gratefully acknowledge the many contributions of Germano
 Caronni, Steve Hanna, Phil Rosenzweig, and Radia Perlman.

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt
https://datatracker.ietf.org/doc/html/draft-whetten-rmtp-ii-00.txt
https://datatracker.ietf.org/doc/html/draft-whetten-rmtp-ii-00.txt
http://www.talarian.com/rmtp-ii
https://datatracker.ietf.org/doc/html/rfc2018

TRAM [Page 49]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

Appendix: A Table of Transport Parameters

 +----------------+---------------------------------+----------------+
 |Parameter Name | Description |Value Range & |
 | | | Default setting|
 |----------------+---------------------------------+----------------+
 |ackWindow |the number of packets received | [1, 2^16] |
 | |before sending an ACK. | |
 +----------------+---------------------------------+----------------+
advertiseTTLInc	An increment to the TTL value	[1, 255]
	when using expanding ring to send	Default: 2
	Head Advertisement Messages.	
+----------------+---------------------------------+----------------+		
advertiseLimit	The maximum value to be used in	[1, sessionTTL]
	the TTL field for sending Head	Default:
	Advertisement Messages.	sessionTTL
+----------------+---------------------------------+----------------+		
allowLANTrees	A switch to enable or disable LAN	TRUE, FALSE
	tree formation.	Default: FALSE
+----------------+---------------------------------+----------------+		
beaconInterval	The interval between successive	[1, 2^32] msec
	Beacon Messages.	Default: 1000
+----------------+---------------------------------+----------------+		
helloTTLInc	An increment to the TTL value for	[1, 255]
	sending Multicast Hello Messages,	Default: 2
	when re-adjusting the repair TTL.	
+----------------+---------------------------------+----------------+		
lateJoinPref	The preference for data recovery	LIMITED_RECOVERY
	when a receiver joins after data	NO_RECOVERY
	transmission has started.	FULL_RECOVERY
		Default:
		NO_RECOVERY
+----------------+---------------------------------+----------------+		
maxAdvertiseBW1	The maximum bandwidth to be used	[1, maxDataRate]
	for tree forming before data	bytes/sec
	transmission begins.	Default:
		maxDataRate
+----------------+---------------------------------+----------------+		
maxAdvertiseBW2	The maximum bandwidth to be used	[1,maxDataRate]
	for tree forming after data	bytes/sec
	transmission begins.	Default:
		maxDataRate/20
+----------------+---------------------------------+----------------+		
maxCache	The maximum cache size. A value	[0, 2^32]packets
	of 0 means no explicit limit.	Default: 1200
+----------------+---------------------------------+----------------+		
maxChildren	The maximum number of children	[1, 2^32]
	supported by this head.	Default: 32

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 50]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

 +----------------+---------------------------------+----------------+
maxDataRate	The maximum data rate that the	[1, 2^32]
	sender can transmit, and heads	bytes/sec
	can retransmit repairs.	Default: 64000
+----------------+---------------------------------+----------------+		
maxHelloMisses	The threshold of Hello Messages	[1, 2^32]
	missed by a child before it	Default: 5
	considers a parent unreachable	
	(or inoperable).	
+----------------+---------------------------------+----------------+		
memberRole	A member's role in tree forming:	RECEIVER_ONLY
	an EAGER_HEAD SHOULD actively	RELUCTANT_HEAD
	seek members; a RELUCTANT_HEAD	EAGER_HEAD
	SHOULD act as a head when no	
	other suitable head is available;	Default:
	a RECEIVER_ONLY member MUST never	RELUCTANT_HEAD
	act as a head.	
+----------------+---------------------------------+----------------+		
minDataRate	The minimum data rate for sender	[1, 2^32]
	to transmit data.	bytes/sec
		Default: 1000
+----------------+---------------------------------+----------------+		
multicastAddr	The multicast address used for	224.*.*.*
	the session.	
+----------------+---------------------------------+----------------+		
ordered	A switch to select ordered	TRUE, FALSE
	delivery or not.	Default: TRUE
+----------------+---------------------------------+----------------+		
port	The multicast port number.	Default: 4567
	The default (4567) is reserved	
	with IANA for TRAM use	
+----------------+---------------------------------+----------------+		
sessionId	An Id used to uniquely identify a	[0, 2^32]
	multicast session.	Default: 0
+----------------+---------------------------------+----------------+		
sessionTTL	The TTL used by sender to send	[1, 255]
	Data and Beacon Packets.	Default: 1
+----------------+---------------------------------+----------------+		
solicitInterval	The interval between Member	[1, 2^32]msec
	Solicit Messages.	Default: 500
+----------------+---------------------------------+----------------+		
solicitTTLInc	An increment to the TTL value in	[1, 255]
	Member Solicit Messages.	Default: 2
+----------------+---------------------------------+----------------+		
sourceAddr	The sender's IP address.	
+----------------+---------------------------------+----------------+		
transportMode	The role of the local transport	SEND_ONLY
	agent.	RECEIVE_ONLY

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 51]

INTERNET DRAFT draft-kadansky-rmt-tram-02.txt May 1999

		SEND_RECEIVE
		REPAIR_NODE
		Default:
		RECEIVE_ONLY
+----------------+---------------------------------+----------------+		
treeScheme	Selection of the method used to	HEAD_ADVERTISE
	form tree; HEAD_ADVERTISE is	MEMBER_SOLICIT
	suitable for asymmetric networks;	COMBINED
	MEMBER_SOLICIT lets member	
	trigger head advertisements; the	Default:
	COMBINED method starts with	MEMBER_SOLICIT
	HEAD_ADVERTISE and switches to	
	MEMBER_SOLICIT after data	
	transmission begins.	
+----------------+---------------------------------+----------------+		
useAthentication	enable source authentication	Default: false
 +----------------+---------------------------------+----------------+

Author's Address

 Miriam Kadansky
 miriam.kadansky@sun.com

 Dah Ming Chiu
 dahming.chiu@sun.com

 Joe Wesley
 joseph.wesley@sun.com

 Joe Provino
 joe.provino@sun.com

 Sun Microsystems Laboratories
 1 Network Drive
 Burlington, MA 01803

https://datatracker.ietf.org/doc/html/draft-kadansky-rmt-tram-02.txt

TRAM [Page 52]

