
Workgroup: cfrg

Internet-Draft:

draft-kaimindermann-securecryptoconfig-01

Published: 19 April 2021

Intended Status: Informational

Expires: 21 October 2021

Authors: K. Mindermann

iC Consult GmbH

L. Teis

Secure Crypto Config

Abstract

Choosing secure cryptography algorithms and their corresponding

parameters is difficult. Also, current cryptography APIs cannot

change their default configuration which renders them inherently

insecure. The Secure Crypto Config provides a method that allows

cryptography libraries to change the default cryptography algorithms

over time and at the same time stay compatible with previous

cryptography operations. This is achieved by combining three things

standardized by the Secure Crypto Config: (1) A process that is

repeated every two years, where a new set of default configurations

for standardized cryptography primitives is published in a specific

format. (2) A Secure Crypto Config Interface that describes a common

API to use cryptography primitives in software (3) using COSE to

derive the parameters from output of cryptography primitives,

otherwise future changes of the default configuration would change

existing applications behavior.

Note to Readers

Comments are solicited and should be addressed to the GitHub

repository issue tracker and/or the author(s)

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 21 October 2021.

¶

¶

¶

¶

¶

¶

https://github.com/secureCryptoConfig/secureCryptoConfig
https://github.com/secureCryptoConfig/secureCryptoConfig
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Motivation

1.2. Terminology

1.2.1. Conventions and Definitions

1.2.2. Terms

1.3. Use Cases

1.3.1. Secure Crypto Config Use Cases

1.3.2. Cryptography Use Cases

2. Requirements and Assumptions

2.1. Requirements

2.2. Assumptions

3. Security Levels

3.1. Security Level 1 - Low

3.2. Security Level 2

3.3. Security Level 3

3.4. Security Level 4

3.5. Security Level 5 - High

3.6. Security Level Constraints

3.6.1. Information classification

3.6.2. Longevity

3.6.3. Constrained Devices

3.6.4. n-Bit-Security

3.6.5. Attacker Resources and Capabilities

4. Consensus Finding Process and entities

4.1. Consensus Finding

4.1.1. Regular Process

4.1.2. Emergency Process

4.1.3. Requirements for Selection of Cryptography Algorithm and

Parameters

4.2. Entities

5. Publication Format and Distribution

5.1. Versioning

¶

¶

https://trustee.ietf.org/license-info

5.2. Naming

5.3. Secure Crypto Config IANA Registry

5.3.1. Example for Secure Crypto Config IANA Registry

5.3.2. Utilized Algorithm Registries

5.4. Data Structures

5.5. Human readable format

5.6. Official Secure Crypto Config Repository

5.6.1. Location of Secure Crypto Config Repository

5.6.2. Format of Secure Crypto Config Repository

5.6.3. Integrity/Signing process

6. Secure Crypto Config Application Programming Interface (API)

6.1. Semantic Versioning

6.2. Deployment of (custom) Secure Crypto Config with Interface

6.2.1. Delivery of Secure Crypto Config with Interface

6.2.2. Using a custom Secure Crypto Config Repository

6.2.3. Integrity Check

6.2.4. Methods and Parameters

6.2.5. Automatic Parameter Tuning

6.2.6. Output of readable Secure Crypto Config

6.3. TODOs

7. Cryptography Library Implementation Specification

8. Cryptography Algorithm Standards Recommendation

9. Security Considerations

9.1. Consensus Finding

9.2. Publication Format

9.3. Cryptography library implementation

9.4. General Security Considerations

9.4.1. Special Use Cases and (Non-)Security Experts

9.5. Security of Cryptography primitives and implementations

9.5.1. Security Guarantees

9.5.2. Threat Model / Adversaries

10. IANA Considerations

11. References

11.1. Normative References

11.2. Informative References

Appendix A. Examples

A.1. JSON Secure Crypto Config

Appendix B. Example Java Interface using Secure Crypto Config

Acknowledgments

Authors' Addresses

1. Introduction

1.1. Motivation

Cryptography needs standardization to work across various domains

and to be interoperable between different implementations. One

domain that is not covered sufficiently by cryptography standards is

the selection and maintenance of cryptography algorithms and their

parameters. Choosing an appropriate and secure cryptography

algorithm alone is difficult. Yet, even more difficult is the choice

of the required and matching parameters for that algorithm (e.g.

Argon2 has 10 input parameters). After the choice has been made, all

involved parties need to use exactly this configuration. There is no

specification on how the chosen cryptography configuration should be

stored, distributed and retrieved. Furthermore, supporting more than

one configuration or being able to add future configurations is not

defined. That reduces software compatibility and increases

maintenance efforts.

Cryptography algorithm implementations, regardless of for one

algorithm or multiple ones, offer some kind of Application

Programming Interface for developers to use the algorithms. Yet, in

many cases these interfaces provide no abstraction from the

underlying algorithm but expose much of the internal states and

parameters. Also the more abstracting interfaces, usually found in

the standard libraries of programming languages, require users to

have much cryptography experience to use them correctly and

securely. Moreover, even approaches that tried to increase usability

by providing defaults, these defaults become quickly outdated but

cannot be changed in the interface anymore as applications using

these defaults rely on that functionality.

It sounds a lot like a problem for software engineering and not for

cryptography standardization. But software engineering alone cannot

provide a programming interface for cryptography algorithms that

also works for future algorithms and parameters and at the same time

is able to change the default implementation easily. Both the choice

of the algorithm/parameters and the default behavior must be

automated and standardized to remove this burden from developers and

to make cryptography work by default and in the intended secure way.

The Secure Crypto Config approaches this problem first by providing

a regularly updated list of secure cryptography algorithms and

corresponding parameters for common cryptography use cases. Second,

it provides a standardized Application Programming Interface which

provides the Secure Crypto Config in a misuse resistant way to

developers. Third, it leverages an already standardized format

([RFC8152]) to store the used parameters alongside the results of

cryptography operations. That ensures that future implementations

can change their default cryptography algorithms but still parse the

used configuration from existing data and perform the required

cryptography operations on it.

Each of these approaches could be used on its own. Yet, the

combination of them allows software to be easier to maintain, more

compatible with other cryptography implementations and to future

security developments, and most importantly more secure.

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-irtf-cfrg-argon2-10#section-3.1

The Secure Crypto Config makes common assumptions that are not true

for all possible scenarios. In cases where security experts are

indeed involved and more implementation choices have to be made, the

Secure Crypto Config still allows the usage of predefined or even

custom cryptography algorithms and parameters.

1.2. Terminology

1.2.1. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.2.2. Terms

The terms "API", "attack", "authenticity", "availability", "break",

"brute force", "cipher", "ciphertext", "classified", "classification

level", "confidentiality", "cryptographic hash", "encrypt",

"encryption", "initialization vector (IV)", "integrity", "key",

"mode", "nonce", "password", "plain text", "plaintext", "protocol",

"security", "security level", "threat", "trust", in this document

are to be interpreted as described in [RFC4949].

The term "hash" is used as a synonym for "cryptographic hash".

The term "cryptographic primitive" is used in this document to

describe a generic building block used in the field of cryptography

e.g. Hashing, symmetric encryption.

1.3. Use Cases

1.3.1. Secure Crypto Config Use Cases

The Secure Crypto Config has the following main use cases:

Centralized and regularly updated single source of truth for

secure algorithms and their parameters for most common

cryptography primitives and use cases.

Both machine and human readable format to specify the above

mentioned cryptography algorithm/parameter configuration. The

format is also extensible to allow others (e.g. governmental or

commercial organizations) to define their own set of cryptography

configurations.

Standardized cryptography API that not uses the Secure Crypto

Config for the selection of the most recent cryptography

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

configurations but also uses a standardized cryptography

operation output format to enclose the chosen parameters.

1.3.2. Cryptography Use Cases

The Secure Crypto Config covers cryptography algorithm and parameter

configurations for widely used cryptography use cases defined in the

following sections.

1.3.2.1. Symmetric Encryption

Symmetric Encryption is an important cryptographic primitive

especially as it is usually multiple magnitudes faster both for

encryption and decryption than asymmetric cryptography. Yet, the

secret has to be shared with all participants.

The only expected input parameters by cryptography users:

plaintext

secret key

Expected output: ciphertext.

Additional Parameters often required in practice:

Algorithm

Block-Mode

IV

Padding-Mode

Authentication Tag size

Possible secure usage:

A256GCM;3;AES-GCM mode w/ 256-bit key, 128-bit tag

ChaCha20/Poly1305;24;ChaCha20/Poly1305 w/ 256-bit key, 128-bit

tag

1.3.2.2. Asymmetric Encryption

Besides symmetric encryption is asymmetric encryption another

important cryptographic primitive to considered.

The only expected input parameters for encryption:

plaintext

¶

¶

¶

¶

* ¶

* ¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

*

¶

¶

¶

* ¶

public key

Expected output: ciphertext.

The only expected input parameters for decryption:

ciphertext

private key

Possible secure usage:

RSAES-OAEP w/ SHA-512,-42,RSAES-OAEP w/ SHA-512

1.3.2.3. Hashing

Hashing is an important cryptographic primitive and is often needed

as a part of many other cryptographic use cases e.g. password

derivation.

The only expected input parameters by cryptography users:

plaintext

Expected output: hash.

Possible secure usage:

SHA-512 (TEMPORARY - registered 2019-08-13, expires

2020-08-13);-44;SHA-2 512-bit Hash

SHAKE256 (TEMPORARY - registered 2019-08-13, expires

2020-08-13);-45;256-bit SHAKE

1.3.2.4. Password Hashing

The secure storage of passwords requires hashing. Yet, password

hashing requires that the hashing can not be performed very fast to

prevent attackers from guessing/brute-forcing passwords from leaks

or against the live system. E.g. it is totally fine for users if the

login takes 0.1 seconds instead of microseconds. This results in

special families of hash algorithms that offer additional tuning

parameters.

The only expected input parameters by cryptography users:

plaintext

hash-algorithm

Expected output: hash.

* ¶

¶

¶

* ¶

* ¶

¶

* ¶

¶

¶

* ¶

¶

¶

*

¶

*

¶

¶

¶

* ¶

* ¶

¶

Possible secure usage:

Argon2id

1.3.2.5. Key Generation

[] TODO should key generation be considered? (Symmetric/

Asymmetric)

A key is necessary for many cryptographic use cases e.g. symmetric

and asymmetric encryption. Therefore, key generation is an important

part while implementing cryptographic code.

The only expected input is the intended use case.

Expected output: key.

Possible secure generation:

Use of CSPRNG

Keys derived via derivation function from passwords/other keys

1.3.2.6. Digital Signatures

Signing is an important and often needed cryptographic use case. It

is based on the principle of asymmetrical encryption.

The only expected input parameters for signing:

plaintext

private key

Expected output: signature.

The only expected input parameters for verifying the signature:

signature

public key

Expected output: valid/not-valid.

Possible secure usage:

ECDSA

ES512;-36;ECDSA w/ SHA-512

¶

* ¶

*

¶

¶

¶

¶

¶

* ¶

* ¶

¶

¶

* ¶

* ¶

¶

¶

* ¶

* ¶

¶

¶

* ¶

* ¶

https://tools.ietf.org/html/draft-irtf-cfrg-argon2-13

2. Requirements and Assumptions

2.1. Requirements

In the following, all requirements are listed that regard the Secure

Crypto Config or the Secure Crypto Config Interface.

Security Level Requirements: The Secure Crypto Config should

define different security levels. E.g. information has different

classification levels and longevity. Additionally, cryptography

operations could not or much slower perform on constrained

devices, which should also be handled with the security levels.

For each security level, the consensus finding process and

entities shall publish a distinct secure crypto config.

Consensus Finding Process and entities:

The Secure Crypto Config must be renewed regularly.

The Secure Crypto Config must be renewable on-demand.

There must be a guideline on which entities must agree to

publish a new Secure Crypto Config.

There must be a guideline on which entities may participate in

the consensus finding process and how they may do so.

There must be a guideline on how to determine broad

availability of both cryptography algorithms and chosen

parameters.

Publication Format and Distribution Requirements:

General:

The Secure Crypto Config must be easily publishable by the

committee.

Standardized unique and distinct names for (1) cryptography

algorithms (2) their parameters and (3) the combination of

the algorithm with set parameters. Otherwise, ambiguity

would make it harder for developers and cryptography

implementors to make correct and secure choices.

There must be a versioning that allows to distinguish

between Secure Crypto Configurations and what is the latest

Secure Crypto Config.

There must be a deprecation process that ensures usage of

outdated/insecure Crypto Configurations cases.

¶

*

¶

* ¶

- ¶

- ¶

-

¶

-

¶

-

¶

* ¶

- ¶

o

¶

o

¶

o

¶

o

¶

There must be an official source where this Secure Crypto

Config is maintained and can be obtained from (e.g. via the

WWW).

The official source format of the Secure Crypto Config must

be cryptographically protected to ensure its integrity and

authenticity.

Other published formats derived from the source format

(e.g. for human readability on a webpage) do not have to be

cryptographically protected but should be generated

automatically from the source format.

The official source should also provide information about

the Secure Crypto Config Interface that should be utilized

for the application of the Secure Crypto Config.

The Secure Crypto Config must specify how it can be

extended (e.g. more security levels) and how derivatives

work.

Human readable

The Secure Crypto Config must have a human readable format.

The Secure Crypto Config must allow non-experts to find

secure cryptography algorithms and appropriate parameters

for common cryptography use cases.

The Secure Crypto Config human readable publication format

should only use easy to comprehend data structures like

two-dimensional tables.

Machine readable

Cryptography libraries, regardless of the programming

language, should be able to directly map (without extensive

parsing) the Secure Crypto Config to their implementation

Must be easy to verify which Secure Crypto Config is used /

was used (e.g. in Continuous Integration platforms)

Must be easy to verify the authenticity of the Secure

Crypto Config (e.g. is this really what the CFRG has

published?)

Cryptography library integration requirements:

Easy to integrate by cryptography libraries

o

¶

o

¶

o

¶

o

¶

o

¶

- ¶

o ¶

o

¶

o

¶

- ¶

o

¶

o

¶

o

¶

* ¶

- ¶

Experts should still be able to use/access the unaltered

output of cryptographic primitives

Recommendation what should be the default Secure Crypto Config

for a cryptography library (e.g. should it be the one with the

highest security level or only a weaker one?)

Recommendation of what should a cryptography library do if it

can not support the parameters specified in the latest Secure

Crypto Config. (E.g. key size for RSA would be n*2 and the

library supports only n)

Recommendation on how a cryptography library should integrate

the Secure Crypto Config so that it is up to date as soon as

possible after a new Secure Crypto Config has been published

General Requirements:

Interoperability with other standards/formats (e.g. [RFC8152])

The Secure Crypto Config should cover most common cryptography

primitives and their currently broadly available and secure

algorithms.

The Secure Crypto Config should be protected against attackers

as defined in Section 3.6.5

The Secure Crypto Config should prevent non-experts to

configure cryptography primitives in an insecure way.

The Secure Crypto Config should not prevent experts from using

or changing all parameters of cryptography primitives provided

by a cryptography library/API.

2.2. Assumptions

The Secure Crypto Config assumes that both the proposed algorithms

and the implementations (cryptography libraries) for the

cryptography primitives are secure. This also means that side-

channel attacks are not considered explicitly. It is also assumed

that programmers, software engineers and other humans are going to

use cryptography. They are going to make implementation choices

without being able to consult cryptography and security experts and

without understanding cryptography related documentation fully. This

also means that it is not considered best practice to assume or

propose that only cryptography experts (should) use cryptography

(primitives/libraries).

-

¶

-

¶

-

¶

-

¶

* ¶

- ¶

-

¶

-

¶

-

¶

-

¶

¶

3. Security Levels

The Secure Crypto Config must be able to provide a secure parameter

set for different security levels. These security levels depend on

the following security constraints: Information classification

(Secret, Confidential), Longevity (less than one day, more than a

day), Constrained devices (constrained, not constrained). They are

defined in Section 3.6 below. The Secure Crypto Config provides 5

common security levels for which official algorithm/parameter

choices are published.

3.1. Security Level 1 - Low

Confidential information, regardless of the other two constraints

3.2. Security Level 2

Secret information, less than one day longevity, constrained device

3.3. Security Level 3

Secret information, less than one day longevity, non-constrained

device

3.4. Security Level 4

Secret information, more than a day longevity, constrained device

3.5. Security Level 5 - High

Secret information, more than a day longevity, non-constrained

device

3.6. Security Level Constraints

3.6.1. Information classification

Information classification within this document is about the

confidentiality of the information. Not all information is equally

confidential, e.g. it can be classified into different classes of

information. For governmental institutions usually three classes are

used: Confidential, Secret, or Top Secret. The Secure Crypto Config

considers only Confidential and Secret for its standardized security

levels. Further levels with other classifications can be added by

other organizations. Additionally, in common (non-governmental) use

cases data is not labeled with an information class. Hence, often

only one class is chosen for the cryptography processing of all

data.

¶

¶

¶

¶

¶

¶

¶

The Secure Crypto Config does not endorse a definition of the

information classes, yet Secret information is to be considered to

have higher confidentiality requirements than Confidential

information.

3.6.2. Longevity

The time how long information has to be kept confidential can

influence cryptography parameters a lot. Usually what you talked

about with your friends should be kept confidential for a lifetime.

Yet, a public trade transaction must only be confidential until the

trade was executed which can happen in milliseconds. It directly

influences a very important attacker resource: The time an attacker

has to try to gain access to the confidential information. The

Secure Crypto Config considers only two ranges of longevity for its

standardized security levels: short longevity of less than one day

and long longevity of a day or more than a day. Further levels with

other longevity levels can be added by other organizations.

3.6.3. Constrained Devices

For cryptography often complex computations have to be executed.

Yet, not all environments have the same hardware resources

available. E.g. it is not always the case that the used processors

have dedicated cryptography hardware or even specialized execution

units or instruction sets like [AESNI]. Detailed discussion and

definitions can be found in [RFC7228]. Yet, their definitions are

too concrete to be used in the Secure Crypto Config's standardized

security levels. Therefore, the Secure Crypto Config defines

constraint devices not based on concrete processing power (e.g. 100k

instructions per second):

A device is constrained when it has multiple orders of magnitudes

fewer resources than a current (not a new one, but broadly in use at

the time of publication of a Secure Crypto Config!) standard

personal computer.

For example, if a current standard personal computer can encrypt

with 1 GiB/s, a constrained device would be all devices that can

only perform the same cryptography operation with less than 10 MiB/

s. Resources can be everything important for cryptography like

dedicated cryptography hardware, instruction sets, memory, power

consumption, storage space, communication bandwidth, latency etc.

The Secure Crypto Config considers only constrained and non-

constrained for its standardized security levels. Further levels

with other constrained resource definitions can be added by other

organizations.

¶

¶

¶

¶

¶

3.6.4. n-Bit-Security

n-Bit Security Level:

A cryptographic mechanism achieves a security level of n bits if

costs which are equivalent to 2^n calculations of the encryption

function of an efficient block cipher (e.g. AES) are tied to each

attack against the mechanism which breaks the security objective

of the mechanism with a high probability of success. BSI

3.6.5. Attacker Resources and Capabilities

The Secure Crypto Config considers only the following same attacker

resources and capabilities for all standardized security levels:

The attacker knows all used algorithms and parameters except

secrets according to Kerckhoffs's principle.

The attacker has access to the system used for cryptography

operations and can utilize its cryptography operations apart from

obtaining secrets.

The attacker can utilize very high-performance computing

resources such as supercomputers and distributed computing (e.g.

this includes very high memory, storage, processing and

networking performance)

Further security levels with other attacker definitions can be added

by other organizations.

4. Consensus Finding Process and entities

To provide a Secure Crypto Config, it is necessary to agree upon a

secure and appropriate cryptographic parameter set for each security

level (see Section 3). This must happen in a common consensus

finding process which takes place during regular intervals. The

consensus finding process is based on the established RFC process

during which the Secure Crypto Config Working Group decides in

cooperation with the Crypto Forum Research Group (CFRG) and other

institutions like the Bundesamt fuer Sicherheit in der

Informationstechnik (BSI) or the National Institute of Standards and

Technology (NIST) for a set of secure parameters. After the

successful decision, the agreed on parameters can be added in the

defined publication data structures (see Section 5.4) and provided

on the repository platform.

4.1. Consensus Finding

Consensus must be found two years after the last consensus was

found. This ensures that there is a new Secure Crypto Config every

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

two years, even if the configuration itself has not changed. There

is a regular process and an emergency process to release Secure

Crypto Configurations.

4.1.1. Regular Process

The process has three phases that MUST be finalized within 2 years:

(1) One year Proposal phase during which all participating

entities must propose at least two cryptography algorithms and

parameters per cryptography use case per security level.

(2) Six months Consensus finding phase during which all

participating entities must agree on a common Secure Crypto

Config.

(3) Six months Publication phase ensures the publication of the

final Secure Crypto Config AND allows the Secure Crypto Config

Interface and other cryptography implementations to integrate the

necessary changes.

During the Proposal phase the proposed algorithms and all necessary

parameters should be submitted in table form for each security level

and defined cryptographic use case as proposed. This table format is

simply structured and is easy to read by humans as the Consensus

finding phase can only be done manually. It is important that the

parameters for each cryptographic use case depending on its security

level can be found easily by the participants of the consensus

finding process such that it is possible to get to an agreement

faster.

4.1.2. Emergency Process

[] TODO How can the Working Group alter the Secure Crypto Config

IANA registry / or use the RFC Errata process?

In cases when a regularly still valid Secure Crypto Config would

become insecure regarding either a proposed algorithm or a proposed

parameter choice it must be revised with the following process:

Determine the insecure configuration.

Remove the insecure configuration.

Publish the revised Secure Crypto Config with a new patch

version.

Mark the old (unrevised) Secure Crypto Config as deprecated.

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

¶

1. ¶

2. ¶

3.

¶

4. ¶

Examples for emergency cases are drastically better brute force

algorithms or brute force performance (e.g. quantum computers/

algorithms), drastically discovered flaws in proposed algorithms and

their configurations.

An applied emergency process results in the problem that currently

used Secure Crypto Config Interface versions are no longer up-to-

date, because they are still supporting the no longer secure

algorithms. Therefore, the corresponding algorithms need to be

marked as insecure. If e.g. a proposed algorithm gets insecure this

can be marked inside the corresponding Secure Crypto Config IANA

registry entry as no longer proposed to make the users aware of its

insecurity. The Working Group itself can decide when to alter the

Secure Crypto Config IANA registry.

4.1.3. Requirements for Selection of Cryptography Algorithm and

Parameters

The Secure Crypto Config MUST only propose cryptography algorithms

and parameters that fulfill the following requirements:

Cryptography algorithms and parameters have stable

implementations in at least two different programming languages.

Cryptography algorithms and parameters have a defined standard to

store the algorithm and parameter identification alongside the

result (e.g. like [RFC8152]). This is required to ensure

cryptography operation results can be processed even if the

default parameters have been changed or the information has been

processed with a previous version of the Secure Crypto Config.

Cryptography algorithms that support parametrization to adapt to

increased brute force performance and to allow longevity of the

algorithm especially for hardware optimized implementations.

The Secure Crypto Config SHOULD only propose cryptography algorithms

and parameters that fulfill the following requirements:

Cryptography algorithms and parameters are defined in a globally

accepted standard which was suspect to a standardization process.

Cryptography algorithms and parameters are licensed under a

license that allows free distribution.

4.2. Entities

Entities that participate in the proposal phase SHOULD have

significant cryptography expertise. Entities that participate in the

consensus finding phase MUST have significant cryptography

¶

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

expertise. Cryptographic expertise is defined by the Secure Crypto

Config Working Group or the CFRG.

5. Publication Format and Distribution

In general the Secure Crypto Config is published via JSON [RFC8259]

files in an official repository. The Secure Crypto Config also

utilizes IANA registries, see {#IANA}.

5.1. Versioning

The Secure Crypto Config is regularly published in a specific year.

Therefore, the Secure Crypto Config format MUST use the following

versioning format: YYYY-PATCH. YYYY is a positive integer describing

the year (using the Gregorian calendar, and considering the year

that has not ended in all time zones, cf. Anywhere on Earth Time)

this specific Secure Crypto Config was published. PATCH is a

positive integer starting at 0 and only increasing for emergency

releases.

5.2. Naming

The naming of official released SCCs must follow this format:

SCC_**Version**_LEVEL_**Security Level Number**

E.g. a Secure Crypto Config for Security Level 5 release in 2020 the

first time (so no patch version) would be named: SCC_2020-00_LEVEL_5

The naming of files is not regulated, only the content is standard

relevant. Yet, the Secure Crypto Config Files should use the

mentioned naming convention as well as adding a suffix (file type

ending) .json to prevent ambiguity and remove implementation

choices:

SCC_**Version**_LEVEL_**Security Level Number.json**

5.3. Secure Crypto Config IANA Registry

NOT NEEDED?, as the Secure Crypto Config uses other registries, e.g.

COSE. No final decision, yet.

[] TODO Naming convention. Specification depending on crypto use

case?

[] TODO dash character "-" not possible in enum!

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

* ¶

The Secure Crypto Config requires one IANA Registry with the

following columns:

Secure Crypto Config release version: YYYY-PATCH

Distinct Algorithm-Parameter-Identifier that uniquely identifies

a cryptography algorithm and the parameters

Distinct and constantly available reference where all parameters

are unambiguously defined

(Optional) Short description of the parameters

Algorithm-Parameter-Identifier: MUST only consist of uppercase

alphanumeric characters and underscores. Depending on the use case

the Algorithm Parameter Identifier can be constructed differently.

We propose the following schemes:

For symmetric encryption the name should look like

AlgorithmName_Mode_Padding_KeyLength_TagLength_NonceLength (e.g.

AES_GCM_NoPadding_256_128_128).

For hashing as HashAlgorithmName_KeyLength (e.g. SHA3_256).

For asymmetric encryption and digital signatures

AlgorithmName_AuxiliaryAlgorithm_Padding_KeyLength (e.g.

RSA_ECB_OAEP_4096).

5.3.1. Example for Secure Crypto Config IANA Registry

SCC

Version
AlgParam Identifier Reference Description

2020-01 AES_GCM_256_128_128 [RFC8152]
AES 256 with GCM and 128

bit tag and random nonce

Table 1

5.3.2. Utilized Algorithm Registries

The Secure Crypto Config can only propose cryptography algorithms

and parameters that have been standardized. Therefore, it refers to

the following IANA registries:

CBOR Object Signing and Encryption (COSE)

AEAD Algorithms

Named Information Hash Registry

Used registries must define all required parameters for an algorithm

to implement it without ambiguity. E.g. implementations must not be

¶

* ¶

*

¶

*

¶

* ¶

¶

*

¶

* ¶

*

¶

¶

* ¶

* ¶

* ¶

https://www.iana.org/assignments/cose/cose.xhtml
https://www.iana.org/assignments/aead-parameters/aead-parameters.xhtml
https://www.iana.org/assignments/named-information/named-information.xhtml#hash-alg

able to choose other parameter values for these predefined

cryptography algorithm and parameter combinations.

5.4. Data Structures

For each defined security level, a distinct JSON file must be

provided. These files must adhere to the common schema and shown in

Figure 1 and described in the following.

¶

¶

{

 "PolicyName": "SCC_SecurityLevel_Security Level Number",

 "Publisher": [

 {

 "name": "Publisher name",

 "URL": "URL corresponding to publisher"

 }

],

 "SecurityLevel" : "Security Level Number",

 "Version": "YYYY-Patch",

 "PolicyIssueDate": "YYYY-MM-DD",

 "Expiry": "YYYY-MM-DD",

 "Usage": {

 "SymmetricEncryption": [

 "Algorithm 1",

 "Algorithm 2"

],

 "AsymmetricEncryption": [

 "Algorithm 1",

 "Algorithm 2"

],

 "Hashing": [

 "Algorithm 1",

 "Algorithm 2"

],

 "PasswordHashing": [

 "Algorithm 1",

 "Algorithm 2"

],

 "Signing": [

 "Algorithm 1",

 "Algorithm 2"

]

 }

}

Figure 1: General JSON format

SecurityLevel: Contains the number of the corresponding Security

Level of the Secure Crypto Config

PolicyName: Contains the name of the corresponding Secure Crypto

Config according to the naming schema defined in Section 5.2

Publisher: Contains an array of all parties that participated in

the consensus finding process

name: Name of the participating party

URL: Put in the official URL of the named publisher

Version: Contains version in the format defined in Section 5.1

PolicyIssueDate: Date at which the Secure Crypto Config was

published in the format: YYYY-MM-DD

Expiry: Date at which the Secure Crypto Config expires in the

format: YYYY-MM-DD

Usage: Contains an array of objects for each cryptographic use

case defined in Section 1.3.2.

For each cryptographic use case, at least two agreed upon

algorithms (see Section 4) with necessary parameters are

included. Each of these algorithms with its parameters is

specified with its unique identification name defined in a

IANA registry used by the Secure Crypto Config.

This format allows custom algorithm/parameter definitions both by

overwriting use cases completely or by adding only specific

algorithm identifiers via custom configurations.

5.5. Human readable format

The Secure Crypto Config can not only be used automatically but also

provide the cryptography algorithms and parameters for humans. The

human readable format must be derived from the JSON files both to

protect from copy-paste-errors and to validate the cryptographic

signatures. Yet, the human readable format or publication page

itself must not be cryptographically protected. There should be one

accessible resource, e.g. a webpage, where the source format (JSON

files) are automatically used for displaying them in appropriate

ways (e.g. tables with various sorting and searching options).

*

¶

*

¶

*

¶

- ¶

- ¶

* ¶

*

¶

*

¶

*

¶

-

¶

¶

¶

5.6. Official Secure Crypto Config Repository

5.6.1. Location of Secure Crypto Config Repository

The needed Secure Crypto Config files should be published at an

official GitHub repository. There, all current versions will be

provided during the interval of the Publication phase (see Section

4.1.1). Additionally, all previously published files are still

stored at this location even if new versions are published.

5.6.2. Format of Secure Crypto Config Repository

Figure 2: Example for Secure Crypto Config Repository content

¶

scc-repo

- configs

 - 2020

 - 00

 - SCC_2020-00_LEVEL_1.json

 - SCC_2020-00_LEVEL_1.signature1

 - SCC_2020-00_LEVEL_1.signature2

 - SCC_2020-00_LEVEL_2.json

 - SCC_2020-00_LEVEL_2.signature1

 - SCC_2020-00_LEVEL_2.signature2

 - SCC_2020-00_LEVEL_3.json

 - SCC_2020-00_LEVEL_3.signature1

 - SCC_2020-00_LEVEL_3.signature2

 - SCC_2020-00_LEVEL_4.json

 - SCC_2020-00_LEVEL_4.signature1

 - SCC_2020-00_LEVEL_4.signature2

 - SCC_2020-00_LEVEL_5.json

 - SCC_2020-00_LEVEL_5.signature1

 - SCC_2020-00_LEVEL_5.signature2

 - 01

 - 02

 - 2021

 - 2022

 - 2023

 - 2024

Figure 3: Example for Secure Crypto Config Repository content with

custom naming scheme

The Secure Crypto Config configuration files are expected to be in

any folder hierarchy below the folder configs-folder. Each JSON file

should be accompanied by corresponding signature files that have the

same filename without extension as the JSON file, suffixed by -

signatureX where X is a counter starting at 1.

5.6.3. Integrity/Signing process

[] TODO what kind of signing process should be used?

[] GPG?

[] openssl?

[] Git GPG signed commits?

[] Use an SCC recommended signing algorithm/format

[] Can two signatures be put in one signature file? Should they

be put in the same file?

scc-repo

- configs

 - a

 - b

 - 0c1

 - ReallySecure

 - 0x1111

 - SCC_2020-00_LEVEL_1.json

 - SCC_2020-00_LEVEL_1.signature1

 - SCC_2020-00_LEVEL_1.signature2

 - SCC_2020-00_LEVEL_2.json

 - SCC_2020-00_LEVEL_2.signature1

 - SCC_2020-00_LEVEL_2.signature2

 - SCC_2020-00_LEVEL_3.json

 - SCC_2020-00_LEVEL_3.signature1

 - SCC_2020-00_LEVEL_3.signature2

 - SCC_2020-00_LEVEL_4.json

 - SCC_2020-00_LEVEL_4.signature1

 - SCC_2020-00_LEVEL_4.signature2

 - SCC_2020-00_LEVEL_5.json

 - SCC_2020-00_LEVEL_5.signature1

 - SCC_2020-00_LEVEL_5.signature2

 - asdf

 - afd

 - af

¶

* ¶

- ¶

- ¶

- ¶

- ¶

*

¶

[] Public Key distribution?! (In GitHub repo?)

Each JSON file should be accompanied by at least two signatures.

Both signatures are stored in different files on the same level as

their corresponding Secure Crypto Config file to reduce the parsing

effort. The signatures should be generated by entities defined by

the Secure Crypto Config Working Group. They are responsible to

publish and renew the used public keys. For signing of the

corresponding Secure Crypto Config JSON files openssl could be used.

The public keys needed for validation are published in the official

repository of the Secure Crypto Config.

6. Secure Crypto Config Application Programming Interface (API)

This section describes the application programming interface (API)

that provides the Secure Crypto Config. The Secure Crypto Config

Interface is generic and describes the API that should be used by

each programming language.

6.1. Semantic Versioning

The implementation of the Secure Crypto Config Interface MUST follow

Semantic Versioning, which specifies a version format of X.Y.Z

(Major.Minor.Patch) and semantics when to increase which version

part. It would be beneficial if the release of a new Interface

version gets synchronized with the publication of a new Secure

Crypto Config. It should be possible to support the newly defined

parameters of Secure Crypto Config in the interface as soon as

possible.

6.2. Deployment of (custom) Secure Crypto Config with Interface

There are two different possibilities to work with the Secure Crypto

Config: - The preferred option is to use the Secure Crypto Configs

that will be delivered within the Interface. In each new Interface

version the current Secure Crypto Configs will be added such that

always the latest Secure Crypto Configs at the time of the Interface

release will be supported. Previous Secure Crypto Configs will

remain inside the Interface such that also older ones can still be

used. - Another option is to define a specific path to your own/

derived versions of the Secure Crypto Configs with the same

structure of the files as described in Section 5.4 but with other

values than in the official ones.

The Interface will process the Secure Crypto Configs as follows:

Check if the path to the Secure Crypto Configs is a valid one.

Check if the configs folder exists.

* ¶

¶

¶

¶

¶

¶

1. ¶

2. ¶

https://semver.org/

For each folder following configs in the hierarchy look inside

that folder and check the existence of JSON files that need to

be considered. This check will happen recursively for all

folders inside the hierarchy.

For every JSON file found, look if there exists a signature. If

one is given, check if the signature is valid for the

corresponding file.

Every file with a valid signature will be parsed and further

processed.

The parsing of each valid JSON file must be done as follows:

Read out all information of all JSON files that need to be

considered. The information of each file is stored in a

corresponding object. With this procedure all JSON files need

to be read only once which will contribute to the performance.

Parsing of security level: Check if it is a positive integer.

All files not containing an (positive) integer number as

security level value will be discarded.

Parsing of algorithm identifiers: Only the algorithm

identifiers that are supported by the Interface will be

considered and stored inside the corresponding object. The

supported algorithms are specified inside the interface (e.g.

with an enmum).

Parsing of the version of all files: All files with values in

the wrong format (see Section 5.1) will be excluded from

further processing. Find the latest (according to version)

Secure Crypto Config file with the highest appearing security

level (determined in previous step). The path to this file will

be used as default path used for each cryptographic use case if

nothing else is specified by the user. If two or more files

with identical levels and version number are found, only the

first one will be used, others are discarded.

The unique algorithm identifiers for the execution of a

specific cryptographic use case will be fetched from the

corresponding object (representing the JSON file determined

beforehand) at the time the users invoke a method for a

specific cryptographic use case. The Interface will also

provide a possibility to choose a specific algorithm (out of

the supported ones) for executing the desired use case. In this

case the specified algorithm is used. The identifiers will be

compared with the supported ones in order of their occurrence

inside the file. If one matching identifier is found it will be

used for execution. If it is not a matching one the value will

3.

¶

4.

¶

5.

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

be skipped and the next one will be compared. If none of the

algorithms inside the selected Secure Crypto Config can be

found an error will occur.

6.2.1. Delivery of Secure Crypto Config with Interface

Each Secure Crypto Config Interface must be published in such a way

that it uses (a copy of) the recent Secure Crypto Config repository.

The Secure Crypto Config will be stored inside the subfolder scc-

configs which should be located in the Interface src-folder if

existent. The structure of the scc-configs folder will be the same

as in the described hierarchy of the GitHub repository. In any new

version of the Interface the latest published Secure Crypto Config

and its signatures must be used.

If new Secure Crypto Configs will be published for which no

published version of the Interface is available, the custom

repository approach can be used as described in the following.

6.2.2. Using a custom Secure Crypto Config Repository

It is also possible to use a different path to the Secure Crypto

Configs. As also derived versions of the Secure Crypto Config for

specific needs should be supported it will also be feasible to

define a path to own or derived files that differentiate from the

default src/scc-configs/configs folder. In this case, a method for

setting and using a specific path must be provided by the Interface.

6.2.3. Integrity Check

[] TODO which public keys should be used? (See above Integrity/

Signing process Public Key distribution?!)

The check for valid signature of the Secure Crypto Configs is always

made before every actual usage of the Interface functionalities. In

this way, it is possible to guarantee that the entity using the

Interface only works with valid Secure Crypto Configs and

circumvents the risk of forged file contents. The public key needed

for validity can be found in the official GitHub repository. If own

derived Secure Crypto Configs are created than it can be possible

that no validation process is needed for these files.

6.2.4. Methods and Parameters

Intended methods and parameters included in the Java interface are

described in Figure 5.

¶

¶

¶

¶

¶

*

¶

¶

¶

6.2.4.1. Supported Algorithm Parameter Types

[] TODO What is with parameters that have to be chosen during

runtime? (e.g. the length of the nonce can be specified but not

its content?) Maybe refer to how the PHC String Format describes

how parameters must be defined and only allow constants and

csprng generated content?

Cryptography algorithms require different parameters. The Secure

Crypto Config Interface considers the following types of parameters:

Parameter Size (e.g. key length in bit)

Parameter Counter Content (e.g. nonce)

Parameter Secure Random Content (e.g. nonce)

Parameter User Automatic Tunable Content (e.g. memory consumption

for Argon2 password hashing algorithm)

Parameter User Defined Content (e.g. plaintext and key for

symmetric encryption)

Parameter Compound Parameter Content (e.g. counter + random =

nonce)

6.2.5. Automatic Parameter Tuning

[] TODO is it possible to define new algorithm/parameter

combinations on the fly (in extensions/derivations) or are only

SCC IANA registry identifiers allowed/usable?

It should be possible to have user specified parameters such as the

key/nonce length explicitly given by the user, but also a

performance mode that evaluates for each configuration and gives

back a prioritized list for each configuration. In this way, it is

possible to select parameters depending on systems properties. Such

a parameter choice would be beneficial e.g. in the case of Argon2 in

which one parameter for the memory usage must be given. This choice

should be chosen based on the corresponding system. That kind of

parameter selection can be seen e.g. in Libpasta Tuning, which

returns a secure parameter set depending on executed evaluations.

6.2.6. Output of readable Secure Crypto Config

A Secure Crypto Config Interface must offer the following additional

methods regarding the configuration - A method that returns a human

readable version of the currently used Secure Crypto Config - A

method that returns the currently used cryptography algorithm and

parameters for a given use case - A method that validates the

*

¶

¶

* ¶

* ¶

* ¶

*

¶

*

¶

*

¶

*

¶

¶

https://GitHub.com/P-H-C/phc-string-format/blob/master/phc-sf-spec.md
https://tools.ietf.org/html/draft-irtf-cfrg-argon2-13
https://libpasta.github.io/advanced/tuning/

content of a Secure Crypto Config JSON file and one or more

signatures

6.3. TODOs

The SCC could be provided on a suitable platform (?) and is

accessible over the network (adversaries? e.g. http connection)

[] e.g. should there be constants like

"SCC_TOP_SECRET_LATEST" and "SCC_TOP_SECRET_LATEST".

[] And like "SCC_TOP_SECRET_LATEST.AES" which points always

to the latest Secure Crypto Config definition for AES

parameters.

[] TODO how should cryptography implementations, that implement/

support SCC, generate the parameters?

[x] What kind of parameters can be chosen based on the Secure

Crypto Config? => E.g. Should be all except the plaintext and the

key for encryption algorithms. Also, many parameters can be

generated based on cryptographically secure random numbers.

[x] TODO The Secure Crypto Config Interface should include a

performance evaluation mode which evaluates the performance of

each configuration and returns a prioritized list for each

configuration. E.g. cf. Libpasta Tuning

7. Cryptography Library Implementation Specification

Cryptography libraries should provide the above mentioned Secure

Crypto Config Interface. Until a common cryptography library

provides the Secure Crypto Config Interface itself, there should be

wrapper implementations that provide the Secure Crypto Config

Interface and make use of the programming languages' standard

cryptography library.

8. Cryptography Algorithm Standards Recommendation

When new cryptography algorithm and/or parameter/mode/etc standards

are created, they should contain a section mentioning the creating

of the proposed secure parameter sets in the above mentioned IANA

registries. This ensures that new cryptography algorithms and

parameter sets are available faster for the Secure Crypto Config

Interface implementations to use.

9. Security Considerations

[x] TODO are some of the listed common issues relevant?:

TypicalSECAreaIssues

¶

*

¶

-

¶

-

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

https://libpasta.github.io/advanced/tuning/
https://trac.ietf.org/trac/sec/wiki/TypicalSECAreaIssues

[x] TODO check if security considerations of TLS 1.2 are

relevant, especially appendix D, E and F

[] TODO Are these appropriate security considerations?

9.1. Consensus Finding

Only trustworthy and cryptographic specialized entities should

participate in the publication process of the Secure Crypto

Config. Otherwise a Secure Crypto Config with a weak and insecure

parameter set could be provided.

9.2. Publication Format

The operators of the Secure Crypto Config must ensure that

potential unauthorized parties are not able to manipulate the

parameters of the published Secure Crypto Config. Countermeasures

to this are in place by utilizing git's gpg signatures and

integrity as well as signatures for the published Secure Crypto

Config files as well.

9.3. Cryptography library implementation

Integrity must be ensured if potential users want to fetch the

provided Secure Crypto Config from the corresponding platform

over the network e.g. by using a signatures.

Users should only trust Secure Crypto Config issued from the

original publisher with the associated signature. Users are

responsible to verify the provided signatures.

9.4. General Security Considerations

9.4.1. Special Use Cases and (Non-)Security Experts

The Secure Crypto Config does not apply to all use cases for

cryptography and usage of cryptography primitives. It is meant to

provide secure defaults for the most common use cases and non-expert

programmers. Additionally, non-experts may still implement

vulnerable code by using the Secure Crypto Config. Yet, it should

reduce the vulnerabilities from making the wrong choices about

parameters for cryptography primitives.

9.5. Security of Cryptography primitives and implementations

The Secure Crypto Config assumes that both the proposed

algorithms and the implementations (cryptography libraries) for

the cryptography primitives are secure as long as they are used

with the correct parameters, states and orders of function calls.

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

https://tools.ietf.org/html/rfc5246#appendix-D

9.5.1. Security Guarantees

The Secure Crypto Config makes the best effort to be as up-to-date

with recent discoveries, research and developments in cryptography

algorithms as possible. Following this, it strives to publish

cryptography algorithms and corresponding parameter choices for

common use cases.

Yet, the Secure Crypto Config and the involved parties working on

and publishing it do not guarantee security for the proposed

parameter configurations or any entity making use of it. E.g. a new

algorithm that can do brute-force attacks exponentially faster could

be existing or published right after the publication of the most

recent Secure Crypto Config was published itself.

9.5.2. Threat Model / Adversaries

There are different possibilities in which a potential adversary

could intervene during the creation as well as after the publication

of the Secure Crypto Config. These attack scenarios must be

considered and prevented.

Process: During the creation process, it is necessary for

selected institutions to agree on a secure parameter set. It

could be possible that one party wants to influence this process

in a bad way. As a result, it could be agreed on weaker parameter

sets than originally intended.

Publication: After the publication of the Secure Crypto Config a

potential attacker could gain access to the provided files on the

corresponding platform and change the content to an insecure

parameter set.

Content: Depending on the distribution method of the Secure

Crypto Config, it is also possible that an attacker could change

the content of the Secure Crypto Config as man-in-the-middle.

Especially if an http connection is used to obtain the Secure

Crypto Config, this will be a serious problem.

10. IANA Considerations

[] TODO Are there IANA Considerations?

[] TODO May add reference to own registry

The data structure (see Section 5.4) defined in this document uses

the JSON format as defined in [RFC8259].

¶

¶

¶

*

¶

*

¶

*

¶

* ¶

* ¶

¶

[RFC2119]

[RFC4949]

[RFC8152]

[RFC8174]

[RFC8259]

[AESNI]

[RFC2743]

[RFC5116]

[RFC5652]

[RFC5698]

11. References

11.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Shirey, R., "Internet Security Glossary, Version 2", FYI

36, RFC 4949, DOI 10.17487/RFC4949, August 2007,

<https://www.rfc-editor.org/rfc/rfc4949>.

Schaad, J., "CBOR Object Signing and Encryption (COSE)",

RFC 8152, DOI 10.17487/RFC8152, July 2017, <https://

www.rfc-editor.org/rfc/rfc8152>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/rfc/

rfc8259>.

11.2. Informative References

Gueron, S., "Intel Advanced Encryption Standard (AES)

Instruction Set White Paper", 2010, <https://

www.intel.com/content/dam/doc/white-paper/advanced-

encryption-standard-new-instructions-set-paper.pdf>.

Linn, J., "Generic Security Service Application Program

Interface Version 2, Update 1", RFC 2743, DOI 10.17487/

RFC2743, January 2000, <https://www.rfc-editor.org/rfc/

rfc2743>.

McGrew, D., "An Interface and Algorithms for

Authenticated Encryption", RFC 5116, DOI 10.17487/

RFC5116, January 2008, <https://www.rfc-editor.org/rfc/

rfc5116>.

Housley, R., "Cryptographic Message Syntax (CMS)", STD

70, RFC 5652, DOI 10.17487/RFC5652, September 2009,

<https://www.rfc-editor.org/rfc/rfc5652>.

Kunz, T., Okunick, S., and U. Pordesch, "Data Structure

for the Security Suitability of Cryptographic Algorithms

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc4949
https://www.rfc-editor.org/rfc/rfc8152
https://www.rfc-editor.org/rfc/rfc8152
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc8259
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.rfc-editor.org/rfc/rfc2743
https://www.rfc-editor.org/rfc/rfc2743
https://www.rfc-editor.org/rfc/rfc5116
https://www.rfc-editor.org/rfc/rfc5116
https://www.rfc-editor.org/rfc/rfc5652

[RFC6916]

[RFC7228]

[RFC7696]

(DSSC)", RFC 5698, DOI 10.17487/RFC5698, November 2009,

<https://www.rfc-editor.org/rfc/rfc5698>.

Gagliano, R., Kent, S., and S. Turner, "Algorithm Agility

Procedure for the Resource Public Key Infrastructure

(RPKI)", BCP 182, RFC 6916, DOI 10.17487/RFC6916, April

2013, <https://www.rfc-editor.org/rfc/rfc6916>.

Bormann, C., Ersue, M., and A. Keranen, "Terminology for

Constrained-Node Networks", RFC 7228, DOI 10.17487/

RFC7228, May 2014, <https://www.rfc-editor.org/rfc/

rfc7228>.

Housley, R., "Guidelines for Cryptographic Algorithm

Agility and Selecting Mandatory-to-Implement Algorithms",

BCP 201, RFC 7696, DOI 10.17487/RFC7696, November 2015,

<https://www.rfc-editor.org/rfc/rfc7696>.

Appendix A. Examples

A.1. JSON Secure Crypto Config

https://www.rfc-editor.org/rfc/rfc5698
https://www.rfc-editor.org/rfc/rfc6916
https://www.rfc-editor.org/rfc/rfc7228
https://www.rfc-editor.org/rfc/rfc7228
https://www.rfc-editor.org/rfc/rfc7696

Figure 4: Example for JSON format

Appendix B. Example Java Interface using Secure Crypto Config

{

 "PolicyName" : "SCC_SecurityLevel_5",

 "Publisher" : [

 {

 "name" : "Crypto Forum Research Group",

 "URL" : "https://irtf.org/cfrg"

 },

 {

 "name" : "BSI",

 "URL" : "https://BSI"

 }

],

 "SecurityLevel" : "5",

 "Version" : "2020-0",

 "PolicyIssueDate" : "2020-04-20",

 "Expiry" : "2023-04-21",

 "Usage" : {

 "SymmetricEncryption" : [

 "AES_GCM_256_96",

 "AES_GCM_192_96"

],

 "AsymmetricEncryption" : [

 "RSA_SHA_512",

 "RSA_SHA_256"

],

 "Hashing" : [

 "SHA3_512",

 "SHA_512"

],

 "Signing" : [

 "ECDSA_512",

 "ECDSA_384"

],

 "PasswordHashing" : [

 "PBKDF_SHA_512",

 "SHA_512_64"

]

 }

}

package org.securecryptoconfig;

import java.nio.charset.Charset;

import java.security.InvalidKeyException;

import org.securecryptoconfig.SCCKey.KeyType;

import org.securecryptoconfig.SCCKey.KeyUseCase;

import COSE.CoseException;

public abstract interface SecureCryptoConfigInterface {

//Symmetric

public AbstractSCCCiphertext encryptSymmetric(AbstractSCCKey key, PlaintextContainerInterface plaintext)

 throws SCCException;

public AbstractSCCCiphertext encryptSymmetric(AbstractSCCKey key, byte[] plaintext)

 throws SCCException;

public AbstractSCCCiphertext reEncryptSymmetric(AbstractSCCKey key, AbstractSCCCiphertext ciphertext)

 throws SCCException;

public PlaintextContainerInterface decryptSymmetric(AbstractSCCKey key, AbstractSCCCiphertext sccciphertext)

 throws SCCException;

// Asymmetric

public AbstractSCCCiphertext encryptAsymmetric(AbstractSCCKey key, PlaintextContainerInterface plaintext)

 throws SCCException;

public AbstractSCCCiphertext encryptAsymmetric(AbstractSCCKey key, byte[] plaintext)

 throws SCCException;

public AbstractSCCCiphertext reEncryptAsymmetric(AbstractSCCKey key, AbstractSCCCiphertext ciphertext)

 throws SCCException;

public PlaintextContainerInterface decryptAsymmetric(AbstractSCCKey key, AbstractSCCCiphertext ciphertext)

 throws SCCException;

// Hashing

public AbstractSCCHash hash(PlaintextContainerInterface plaintext)

 throws SCCException;

public AbstractSCCHash hash(byte[] plaintext)

 throws SCCException;

public AbstractSCCHash updateHash(PlaintextContainerInterface plaintext, AbstractSCCHash hash)

 throws SCCException;

public AbstractSCCHash updateHash(byte[] plaintext, AbstractSCCHash hash)

 throws SCCException;

public boolean validateHash(PlaintextContainerInterface plaintext, AbstractSCCHash hash)

 throws SCCException;

public boolean validateHash(byte[] plaintext, AbstractSCCHash hash)

 throws SCCException;

// Digital Signature

public AbstractSCCSignature sign(AbstractSCCKey key, PlaintextContainerInterface plaintext)

 throws SCCException;

public AbstractSCCSignature sign(AbstractSCCKey key, byte[] plaintext)

 throws SCCException;

public AbstractSCCSignature updateSignature(AbstractSCCKey key, PlaintextContainerInterface plaintext)

 throws SCCException;

public AbstractSCCSignature updateSignature(AbstractSCCKey key, byte[] plaintext)

 throws SCCException;

public boolean validateSignature(AbstractSCCKey key, AbstractSCCSignature signature)

 throws SCCException;

public boolean validateSignature(AbstractSCCKey key, byte[] signature)

 throws SCCException;

// Password Hashing

public AbstractSCCPasswordHash passwordHash(PlaintextContainerInterface password)

 throws SCCException;

public AbstractSCCPasswordHash passwordHash(byte[] password)

 throws SCCException;

public boolean validatePasswordHash(PlaintextContainerInterface password, AbstractSCCPasswordHash passwordhash)

 throws SCCException;

public boolean validatePasswordHash(byte[] password, AbstractSCCPasswordHash passwordhash)

 throws SCCException;

}

abstract interface PlaintextContainerInterface {

public abstract byte[] toBytes();

public abstract String toString(Charset c);

@Override

public abstract String toString();

public abstract boolean validateHash(AbstractSCCHash hash)

 throws SCCException;

public abstract boolean validatePasswordHash(AbstractSCCPasswordHash passwordHash)

 throws SCCException;

public abstract AbstractSCCCiphertext encryptSymmetric(AbstractSCCKey key)

 throws SCCException;

public abstract AbstractSCCCiphertext encryptAsymmetric(AbstractSCCKey key)

 throws SCCException;

public abstract AbstractSCCSignature sign(AbstractSCCKey key)

 throws SCCException;

public abstract boolean validateSignature (AbstractSCCSignature signature, AbstractSCCKey key)

 throws SCCException;

public abstract AbstractSCCHash hash()

 throws SCCException;

public abstract AbstractSCCPasswordHash passwordHash()

 throws SCCException;

}

abstract class AbstractSCCCiphertext {

byte[] msg;

protected AbstractSCCCiphertext(byte[] msg) {

this.msg = msg;

}

public abstract byte[] toBytes();

@Override

public abstract String toString();

public abstract PlaintextContainerInterface decryptSymmetric(AbstractSCCKey key)

 throws SCCException;

public abstract PlaintextContainerInterface decryptAsymmetric(AbstractSCCKey key)

 throws SCCException;

public abstract AbstractSCCCiphertext reEncryptSymmetric(AbstractSCCKey key)

 throws SCCException;

public abstract AbstractSCCCiphertext reEncryptAsymmetric(AbstractSCCKey key)

 throws SCCException;

}

abstract class AbstractSCCKey {

KeyType type;

byte[] privateKey

byte[] publicKey;

String algorithm;

protected AbstractSCCKey(KeyType type, byte[] publicKey, byte[] privateKey, String algorithm) {

this.type = type;

this.publicKey = publicKey;

this.privateKey = privateKey;

this.algorithm = algorithm;

}

public abstract byte[] toBytes()

 throws SCCException;

public abstract byte[] getPublicKeyBytes()

 throws SCCException;

public abstract byte[] getPrivateKeyBytes()

 throws SCCException;

public abstract KeyType getKeyType();

public abstract String getAlgorithm();

}

abstract class AbstractSCCHash {

byte[] hashMsg;

protected AbstractSCCHash(byte[] hashMsg) {

this.hashMsg = hashMsg;

}

public abstract byte[] toBytes();

@Override

public abstract String toString();

public abstract boolean validateHash(PlaintextContainerInterface plaintext)

 throws SCCException;

public abstract boolean validateHash(byte[] plaintext)

 throws SCCException;

public abstract AbstractSCCHash updateHash(PlaintextContainerInterface plaintext)

 throws SCCException;

public abstract AbstractSCCHash updateHash(byte[] plaintext)

 throws SCCException;

}

abstract class AbstractSCCPasswordHash {

byte[] hashMsg;

protected AbstractSCCPasswordHash(byte[] hashMsg) {

this.hashMsg = hashMsg;

}

public abstract byte[] toBytes();

@Override

public abstract String toString();

public abstract boolean validatePasswordHash(PlaintextContainerInterface password)

 throws SCCException;

public abstract boolean validatePasswordHash(byte[] password)

 throws SCCException;

}

abstract class AbstractSCCSignature {

byte[] signatureMsg;

protected AbstractSCCSignature(byte[] signatureMasg) {

this.signatureMsg = signatureMasg;

}

public abstract byte[] toBytes();

@Override

public abstract String toString();

public abstract boolean validateSignature(AbstractSCCKey key)

 throws SCCException;

public abstract AbstractSCCSignature updateSignature(PlaintextContainerInterface plaintext, AbstractSCCKey key)

 throws SCCException;

}

Figure 5: Example for a JAVA SCC API

Acknowledgments

[] TODO acknowledge.

Authors' Addresses

Kai Mindermann

iC Consult GmbH

Email: kai.mindermann@ic-consult.com

Lisa Teis

Email: lisateis102@gmail.com

* ¶

mailto:kai.mindermann@ic-consult.com
mailto:lisateis102@gmail.com

	Secure Crypto Config
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Motivation
	1.2. Terminology
	1.2.1. Conventions and Definitions
	1.2.2. Terms

	1.3. Use Cases
	1.3.1. Secure Crypto Config Use Cases
	1.3.2. Cryptography Use Cases
	1.3.2.1. Symmetric Encryption
	1.3.2.2. Asymmetric Encryption
	1.3.2.3. Hashing
	1.3.2.4. Password Hashing
	1.3.2.5. Key Generation
	1.3.2.6. Digital Signatures

	2. Requirements and Assumptions
	2.1. Requirements
	2.2. Assumptions

	3. Security Levels
	3.1. Security Level 1 - Low
	3.2. Security Level 2
	3.3. Security Level 3
	3.4. Security Level 4
	3.5. Security Level 5 - High
	3.6. Security Level Constraints
	3.6.1. Information classification
	3.6.2. Longevity
	3.6.3. Constrained Devices
	3.6.4. n-Bit-Security
	3.6.5. Attacker Resources and Capabilities

	4. Consensus Finding Process and entities
	4.1. Consensus Finding
	4.1.1. Regular Process
	4.1.2. Emergency Process
	4.1.3. Requirements for Selection of Cryptography Algorithm and Parameters

	4.2. Entities

	5. Publication Format and Distribution
	5.1. Versioning
	5.2. Naming
	5.3. Secure Crypto Config IANA Registry
	5.3.1. Example for Secure Crypto Config IANA Registry
	5.3.2. Utilized Algorithm Registries

	5.4. Data Structures
	5.5. Human readable format
	5.6. Official Secure Crypto Config Repository
	5.6.1. Location of Secure Crypto Config Repository
	5.6.2. Format of Secure Crypto Config Repository
	5.6.3. Integrity/Signing process

	6. Secure Crypto Config Application Programming Interface (API)
	6.1. Semantic Versioning
	6.2. Deployment of (custom) Secure Crypto Config with Interface
	6.2.1. Delivery of Secure Crypto Config with Interface
	6.2.2. Using a custom Secure Crypto Config Repository
	6.2.3. Integrity Check
	6.2.4. Methods and Parameters
	6.2.4.1. Supported Algorithm Parameter Types

	6.2.5. Automatic Parameter Tuning
	6.2.6. Output of readable Secure Crypto Config

	6.3. TODOs

	7. Cryptography Library Implementation Specification
	8. Cryptography Algorithm Standards Recommendation
	9. Security Considerations
	9.1. Consensus Finding
	9.2. Publication Format
	9.3. Cryptography library implementation
	9.4. General Security Considerations
	9.4.1. Special Use Cases and (Non-)Security Experts

	9.5. Security of Cryptography primitives and implementations
	9.5.1. Security Guarantees
	9.5.2. Threat Model / Adversaries

	10. IANA Considerations
	11. References
	11.1. Normative References
	11.2. Informative References

	Appendix A. Examples
	A.1. JSON Secure Crypto Config
	Appendix B. Example Java Interface using Secure Crypto Config
	Acknowledgments
	Authors' Addresses

