
Internet Draft C. Kalt
Expires: 13 Feb 2000 13 Aug 1999

Internet Relay Chat: Client Protocol
draft-kalt-irc-client-02.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
 NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in RFC 2119
 [KEYWORDS].

Abstract

 The IRC (Internet Relay Chat) protocol is for use with text based
 conferencing; the simplest client being any socket program capable of
 connecting to the server.

 This document defines the Client Protocol, and assumes that the
 reader is familiar with the IRC Architecture [IRC-ARCH].

Kalt [Page 1]

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2119

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 Table of Contents

1. Labels ... 3
1.1 Servers .. 3
1.2 Clients .. 3

1.2.1 Users ... 3
1.2.1.1 Operators 3

1.2.2 Services .. 4
1.3 Channels ... 4

2. The IRC Client Specification 5
2.1 Overview ... 5
2.2 Character codes .. 5
2.3 Messages ... 5

2.3.1 Message format in Augmented BNF 6
2.4 Numeric replies .. 8
2.5 Wildcard expressions 8

3. Message Details .. 10
3.1 Connection Registration 10

3.1.1 Password message 10
3.1.2 Nick message 11
3.1.3 User message 11
3.1.4 Oper message 12
3.1.5 User mode message 12
3.1.6 Service message 14
3.1.7 Quit .. 14
3.1.8 Squit ... 15

3.2 Channel operations 15
3.2.1 Join message 16
3.2.2 Part message 17
3.2.3 Channel mode message 18
3.2.4 Topic message 19
3.2.5 Names message 20
3.2.6 List message 21
3.2.7 Invite message 21
3.2.8 Kick command 22

3.3 Sending messages 23
3.3.1 Private messages 23
3.3.2 Notice .. 24

3.4 Server queries and commands 25
3.4.1 Lusers message 25
3.4.2 Version message 25
3.4.3 Stats message 26
3.4.4 Links message 26
3.4.5 Time message 27
3.4.6 Connect message 28
3.4.7 Trace message 28

Kalt [Page 2]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

3.4.8 Admin command 29
3.4.9 Info command 30

3.5 Service Query and Commands 31
3.5.1 Servlist message 31
3.5.2 Squery .. 31

3.6 User based queries 32
3.6.1 Who query ... 32
3.6.2 Whois query 33
3.6.3 Whowas .. 33

3.7 Miscellaneous messages 34
3.7.1 Kill message 34
3.7.2 Ping message 35
3.7.3 Pong message 36
3.7.4 Error ... 36

4. Optional features .. 38
4.1 Away ... 38
4.2 Rehash message ... 38
4.3 Die message .. 39
4.4 Restart message .. 39
4.5 Summon message ... 40
4.6 Users .. 40
4.7 Operwall message 41
4.8 Userhost message 42
4.9 Ison message ... 42

5. Replies .. 44
5.1 Command responses 44
5.2 Error Replies .. 55
5.3 Reserved numerics 62

6. Current implementations 62

7. Current problems ... 62
7.1 Nicknames .. 62
7.2 Limitation of wildcards 63
7.3 Security considerations 63

8. Current support and availability 63

9. Acknowledgements ... 63

10. References .. 63

11. Author's Address .. 65

Kalt [Page 3]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

1. Labels

 This section defines the identifiers used for the various
 components of the IRC protocol.

1.1 Servers

 Servers are uniquely identified by their name, which, has a
 maximum length of sixty three (63) characters. See the protocol
 grammar rules (section 2.3.1) for what may and may not be used in a
 server name.

1.2 Clients

 For each client all servers MUST have the following information: a
 netwide unique identifier (whose format depends on the type of
 client) and the server which introduced the client.

1.2.1 Users

 Each user is distinguished from other users by a unique nickname
 having a maximum length of nine (9) characters. See the protocol
 grammar rules (section 2.3.1) for what may and may not be used in a
 nickname.

 While the maximum length is limited to nine characters, clients
 SHOULD accept longer strings as they may become used in future
 evolutions of the protocol.

1.2.1.1 Operators

 To allow a reasonable amount of order to be kept within the IRC
 network, a special class of users (operators) is allowed to perform
 general maintenance functions on the network. Although the powers
 granted to an operator can be considered as 'dangerous', they are
 nonetheless often necessary. Operators SHOULD be able to perform
 basic network tasks such as disconnecting and reconnecting servers as
 needed. In recognition of this need, the protocol discussed herein
 provides for operators only to be able to perform such functions.
 See sections 3.1.8 (SQUIT) and 3.4.7 (CONNECT).

 A more controversial power of operators is the ability to remove a
 user from the connected network by 'force', i.e. operators are able
 to close the connection between any client and server. The
 justification for this is very delicate since its abuse is both
 destructive and annoying, and its benefits close to inexistant. For
 further details on this type of action, see section 3.7.1 (KILL).

Kalt [Page 4]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

1.2.2 Services

 Each service is distinguished from other services by a service
 name composed of a nickname and a server name. As for users, the
 nickname has a maximum length of nine (9) characters. See the
 protocol grammar rules (section 2.3.1) for what may and may not be
 used in a nickname.

1.3 Channels

 Channels names are strings (beginning with a '&', '#', '+' or '!'
 character) of length up to fifty (50) characters. Apart from the
 requirement that the first character is either '&', '#', '+' or '!',
 the only restriction on a channel name is that it SHALL NOT contain
 any spaces (' '), a control G (^G or ASCII 7), a comma (','). Space
 is used as parameter separator and command is used as a list item
 separator by the protocol). A semi-column (':') can also used as a
 delimiter for the channel mask. Channel names are case insensitive.
 See the protocol grammar rules (section 2.3.1) for the exact syntax
 of a channel name.

 Each prefix characterizes a different channel type. The
 definition of the channel types is not relevant to the client-server
 protocol and thus it is beyond the scope of this document. More
 details are found in "Internet Relay Chat: Channel Management" [IRC-
 CHAN].

Kalt [Page 5]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

2. The IRC Client Specification

2.1 Overview

 The protocol as described herein is for use only with client to
 server connections when the client registers as a user.

2.2 Character codes

 No specific character set is specified. The protocol is based on a
 set of codes which are composed of eight (8) bits, making up an
 octet. Each message may be composed of any number of these octets;
 however, some octet values are used for control codes, which act as
 message delimiters.

 Regardless of being an 8-bit protocol, the delimiters and keywords
 are such that protocol is mostly usable from US-ASCII terminal and a
 telnet connection.

 Because of IRC's Scandinavian origin, the characters {}|^ are
 considered to be the lower case equivalents of the characters []\~,
 respectively. This is a critical issue when determining the
 equivalence of two nicknames or channel names.

2.3 Messages

 Servers and clients send each other messages, which may or may not
 generate a reply. If the message contains a valid command, as
 described in later sections, the client should expect a reply as
 specified but it is not advised to wait forever for the reply; client
 to server and server to server communication is essentially
 asynchronous by nature.

 Each IRC message may consist of up to three main parts: the prefix
 (OPTIONAL), the command, and the command parameters (maximum of
 fifteen (15)). The prefix, command, and all parameters are separated
 by one ASCII space character (0x20) each.

 The presence of a prefix is indicated with a single leading ASCII
 colon character (':', 0x3b), which MUST be the first character of the
 message itself. There MUST be NO gap (whitespace) between the colon
 and the prefix. The prefix is used by servers to indicate the true
 origin of the message. If the prefix is missing from the message, it
 is assumed to have originated from the connection from which it was
 received from. Clients SHOULD NOT use a prefix when sending a
 message; if they use one, the only valid prefix is the registered
 nickname associated with the client.

Kalt [Page 6]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 The command MUST either be a valid IRC command or a three (3)
 digit number represented in ASCII text.

 IRC messages are always lines of characters terminated with a CR-
 LF (Carriage Return - Line Feed) pair, and these messages SHALL NOT
 exceed 512 characters in length, counting all characters including
 the trailing CR-LF. Thus, there are 510 characters maximum allowed
 for the command and its parameters. There is no provision for
 continuation of message lines. See section 6 for more details about
 current implementations.

2.3.1 Message format in Augmented BNF

 The protocol messages must be extracted from the contiguous stream
 of octets. The current solution is to designate two characters, CR
 and LF, as message separators. Empty messages are silently ignored,
 which permits use of the sequence CR-LF between messages without
 extra problems.

 The extracted message is parsed into the components <prefix>,
 <command> and list of parameters (<params>).

 The Augmented BNF representation for this is:

 message = [":" prefix SPACE] command [params] crlf
 prefix = servername / (nick [["!" user] "@" host])
 command = 1*letter / 3digit
 params = *14(SPACE middle) [SPACE ":" trailing]
 =/ 14(SPACE middle) [SPACE [":"] trailing]

 nospcrlfcl = %x01-09 / %x0B-0C / %x0E-1F / %x21-39 / %x3B-FF
 ; any octet except NUL, CR, LF, " " and ":"
 middle = nospcrlfcl *(":" / nospcrlfcl)
 trailing = *(":" / " " / nospcrlfcl)

 SPACE = %x20 ; space character
 crlf = %x0D %x0A ; "carriage return" "linefeed"

 NOTES:

 1) After extracting the parameter list, all parameters are
 equal whether matched by <middle> or <trailing>. <trailing>
 is just a syntactic trick to allow SPACE within the parameter.

 2) The NUL (%x00) character is not special in message framing, and
 basically could end up inside a parameter, but as it would
 cause extra complexities in normal C string handling. Therefore

Kalt [Page 7]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 NUL is not allowed within messages.

 Most protocol messages specify additional semantics and syntax for
 the extracted parameter strings dictated by their position in the
 list. For example, many server commands will assume that the first
 parameter after the command is the list of targets, which can be
 described with:

 target = nickname / server
 msgtarget = msgto *("," msgto)
 msgto = channel / (user ["%" host] "@" servername)
 msgto =/ (user "%" host) / targetmask
 msgto =/ nickname / (nickname "!" user "@" host)
 channel = ("#" / "+" / ("!" channelid) / "&") <chanstring>
 [":" chanstring]
 servername = hostname
 host = hostname / hostaddr
 hostname = shortname *("." shortname)
 shortname = (letter / digit) *(letter / digit / "-")
 *(letter / digit)
 ; as specified in RFC 1123 [HNAME]
 hostaddr = ip4addr / ip6addr
 ip4addr = 1*3digit "." 1*3digit "." 1*3digit "." 1*3digit
 ip6addr = 1*hexdigit 7(":" 1*hexdigit)
 ip6addr =/ "0:0:0:0:0:" ("0" / "FFFF") ":" ip4addr
 nickname = (letter / special) *8(letter / digit / special / "-")
 targetmask = ("$" / "#") mask
 ; see details on allowed masks in section 3.3.1
 chanstring = %x01-07 / %x08-09 / %x0B-0C / %x0E-1F / %x21-2B
 chanstring =/ %x2D-39 / %x3B-FF
 ; any octet except NUL, BELL, CR, LF, " ", "," and ":"
 channelid = 5(%x41-5A | digit) ; 5(A-Z / 0-9)

 Other parameter syntaxes are:

 user = 1*(%x01-09 / %x0B-0C / %x0E-1F / %x21-3F / %x41-FF)
 ; any octet except NUL, CR, LF, " " and "@"
 key = %x01-05 / %x07-08 / %x0C / %x0E-1F / %x21-7F
 ; any 7-bit US_ASCII character,
 ; except NUL, CR, LF, FF, h/v TABs, and " "
 letter = %x41-5A / %x61-7A ; A-Z / a-z
 digit = %x30-39 ; 0-9
 hexdigit = digit / "A" / "B" / "C" / "D" / "E" / "F"
 special = %x5B-60 / %x7B-7D
 ; "[", "]", "\", "`", "_", "^", "{", "|", "}"

 NOTES:

https://datatracker.ietf.org/doc/html/rfc1123

Kalt [Page 8]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 1) The <hostaddr> syntax is given here for the sole purpose of
 indicating the format to follow for IP addresses. This reflects
 the fact that the only available implementations of this
 protocol uses TCP/IP as underlying network protocol but is not
 meant to prevent other protocols to be used.

 2) <hostname> has a maximum length of 63 characters. This is a
 limitation of the protocol as internet hostnames (in particular)
 can be longer. Such restriction is necessary because IRC
 messages are limited to 512 characters in length. Clients
 connecting from a host which name is longer than 63 characters
 are registered using the host (numeric) address instead of the
 host name.

 3) Some parameters used in the following sections of this documents
 are not defined here as there is nothing specific about them
 besides the name that is used for convenience. These parameters
 follow the general syntax defined for <params>.

2.4 Numeric replies

 Most of the messages sent to the server generate a reply of some
 sort. The most common reply is the numeric reply, used for both
 errors and normal replies. The numeric reply MUST be sent as one
 message consisting of the sender prefix, the three-digit numeric, and
 the target of the reply. A numeric reply is not allowed to originate
 from a client. In all other respects, a numeric reply is just like a
 normal message, except that the keyword is made up of 3 numeric dig¡
 its rather than a string of letters. A list of different replies is
 supplied in section 5 (Replies).

2.5 Wildcard expressions

 When wildcards are allowed in a string, it is referred as a
 "mask".

 For string matching purposes, the protocol allows the use of two
 special characters: '?' (%x3F) to match one and only one character,
 and '*' (%x2A) to match any number of any characters. These two
 characters can be escaped using the character '\' (%x5C).

 The Augmented BNF syntax for this is:

 mask = *(nowild / noesc wildone / noesc wildmany)
 wildone = %x3F
 wildmany = %x2A
 nowild = %x01-29 / %x2B-3E / %x40-FF
 ; any octet except NUL, "*", "?"

Kalt [Page 9]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 noesc = %x01-5B / %x5D-FF
 ; any octet except NUL and "\"
 matchone = %x01-FF
 ; matches wildone
 matchmany = *matchone
 ; matches wildmany

Examples:

a?c ; Matches any string of 3 characters in
 length starting with "a" and ending with
 "c"

a*c ; Matches any string of at least 2 char¡
 acters in length starting with "a" and
 ending with "c"

Kalt [Page 10]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

3. Message Details

 On the following pages there are descriptions of each message rec¡
 ognized by the IRC server and client. All commands described in this
 section MUST be implemented by any server for this protocol.

 Where the reply ERR_NOSUCHSERVER is returned, it means that the
 target of the message could not be found. The server MUST NOT send
 any other replies after this error for that command.

 The server to which a client is connected is required to parse the
 complete message, and return any appropriate errors.

 If multiple parameters is presented, then each MUST be checked for
 validity and appropriate responses MUST be sent back to the client.
 In the case of incorrect messages which use parameter lists with
 comma as an item separator, a reply MUST be sent for each item.

3.1 Connection Registration

 The commands described here are used to register a connection with
 an IRC server as a user as well as to correctly disconnect.

 A "PASS" command is not required for a client connection to be
 registered, but it MUST precede the latter of the NICK/USER combina¡
 tion (for a user connection) or the SERVICE command (for a service
 connection). The RECOMMENDED order for a client to register is as
 follows:

 1. Pass message
 2. Nick message 2. Service message
 3. User message

 Upon success, the client will receive an RPL_WELCOME (for users)
 or RPL_YOURESERVICE (for services) message indicating that the con¡
 nection is now registered and known the to the entire IRC network.
 The reply message MUST contain the full client identifier upon which
 it was registered.

3.1.1 Password message

 Command: PASS
Parameters: <password>

 The PASS command is used to set a 'connection password'. The
 optional password can and MUST be set before any attempt to register
 the connection is made. Currently this requires that user send a
 PASS command before sending the NICK/USER combination.

Kalt [Page 11]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 Numeric Replies:

 ERR_NEEDMOREPARAMS ERR_ALREADYREGISTRED

 Example:

 PASS secretpasswordhere

3.1.2 Nick message

 Command: NICK
Parameters: <nickname>

 NICK command is used to give user a nickname or change the exist¡
 ing one.

 Numeric Replies:

 ERR_NONICKNAMEGIVEN ERR_ERRONEUSNICKNAME
 ERR_NICKNAMEINUSE ERR_NICKCOLLISION
 ERR_UNAVAILRESOURCE ERR_RESTRICTED

 Examples:

NICK Wiz ; Introducing new nick "Wiz" if session
 is still unregistered, or user changing
 his nickname to "Wiz"

:WiZ!jto@tolsun.oulu.fi NICK Kilroy
 ; Server telling that WiZ changed his
 nickname to Kilroy.

3.1.3 User message

 Command: USER
Parameters: <user> <mode> <unused> <realname>

 The USER command is used at the beginning of connection to specify
 the username, hostname and realname of a new user.

 The <mode> parameter should be a numeric, and can be used to auto¡
 matically set user modes when registering with the server. This
 parameter is a bitmask, with only 2 bits having any signification: if
 the bit 2 is set, the user mode 'w' will be set and if the bit 3 is
 set, the user mode 'i' will be set. (See Section 3.1.5 "User
 Modes").

Kalt [Page 12]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 The <realname> may contain space characters.

 Numeric Replies:

 ERR_NEEDMOREPARAMS ERR_ALREADYREGISTRED

 Example:

USER guest 0 * :Ronnie Reagan ; User registering themselves with a
 username of "guest" and real name "Ron¡
 nie Reagan".

USER guest 8 * :Ronnie Reagan ; User registering themselves with a
 username of "guest" and real name "Ron¡
 nie Reagan", and asking to be set invis¡
 ible.

3.1.4 Oper message

 Command: OPER
Parameters: <name> <password>

 A normal user uses the OPER command to obtain operator privileges.
 The combination of <name> and <password> are REQUIRED to gain Opera¡
 tor privileges. Upon success, the user will receive a MODE message
 (see section 3.1.5) indicating the new user modes.

 Numeric Replies:

 ERR_NEEDMOREPARAMS RPL_YOUREOPER
 ERR_NOOPERHOST ERR_PASSWDMISMATCH

 Example:

OPER foo bar ; Attempt to register as an operator
 using a username of "foo" and "bar" as
 the password.

3.1.5 User mode message

 Command: MODE
Parameters: <nickname> *(("+" / "-") *("i" / "w" / "o" / "O"))

 The user MODE's are typically changes which affect either how the
 client is seen by others or what 'extra' messages the client is sent.

Kalt [Page 13]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 A user MODE command MUST only be accepted if both the sender of the
 message and the nickname given as a parameter are both the same. If
 no other parameter is given, then the server will return the current
 settings for the nick.

 The available modes are as follows:

 a - user is flagged as away;
 i - marks a users as invisible;
 w - user receives wallops;
 r - restricted user connection;
 o - operator flag;
 O - local operator flag;
 s - marks a user for receipt of server notices.

 Additional modes may be available later on.

 The flag 'a' SHALL NOT be toggled by the user using the MODE com¡
 mand, instead use of the AWAY command is REQUIRED.

 If a user attempts to make themselves an operator using the "+o"
 or "+O" flag, the attempt SHOULD be ignored as users could bypass the
 authentication mechanisms of the OPER command. There is no restric¡
 tion, however, on anyone `deopping' themselves (using "-o" or "-O").

 On the other hand, if a user attempts to make themselves unre¡
 stricted using the "-r" flag, the attempt SHOULD be ignored. There
 is no restriction, however, on anyone `deopping' themselves (using
 "+r"). This flag is typically set by the server upon connection for
 administrative reasons. While the restrictions imposed are left up
 to the implementation, it is typical that a restricted user not be
 allowed to change nicknames, nor make use of the channel operator
 status on channels.

 The flag 's' is obsolete but MAY still be used.

 Numeric Replies:

 ERR_NEEDMOREPARAMS ERR_USERSDONTMATCH
 ERR_UMODEUNKNOWNFLAG RPL_UMODEIS

 Examples:

MODE WiZ -w ; Command by "WiZ" to turn off reception
 of WALLOPS messages.

MODE Angel +i ; Command from Angel to make herself
 invisible.

Kalt [Page 14]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

MODE WiZ -o ; WiZ 'deopping' (removing operator sta¡
 tus).

3.1.6 Service message

 Command: SERVICE
Parameters: <nickname> <reserved> <distribution> <type> <reserved> <info>

 The SERVICE command to register a new service. Command parameters
 specify the service nickname, distribution, type and info of a new
 service.

 The <distribution> parameter is used to specify the visibility of
 a service. The service may only be known to servers which have a
 name matching the distribution. For a matching server to have knowl¡
 edge of the service, the network path between that server and the
 server on which the service is connected MUST be composed of servers
 which names all match the mask.

 The <type> parameter is currently reserved for future usage.

 Numeric Replies:

 ERR_ALREADYREGISTRED ERR_NEEDMOREPARAMS
 ERR_ERRONEUSNICKNAME
 RPL_YOURESERVICE RPL_YOURHOST
 RPL_MYINFO

 Example:

SERVICE dict * *.fr 0 0 :French Dictionary
 ; Service registering itself with a name
 of "dict". This service will only be
 available on servers which name matches
 "*.fr".

3.1.7 Quit

 Command: QUIT
Parameters: [<Quit Message>]

 A client session is terminated with a quit message. The server
 acknowledges this by sending an ERROR message to the client.

 Numeric Replies:

Kalt [Page 15]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 None.

 Example:

QUIT :Gone to have lunch ; Preferred message format.

:syrk!kalt@millennium.stealth.net QUIT :Gone to have lunch
 ; User syrk has quit IRC to go have
 lunch.

3.1.8 Squit

 Command: SQUIT
Parameters: <server> <comment>

 The SQUIT command is only available to operators. It is used to
 disconnect server links. Also servers can generate SQUIT messages on
 error conditions. A SQUIT message may also target a remote server
 connection. In this case, the SQUIT message will simply be sent to
 the remote server without affecting the servers in between the opera¡
 tor and the remote server.

 The <comment> SHOULD be supplied by all operators who execute a
 SQUIT for a remote server. The server ordered to disconnect its peer
 generates a WALLOPS message with <comment> included, so that other
 users may be aware of the reason of this action.

 Numeric replies:

 ERR_NOPRIVILEGES ERR_NOSUCHSERVER
 ERR_NEEDMOREPARAMS

 Examples:

SQUIT tolsun.oulu.fi :Bad Link ?
 ; Command to uplink of the server tol¡
 son.oulu.fi to terminate its connection
 with comment "Bad Link".

:Trillian SQUIT cm22.eng.umd.edu :Server out of control
 ; Command from Trillian from to discon¡
 nect "cm22.eng.umd.edu" from the net
 with comment "Server out of control".

3.2 Channel operations

Kalt [Page 16]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 This group of messages is concerned with manipulating channels,
 their properties (channel modes), and their contents (typically
 users). For this reason, these messages SHALL NOT be made available
 to services.

 All of these message is a request which will or will not be
 granted by the server. The server MUST send a reply informing the
 user whether the request was granted, denied or generated an error.
 When the server grants the request, the message is typically sent
 back (eventually reformatted) to the user with the prefix set to the
 user itself.

 The rules governing how channels are managed are enforced by the
 servers. These rules are beyond the scope of this document. More
 details are found in "Internet Relay Chat: Channel Management" [IRC-
 CHAN].

3.2.1 Join message

 Command: JOIN
Parameters: (<channel> *("," <channel>) [<key> *("," <key>)]) / "0"

 The JOIN command is used by a user to request to start listening a
 specific channel. Servers MUST be able to parse arguments in the
 form of a list of target, but SHOULD NOT use lists when sending JOIN
 messages to clients.

 Once a user has joined a channel, he receives information about
 all commands his server receives affecting the channel. This
 includes JOIN, MODE, KICK, PART, QUIT and of course PRIVMSG/NOTICE.
 This allows channel members to keep track of the other channel mem¡
 bers, as well as channel modes.

 If a JOIN is successful, the user receives a JOIN message as con¡
 firmation and is then sent the channel's topic (using RPL_TOPIC) and
 the list of users who are on the channel (using RPL_NAMREPLY), which
 MUST include the user joining.

 Note that this message accepts a special argument ("0"), which is
 a special request to leave all channels the user is currently a mem¡
 ber of. The server will process this message as if the user had sent
 a PART command (See Section 3.2.2) for each channel he is a member
 of.

 Numeric Replies:

 ERR_NEEDMOREPARAMS ERR_BANNEDFROMCHAN
 ERR_INVITEONLYCHAN ERR_BADCHANNELKEY

Kalt [Page 17]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 ERR_CHANNELISFULL ERR_BADCHANMASK
 ERR_NOSUCHCHANNEL ERR_TOOMANYCHANNELS
 ERR_TOOMANYTARGETS ERR_UNAVAILRESOURCE
 RPL_TOPIC

 Examples:

JOIN #foobar ; Command to join channel #foobar.

JOIN &foo fubar ; Command to join channel &foo using key
 "fubar".

JOIN #foo,&bar fubar ; Command to join channel #foo using key
 "fubar" and &bar using no key.

JOIN #foo,#bar fubar,foobar ; Command to join channel #foo using key
 "fubar", and channel #bar using key
 "foobar".

JOIN #foo,#bar ; Command to join channels #foo and
 #bar.

JOIN 0 ; Leave all currently joined channels.

:WiZ!jto@tolsun.oulu.fi JOIN #Twilight_zone
 ; JOIN message from WiZ on channel #Twi¡
 light_zone

3.2.2 Part message

 Command: PART
Parameters: <channel> *("," <channel>) [<Part Message>]

 The PART command causes the user sending the message to be removed
from the list of active members for all given channels listed in the
parameter string. If a "Part Message" is given, this will be sent
instead of the default message, the nickname. This request is always
granted by the server.

 Servers MUST be able to parse arguments in the form of a list of tar¡
get, but SHOULD NOT use lists when sending PART messages to clients.

Numeric Replies:

 ERR_NEEDMOREPARAMS ERR_NOSUCHCHANNEL
 ERR_NOTONCHANNEL

Kalt [Page 18]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

Examples:

PART #twilight_zone ; Command to leave channel "#twi¡
 light_zone"

PART #oz-ops,&group5 ; Command to leave both channels
 "&group5" and "#oz-ops".

:WiZ!jto@tolsun.oulu.fi PART #playzone :I lost
 ; User WiZ leaving channel "#playzone"
 with the message "I lost".

3.2.3 Channel mode message

 Command: MODE
Parameters: <channel> *(("-" / "+") *<modes> *<modeparams>)

 The MODE command is provided so that users may query and change
 the characteristics of a channel. For more details on available
 modes and their uses, see "Internet Relay Chat: Channel Management"
 [IRC-CHAN]. Note that there is a maximum limit of three (3) changes
 per command for modes that take a parameter.

 Numeric Replies:

 ERR_NEEDMOREPARAMS ERR_KEYSET
 ERR_NOCHANMODES ERR_CHANOPRIVSNEEDED
 ERR_USERNOTINCHANNEL ERR_UNKNOWNMODE
 RPL_CHANNELMODEIS
 RPL_BANLIST RPL_ENDOFBANLIST
 RPL_EXCEPTLIST RPL_ENDOFEXCEPTLIST
 RPL_INVITELIST RPL_ENDOFINVITELIST
 RPL_UNIQOPIS

 The following examples are given to help understanding the syntax
 of the MODE command, but refer to modes defined in "Internet Relay
 Chat: Channel Management" [IRC-CHAN].

 Examples:

MODE #Finnish +imI *!*@*.fi ; Command to make #Finnish channel mod¡
 erated and 'invite-only' with user with
 a hostname matching *.fi automatically
 invited.

MODE #Finnish +o Kilroy ; Command to give 'chanop' privileges to
 Kilroy on channel #Finnish.

Kalt [Page 19]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

MODE #Finnish +v Wiz ; Command to allow WiZ to speak on
 #Finnish.

MODE #Fins -s ; Command to remove 'secret' flag from
 channel #Fins.

MODE #42 +k oulu ; Command to set the channel key to
 "oulu".

MODE #42 -k oulu ; Command to remove the "oulu" channel
 key on channel "#42".

MODE #eu-opers +l 10 ; Command to set the limit for the num¡
 ber of users on channel "#eu-opers" to
 10.

:WiZ!jto@tolsun.oulu.fi MODE #eu-opers -l
 ; User "WiZ" removing the limit for the
 number of users on channel "#eu-opers".

MODE &oulu +b ; Command to list ban masks set for the
 channel "&oulu".

MODE &oulu +b *!*@* ; Command to prevent all users from
 joining.

MODE &oulu +b *!*@*.edu +e *!*@*.bu.edu
 ; Command to prevent any user from a
 hostname matching *.edu from joining,
 except if matching *.bu.edu

MODE #bu +be *!*@*.edu *!*@*.bu.edu
 ; Commant to prevent any user from a
 hostname matching *.edu from joining,
 except if matching *.bu.edu

MODE #meditation e ; Command to list exception masks set
 for the channel "#meditation".

MODE #meditation I ; Command to list invitations masks set
 for the channel "#meditation".

MODE !12345ircd O ; Command to ask who the channel creator
 for "!12345ircd" is

3.2.4 Topic message

Kalt [Page 20]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 Command: TOPIC
Parameters: <channel> [<topic>]

 The TOPIC command is used to change or view the topic of a chan¡
 nel. The topic for channel <channel> is returned if there is no
 <topic> given. If the <topic> parameter is present, the topic for
 that channel will be changed, if this action is allowed for the user
 requesting it. If the <topic> parameter is an empty string, the
 topic for that channel will be removed.

 Numeric Replies:

 ERR_NEEDMOREPARAMS ERR_NOTONCHANNEL
 RPL_NOTOPIC RPL_TOPIC
 ERR_CHANOPRIVSNEEDED ERR_NOCHANMODES

 Examples:

:WiZ!jto@tolsun.oulu.fi TOPIC #test :New topic
 ; User Wiz setting the topic.

TOPIC #test :another topic ; Command to set the topic on #test to
 "another topic".

TOPIC #test : ; Command to clear the topic on #test.

TOPIC #test ; Command to check the topic for #test.

3.2.5 Names message

 Command: NAMES
Parameters: [<channel> *("," <channel>) [<target>]]

 By using the NAMES command, a user can list all nicknames that are
 visible to him. For more details on what is visible and what is not,
 see "Internet Relay Chat: Channel Management" [IRC-CHAN]. The <chan¡
 nel> parameter specifies which channel(s) to return information
 about. There is no error reply for bad channel names.

 If no <channel> parameter is given, a list of all channels and
 their occupants is returned. At the end of this list, a list of
 users who are visible but either not on any channel or not on a visi¡
 ble channel are listed as being on `channel' "*".

 Wildcards are allowed in the <target> parameter.

 Numerics:

Kalt [Page 21]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 ERR_TOOMANYMATCHES ERR_NOSUCHSERVER
 RPL_NAMREPLY RPL_ENDOFNAMES

 Examples:

NAMES #twilight_zone,#42 ; Command to list visible users on #twi¡
 light_zone and #42

NAMES ; Command to list all visible channels
 and users

3.2.6 List message

 Command: LIST
Parameters: [<channel> *("," <channel>) [<target>]]

 The list command is used to list channels and their topics. If
 the <channel> parameter is used, only the status of that channel is
 displayed.

 Wildcards are allowed in the <target> parameter.

 Numeric Replies:

 ERR_TOOMANYMATCHES ERR_NOSUCHSERVER
 RPL_LIST RPL_LISTEND

 Examples:

LIST ; Command to list all channels.

LIST #twilight_zone,#42 ; Command to list channels #twi¡
 light_zone and #42

3.2.7 Invite message

 Command: INVITE
Parameters: <nickname> <channel>

 The INVITE command is used to invite a user to a channel. The
 parameter <nickname> is the nickname of the person to be invited to
 the target channel <channel>. There is no requirement that the chan¡
 nel the target user is being invited to must exist or be a valid
 channel. However, if the channel exists, only members of the channel
 are allowed to invite other users. When the channel has invite-only
 flag set, only channel operators may issue INVITE command.

Kalt [Page 22]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 Only the user inviting and the user being invited will receive
 notification of the invitation. Other channel members are not noti¡
 fied. (This is unlike the MODE changes, and is occasionnally the
 source of trouble for users.)

 Numeric Replies:

 ERR_NEEDMOREPARAMS ERR_NOSUCHNICK
 ERR_NOTONCHANNEL ERR_USERONCHANNEL
 ERR_CHANOPRIVSNEEDED
 RPL_INVITING RPL_AWAY

 Examples:

:Angel!wings@irc.org INVITE Wiz #Dust
 ; Message to WiZ when he has been
 invited by user Angel to channel #Dust

INVITE Wiz #Twilight_Zone ; Command to invite WiZ to #Twi¡
 light_zone

3.2.8 Kick command

 Command: KICK
Parameters: <channel> *("," <channel>) <user> *("," <user>) [<comment>]

 The KICK command can be used to request the forced removal of a
 user from a channel. It causes the <user> to PART from the <channel>
 by force. For the message to be syntactically correct, there MUST be
 either one channel parameter and multiple user parameter, or as many
 channel parameters as there are user parameters.

 The server MUST NOT send KICK messages with multiple channels or
 users to clients. This is necessarily to maintain backward compati¡
 bility with old client software.

 Numeric Replies:

 ERR_NEEDMOREPARAMS ERR_NOSUCHCHANNEL
 ERR_BADCHANMASK ERR_CHANOPRIVSNEEDED
 ERR_USERNOTINCHANNEL ERR_NOTONCHANNEL

 Examples:

KICK &Melbourne Matthew ; Command to kick Matthew from &Mel¡
 bourne

Kalt [Page 23]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

KICK #Finnish John :Speaking English
 ; Command to kick John from #Finnish
 using "Speaking English" as the reason
 (comment).

:WiZ!jto@tolsun.oulu.fi KICK #Finnish John
 ; KICK message on channel #Finnish from
 WiZ to remove John from channel

3.3 Sending messages

 The main purpose of the IRC protocol is to provide a base for
 clients to communicate with each other. PRIVMSG, NOTICE and SQUERY
 (described in Section 3.5 on Service Query and Commands) are the only
 messages available which actually perform delivery of a text message
 from one client to another - the rest just make it possible and try
 to ensure it happens in a reliable and structured manner.

3.3.1 Private messages

 Command: PRIVMSG
Parameters: <msgtarget> <text to be sent>

 PRIVMSG is used to send private messages between users, as well as
 to send messages to channels. <msgtarget> is usually the nickname of
 the recipient of the message, or a channel name.

 The <msgtarget> parameter may also be a host mask (#<mask>) or
 server mask ($<mask>). In both cases the server will only send the
 PRIVMSG to those who have a server or host matching the mask. The
 mask MUST have at least 1 (one) "." in it and no wildcards following
 the last ".". This requirement exists to prevent people sending mes¡
 sages to "#*" or "$*", which would broadcast to all users. Wildcards
 are the '*' and '?' characters. This extension to the PRIVMSG com¡
 mand is only available to operators.

 Numeric Replies:

 ERR_NORECIPIENT ERR_NOTEXTTOSEND
 ERR_CANNOTSENDTOCHAN ERR_NOTOPLEVEL
 ERR_WILDTOPLEVEL ERR_TOOMANYTARGETS
 ERR_NOSUCHNICK
 RPL_AWAY

 Examples:

Kalt [Page 24]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

:Angel!wings@irc.org PRIVMSG Wiz :Are you receiving this message ?
 ; Message from Angel to Wiz.

PRIVMSG Angel :yes I'm receiving it !
 ; Command to send a message to Angel.

PRIVMSG jto@tolsun.oulu.fi :Hello !
 ; Command to send a message to a user on
 server tolsun.oulu.fi with username of
 "jto".

PRIVMSG kalt%millennium.stealth.net@irc.stealth.net :Are you a frog?
 ; Message to a user on server
 irc.stealth.net with username of "kalt",
 and connected from the host millen¡
 nium.stealth.net.

PRIVMSG kalt%millennium.stealth.net :Do you like cheese?
 ; Message to a user on the local server
 with username of "kalt", and connected
 from the host millennium.stealth.net.

PRIVMSG Wiz!jto@tolsun.oulu.fi :Hello !
 ; Message to the user with nickname Wiz
 who is connected from the host tol¡
 sun.oulu.fi and has the username "jto".

PRIVMSG $*.fi :Server tolsun.oulu.fi rebooting.
 ; Message to everyone on a server which
 has a name matching *.fi.

PRIVMSG #*.edu :NSFNet is undergoing work, expect interruptions
 ; Message to all users who come from a
 host which has a name matching *.edu.

3.3.2 Notice

 Command: NOTICE
Parameters: <msgtarget> <text>

 The NOTICE command is used similarly to PRIVMSG. The difference
 between NOTICE and PRIVMSG is that automatic replies MUST NEVER be
 sent in response to a NOTICE message. This rule applies to servers
 too - they MUST NOT send any error reply back to the client on
 receipt of a notice. The object of this rule is to avoid loops
 between clients automatically sending something in response to some¡
 thing it received.

Kalt [Page 25]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 This command is available to services as well as users.

 This is typically used by services, and automatons (clients with
 either an AI or other interactive program controlling their actions).

 See PRIVMSG for more details on replies and examples.

3.4 Server queries and commands

 The server query group of commands has been designed to return
 information about any server which is connected to the network.

 In these queries, where a parameter appears as <target>, wildcard
 masks are usually valid. For each parameter, however, only one query
 and set of replies is to be generated. In most cases, if a nickname
 is given, it will mean the server to which the user is connected.

 These messages typically have little value for services, it is
 therefore RECOMMENDED to forbid services from using them.

3.4.1 Motd message

 Command: MOTD
Parameters: [<target>]

 The MOTD command is used to get the "Mot Of The Day" of the given
 server, or current server if <target> is omitted.

 Wildcards are allowed in the <target> parameter.

 Numeric Replies:
 RPL_MOTDSTART RPL_MOTD
 RPL_ENDOFMOTD ERR_NOMOTD

3.4.2 Lusers message

 Command: LUSERS
Parameters: [<mask> [<target>]]

 The LUSERS command is used to get statistics about the size of the
 IRC network. If no parameter is given, the reply will be about the
 whole net. If a <mask> is specified, then the reply will only con¡
 cern the part of the network formed by the servers matching the mask.
 Finally, if the <target> parameter is specified, the request is for¡
 warded to that server which will generate the reply.

 Wildcards are allowed in the <target> parameter.

Kalt [Page 26]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 Numeric Replies:

 RPL_LUSERCLIENT RPL_LUSEROP
 RPL_LUSERUNKOWN RPL_LUSERCHANNELS
 RPL_LUSERME ERR_NOSUCHSERVER

3.4.3 Version message

 Command: VERSION
Parameters: [<target>]

 The VERSION command is used to query the version of the server
 program. An optional parameter <target> is used to query the version
 of the server program which a client is not directly connected to.

 Wildcards are allowed in the <target> parameter.

 Numeric Replies:

 ERR_NOSUCHSERVER RPL_VERSION

 Examples:

VERSION tolsun.oulu.fi ; Command to check the version of server
 "tolsun.oulu.fi".

3.4.4 Stats message

 Command: STATS
Parameters: [<query> [<target>]]

 The stats command is used to query statistics of certain server.
 If <query> parameter is omitted, only the end of stats reply is sent
 back.

 A query may be given for any single letter which is only checked
 by the destination server and is otherwise passed on by intermediate
 servers, ignored and unaltered.

 Wildcards are allowed in the <target> parameter.

 Except for the ones below, the list of valid queries is implemen¡
 tation dependant. The standard queries below SHOULD be supported by
 the server:

 l - returns a list of the server's connections, showing how
 long each connection has been established and the traffic

Kalt [Page 27]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 over that connection in Kbytes and messages for each
 direction;
 m - returns a list of commands supported by the server and
 the usage count for each; commands for which the usage
 count is zero MAY be ommitted;
 o - returns a list of configured privileged users, operators;
 u - returns a string showing how long the server has been up.

 It is also RECOMMENDED that client and server access configuration
 be published this way.

 Numeric Replies:

 ERR_NOSUCHSERVER
 RPL_STATSLINKINFO RPL_STATSUPTIME
 RPL_STATSCOMMANDS RPL_STATSOLINE
 RPL_ENDOFSTATS

 Examples:

STATS m ; Command to check the command usage for
 the server you are connected to

3.4.5 Links message

 Command: LINKS
Parameters: [[<remote server>] <server mask>]

 With LINKS, a user can list all servernames, which are known by
 the server answering the query. The returned list of servers MUST
 match the mask, or if no mask is given, the full list is returned.

 If <remote server> is given in addition to <server mask>, the
 LINKS command is forwarded to the first server found that matches
 that name (if any), and that server is then required to answer the
 query.

 Numeric Replies:

 ERR_NOSUCHSERVER
 RPL_LINKS RPL_ENDOFLINKS

 Examples:

LINKS *.au ; Command to list all servers which have
 a name that matches *.au;

Kalt [Page 28]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

LINKS *.edu *.bu.edu ; Command to list servers matching
 *.bu.edu as seen by the tirst server
 matching *.edu.

3.4.6 Time message

 Command: TIME
Parameters: [<target>]

 The time command is used to query local time from the specified
 server. If the <target> parameter is not given, the server receiving
 the command must reply to the query.

 Wildcards are allowed in the <target> parameter.

 Numeric Replies:

 ERR_NOSUCHSERVER RPL_TIME

 Examples:

TIME tolsun.oulu.fi ; check the time on the server "tol¡
 son.oulu.fi"

3.4.7 Connect message

 Command: CONNECT
Parameters: <target server> <port> [<remote server>]

 The CONNECT command can be used to request a server to try to
 establish a new connection to another server immediately. CONNECT is
 a privileged command and SHOULD be available only to IRC Operators.
 If a <remote server> is given and its mask doesn't match name of the
 parsing server, the CONNECT attempt is sent to the first match of
 remote server. Otherwise the CONNECT attempt is made by the server
 processing the request.

 The server receiving a remote CONNECT command SHOULD generate a
 WALLOPS message describing the source and target of the request.

 Numeric Replies:

 ERR_NOSUCHSERVER ERR_NOPRIVILEGES
 ERR_NEEDMOREPARAMS

 Examples:

Kalt [Page 29]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

CONNECT tolsun.oulu.fi 6667 ; Command to attempt to connect local
 server to tolsun.oulu.fi on port 6667

3.4.8 Trace message

 Command: TRACE
Parameters: [<target>]

 TRACE command is used to find the route to specific server and
 information about its peers. Each server that processes this command
 MUST report to the sender about it. The replies from pass-through
 links form a chain, which shows route to destination. After sending
 this reply back, the query MUST be sent to the next server until
 given <target> server is reached.

 TRACE command is used to find the route to specific server. Each
 server that processes this message MUST tell the sender about it by
 sending a reply indicating it is a pass-through link, forming a chain
 of replies. After sending this reply back, it MUST then send the
 TRACE message to the next server until given server is reached. If
 the <target> parameter is omitted, it is RECOMMENDED that TRACE com¡
 mand sends a message to the sender telling which servers the local
 server has direct connection to.

 If the destination given by <target> is an actual server, the des¡
 tination server is REQUIRED to report all servers, services and oper¡
 ators which are connected to it; if the command was issued by an
 operator, the server MAY also report all users which are connected to
 it. If the destination given by <target> is a nickname, then only a
 reply for that nickname is given. If the <target> parameter is omit¡
 ted, it is RECOMMENDED that the TRACE command is parsed as targetted
 to the processing server.

 Wildcards are allowed in the <target> parameter.

 Numeric Replies:

 ERR_NOSUCHSERVER

 If the TRACE message is destined for another server, all
 intermediate servers must return a RPL_TRACELINK reply to indicate
 that the TRACE passed through it and where it is going next.

 RPL_TRACELINK

 A TRACE reply may be composed of any number of the following

Kalt [Page 30]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 numeric replies.

 RPL_TRACECONNECTING RPL_TRACEHANDSHAKE
 RPL_TRACEUNKNOWN RPL_TRACEOPERATOR
 RPL_TRACEUSER RPL_TRACESERVER
 RPL_TRACESERVICE RPL_TRACENEWTYPE
 RPL_TRACECLASS RPL_TRACELOG
 RPL_TRACEEND

 Examples:

TRACE *.oulu.fi ; TRACE to a server matching *.oulu.fi

3.4.9 Admin command

 Command: ADMIN
Parameters: [<target>]

 The admin command is used to find information about the adminis¡
 trator of the given server, or current server if <target> parameter
 is omitted. Each server MUST have the ability to forward ADMIN mes¡
 sages to other servers.

 Wildcards are allowed in the <target> parameter.

 Numeric Replies:

 ERR_NOSUCHSERVER
 RPL_ADMINME RPL_ADMINLOC1
 RPL_ADMINLOC2 RPL_ADMINEMAIL

 Examples:

ADMIN tolsun.oulu.fi ; request an ADMIN reply from tol¡
 sun.oulu.fi

ADMIN syrk ; ADMIN request for the server to which
 the user syrk is connected

3.4.10 Info command

 Command: INFO
Parameters: [<target>]

 The INFO command is REQUIRED to return information describing the
 server: its version, when it was compiled, the patchlevel, when it

Kalt [Page 31]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 was started, and any other miscellaneous information which may be
 considered to be relevant.

 Wildcards are allowed in the <target> parameter.

 Numeric Replies:

 ERR_NOSUCHSERVER
 RPL_INFO RPL_ENDOFINFO

 Examples:

INFO csd.bu.edu ; request an INFO reply from csd.bu.edu

INFO Angel ; request info from the server that
 Angel is connected to.

3.5 Service Query and Commands
 The service query group of commands has been designed to return
 information about any service which is connected to the network.

3.5.1 Servlist message

 Command: SERVLIST
Parameters: [<mask> [<type>]]

 The SERVLIST command is used to list services currently connected
 to the network and visible to the user issuing the command. The
 optional parameters may be used to restrict the result of the query
 (to matching services names, and services type).

 Numeric Replies:

 RPL_SERVLIST RPL_SERVLISTEND

3.5.2 Squery

 Command: SQUERY
Parameters: <servicename> <text>

 The SQUERY command is used similarly to PRIVMSG. The only differ¡
 ence is that the recipient MUST be a service. This is the only way
 for a text message to be delivered to a service.

 See PRIVMSG for more details on replies and example.

 Examples:

Kalt [Page 32]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

SQUERY irchelp :HELP privmsg
 ; Message to the service with nickname irchelp.

SQUERY dict@irc.fr :fr2en blaireau
 ; Message to the service with name dict@irc.fr.

3.6 User based queries

 User queries are a group of commands which are primarily concerned
 with finding details on a particular user or group users. When using
 wildcards with any of these commands, if they match, they will only
 return information on users who are 'visible' to you. The visibility
 of a user is determined as a combination of the user's mode and the
 common set of channels you are both on.

 Although services SHOULD NOT be using this class of message, they
 are allowed to.

3.6.1 Who query

 Command: WHO
Parameters: [<mask> ["o"]]

 The WHO command is used by a client to generate a query which
 returns a list of information which 'matches' the <name> parameter
 given by the client. In the absence of the <name> parameter, all
 visible (users who aren't invisible (user mode +i) and who don't have
 a common channel with the requesting client) are listed. The same
 result can be achieved by using a <name> of "0" or any wildcard which
 will end up matching every visible user.

 The <mask> passed to WHO is matched against users' host, server,
 real name and nickname if the channel <mask> cannot be found.

 If the "o" parameter is passed only operators are returned accord¡
 ing to the name mask supplied.

 Numeric Replies:

 ERR_NOSUCHSERVER
 RPL_WHOREPLY RPL_ENDOFWHO

 Examples:

WHO *.fi ; Command to list all users who match
 against "*.fi".

Kalt [Page 33]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

WHO jto* o ; Command to list all users with a match
 against "jto*" if they are an operator.

3.6.2 Whois query

 Command: WHOIS
Parameters: [<target>] <mask> *("," <mask>)

 This command is used to query information about particular user.
 The server will answer this command with several numeric messages
 indicating different statuses of each user which matches the mask (if
 you are entitled to see them). If no wildcard is present in the
 <mask>, any information about that nick which you are allowed to see
 is presented.

 If the <target> parameter is specified, it sends the query to a
 specific server. It is useful if you want to know how long the user
 in question has been idle as only local server (ie. the server the
 user is directly connected to) knows that information, while every¡
 thing else is globally known.

 Wildcards are allowed in the <target> parameter.

 Numeric Replies:

 ERR_NOSUCHSERVER ERR_NONICKNAMEGIVEN
 RPL_WHOISUSER RPL_WHOISCHANNELS
 RPL_WHOISCHANNELS RPL_WHOISSERVER
 RPL_AWAY RPL_WHOISOPERATOR
 RPL_WHOISIDLE ERR_NOSUCHNICK
 RPL_ENDOFWHOIS

 Examples:

WHOIS wiz ; return available user information
 about nick WiZ

WHOIS eff.org trillian ; ask server eff.org for user informa¡
 tion about trillian

3.6.3 Whowas

 Command: WHOWAS
Parameters: <nickname> *("," <nickname>) [<count> [<target>]]

 Whowas asks for information about a nickname which no longer

Kalt [Page 34]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 exists. This may either be due to a nickname change or the user
 leaving IRC. In response to this query, the server searches through
 its nickname history, looking for any nicks which are lexically the
 same (no wild card matching here). The history is searched backward,
 returning the most recent entry first. If there are multiple
 entries, up to <count> replies will be returned (or all of them if no
 <count> parameter is given). If a non-positive number is passed as
 being <count>, then a full search is done.

 Wildcards are allowed in the <target> parameter.

 Numeric Replies:

 ERR_NONICKNAMEGIVEN ERR_WASNOSUCHNICK
 RPL_WHOWASUSER RPL_WHOISSERVER
 RPL_ENDOFWHOWAS

 Examples:

WHOWAS Wiz ; return all information in the nick
 history about nick "WiZ";

WHOWAS Mermaid 9 ; return at most, the 9 most recent
 entries in the nick history for "Mer¡
 maid";

WHOWAS Trillian 1 *.edu ; return the most recent history for
 "Trillian" from the first server found
 to match "*.edu".

3.7 Miscellaneous messages

 Messages in this category do not fit into any of the above cate¡
 gories but are nonetheless still a part of and REQUIRED by the proto¡
 col.

3.7.1 Kill message

 Command: KILL
Parameters: <nickname> <comment>

 The KILL command is used to cause a client-server connection to be
 closed by the server which has the actual connection. Servers gener¡
 ate KILL messages on nickname collisions. It MAY also be available
 available to users who have the operator status.

 Clients which have automatic reconnect algorithms effectively make

Kalt [Page 35]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 this command useless since the disconnection is only brief. It does
 however break the flow of data and can be used to stop large amounts
 of 'flooding' from abusive users or accidents. Abusive users usually
 don't care as they will reconnect promptly and resume their abusive
 behaviour. To prevent this command from being abused, any user may
 elect to receive KILL messages generated for others to keep an 'eye'
 on would be trouble spots.

 In an arena where nicknames are REQUIRED to be globally unique at
 all times, KILL messages are sent whenever 'duplicates' are detected
 (that is an attempt to register two users with the same nickname) in
 the hope that both of them will disappear and only 1 reappear.

 When a client is removed as the result of a KILL message, the
 server SHOULD add the nickname to the list of unavailable nicknames
 in an attempt to avoid clients to re-used this name immediately which
 is usually the pattern of abusive behaviour often leading to useless
 "KILL loops". See the "IRC Server Protocol" document [IRC-SERVER]
 for more information on this procedure.

 The comment given MUST reflect the actual reason for the KILL.
 For server-generated KILLs it usually is made up of details concern¡
 ing the origins of the two conflicting nicknames. For users it is
 left up to them to provide an adequate reason to satisfy others who
 see it. To prevent/discourage fake KILLs from being generated to
 hide the identify of the KILLer, the comment also shows a 'kill-path'
 which is updated by each server it passes through, each prepending
 its name to the path.

 Numeric Replies:

 ERR_NOPRIVILEGES ERR_NEEDMOREPARAMS
 ERR_NOSUCHNICK ERR_CANTKILLSERVER

 NOTE:
 It is RECOMMENDED that only Operators be allowed to kill other
 users with KILL command. This command has been the subject of many
 controversies over the years, and along with the above recommenda¡
 tion, it is also widely recognized that not even operators should be
 allowed to kill users on remote servers.

3.7.2 Ping message

 Command: PING
Parameters: <server1> [<server2>]

 The PING command is used to test the presence of an active client
 or server at the other end of the connection. Servers send a PING

Kalt [Page 36]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 message at regular intervals if no other activity detected coming
 from a connection. If a connection fails to respond to a PING mes¡
 sage within a set amount of time, that connection is closed. A PING
 message MAY be sent even if the connection is active.

 When a PING message is received, the appropriate PONG message MUST
 be sent as reply to <server1> (server which sent the PING message
 out) as soon as possible. If the <server2> parameter is specified,
 it represents the target of the ping, and the message gets forwarded
 there.

 Numeric Replies:

 ERR_NOORIGIN ERR_NOSUCHSERVER

 Examples:

PING tolsun.oulu.fi ; Command to send a PING message to
 server

PING WiZ tolsun.oulu.fi ; Command from WiZ to send a PING mes¡
 sage to server "tolsun.oulu.fi"

PING :irc.funet.fi ; Ping message sent by server
 "irc.funet.fi"

3.7.3 Pong message

 Command: PONG
Parameters: <server> [<server2>]

 PONG message is a reply to ping message. If parameter <server2>
 is given, this message MUST be forwarded to given target. The
 <server> parameter is the name of the entity who has responded to
 PING message and generated this message.

 Numeric Replies:

 ERR_NOORIGIN ERR_NOSUCHSERVER

 Example:

PONG csd.bu.edu tolsun.oulu.fi ; PONG message from csd.bu.edu to tol¡
 sun.oulu.fi

3.7.4 Error

Kalt [Page 37]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 Command: ERROR
Parameters: <error message>

 The ERROR command is for use by servers when reporting a serious
 or fatal error to its peers. It may also be sent from one server to
 another but MUST NOT be accepted from any normal unknown clients.

 Only an ERROR message SHOULD be used for reporting errors which
 occur with a server-to-server link. An ERROR message is sent to the
 server at the other end (which reports it to appropriate local users
 and logs) and to appropriate local users and logs. It is not to be
 passed onto any other servers by a server if it is received from a
 server.

 The ERROR message is also used before terminating a client connec¡
 tion.

 When a server sends a received ERROR message to its operators, the
 message SHOULD be encapsulated inside a NOTICE message, indicating
 that the client was not responsible for the error.

 Numerics:

 None.

 Examples:

ERROR :Server *.fi already exists
 ; ERROR message to the other server
 which caused this error.

NOTICE WiZ :ERROR from csd.bu.edu -- Server *.fi already exists
 ; Same ERROR message as above but sent
 to user WiZ on the other server.

Kalt [Page 38]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

4. Optional features
 This section describes OPTIONAL messages. They are not required
 in a working server implementation of the protocol described herein.
 In the absence of the feature, an error reply message MUST be gener¡
 ated or an unknown command error. If the message is destined for
 another server to answer then it MUST be passed on (elementary pars¡
 ing REQUIRED) The allocated numerics for this are listed with the
 messages below.

 From this section, only the USERHOST and ISON messages are avail¡
 able to services.

4.1 Away

 Command: AWAY
Parameters: [<text>]

 With the AWAY command, clients can set an automatic reply string
 for any PRIVMSG commands directed at them (not to a channel they are
 on). The server sends an automatic reply to the client sending the
 PRIVMSG command. The only replying server is the one to which the
 sending client is connected to.

 The AWAY command is used either with one parameter, to set an AWAY
 message, or with no parameters, to remove the AWAY message.

 Because of its high cost (memory and bandwidth wise), the AWAY
 message SHOULD only be used for client-server communication. A
 server MAY choose to silently ignore AWAY messages received from
 other servers. To update the away status of a client across servers,
 the user mode 'a' SHOULD be used instead. (See Section 3.1.5)

 Numeric Replies:

 RPL_UNAWAY RPL_NOWAWAY

 Example:

AWAY :Gone to lunch. Back in 5 ; Command to set away message to "Gone
 to lunch. Back in 5".

4.2 Rehash message

 Command: REHASH
Parameters: None

 The rehash command is an administrative command which can be used

Kalt [Page 39]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 by an operator to force the server to re-read and process its config¡
 uration file.

 Numeric Replies:

 RPL_REHASHING ERR_NOPRIVILEGES

 Example:

REHASH ; message from user with operator status
 to server asking it to reread its con¡
 figuration file.

4.3 Die message

 Command: DIE
Parameters: None

 An operator can use the DIE command to shutdown the server. This
 message is optional since it may be viewed as a risk to allow arbi¡
 trary people to connect to a server as an operator and execute this
 command.

 The DIE command MUST always be fully processed by the server to
 which the sending client is connected and MUST NOT be passed onto
 other connected servers.

 Numeric Replies:

 ERR_NOPRIVILEGES

 Example:

DIE ; no parameters required.

4.4 Restart message

 Command: RESTART
Parameters: None

 An operator can use the restart command to force the server to
 restart itself. This message is optional since it may be viewed as a
 risk to allow arbitrary people to connect to a server as an operator
 and execute this command, causing (at least) a disruption to service.

Kalt [Page 40]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 The RESTART command MUST always be fully processed by the server
 to which the sending client is connected and MUST NOT be passed onto
 other connected servers.

 Numeric Replies:

 ERR_NOPRIVILEGES

 Example:

RESTART ; no parameters required.

4.5 Summon message

 Command: SUMMON
Parameters: <user> [<target> [<channel>]]

 The SUMMON command can be used to give users who are on a host
 running an IRC server a message asking them to please join IRC. This
 message is only sent if the target server (a) has SUMMON enabled, (b)
 the user is logged in and (c) the server process can write to the
 user's tty (or similar).

 If no <server> parameter is given it tries to summon <user> from
 the server the client is connected to is assumed as the target.

 If summon is not enabled in a server, it MUST return the ERR_SUM¡
 MONDISABLED numeric.

 Numeric Replies:

 ERR_NORECIPIENT ERR_FILEERROR
 ERR_NOLOGIN ERR_NOSUCHSERVER ERR_SUMMONDIS¡
 ABLED RPL_SUMMONING

 Examples:

SUMMON jto ; summon user jto on the server's host

SUMMON jto tolsun.oulu.fi ; summon user jto on the host which a
 server named "tolsun.oulu.fi" is run¡
 ning.

4.6 Users

Kalt [Page 41]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 Command: USERS
Parameters: [<target>]

 The USERS command returns a list of users logged into the server
 in a format similar to the UNIX commands who(1), rusers(1) and fin¡
 ger(1). If disabled, the correct numeric MUST be returned to indi¡
 cate this.

 Because of the security implications of such a command, it SHOULD
 be disabled by default in server implementations. Enabling it SHOULD
 require recompiling the server or some equivalent change rather than
 simply toggling an option and restarting the server. The procedure
 to enable this command SHOULD also include suitable large comments.

 Numeric Replies:

 ERR_NOSUCHSERVER ERR_FILEERROR
 RPL_USERSSTART RPL_USERS
 RPL_NOUSERS RPL_ENDOFUSERS
 ERR_USERSDISABLED

 Disabled Reply:

 ERR_USERSDISABLED

 Example:

USERS eff.org ; request a list of users logged in on
 server eff.org

4.7 Operwall message

 Command: WALLOPS
Parameters: Text to be sent

 The WALLOPS command is used to send a message to all currently
 connected users who have set the 'w' user mode for themselves. (See

Section 3.1.5 "User modes").

 After implementing WALLOPS as a user command it was found that it
 was often and commonly abused as a means of sending a message to a
 lot of people. Due to this, it is RECOMMENDED that the implementa¡
 tion of WALLOPS allows and recognizes only servers as the originators
 of WALLOPS.

 Numeric Replies:

Kalt [Page 42]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 ERR_NEEDMOREPARAMS

 Example:

:csd.bu.edu WALLOPS :Connect '*.uiuc.edu 6667' from Joshua
 ; WALLOPS message from csd.bu.edu
 announcing a CONNECT message it received
 from Joshua and acted upon.

4.8 Userhost message

 Command: USERHOST
Parameters: <nickname> *(SPACE <nickname>)

 The USERHOST command takes a list of up to 5 nicknames, each sepa¡
 rated by a space character and returns a list of information about
 each nickname that it found. The returned list has each reply sepa¡
 rated by a space.

 Numeric Replies:

 RPL_USERHOST ERR_NEEDMOREPARAMS

 Example:

USERHOST Wiz Michael syrk ; USERHOST request for information on
 nicks "Wiz", "Michael", and "syrk"

:ircd.stealth.net 302 yournick :syrk=+syrk@millennium.stealth.net
 ; Reply for user syrk

4.9 Ison message

 Command: ISON
Parameters: <nickname> *(SPACE <nickname>)

 The ISON command was implemented to provide a quick and efficient
 means to get a response about whether a given nickname was currently
 on IRC. ISON only takes one (1) type of parameter: a space-separated
 list of nicks. For each nickname in the list that is present, the
 server adds that to its reply string. Thus the reply string may
 return empty (none of the given nicks are present), an exact copy of
 the parameter string (all of them present) or as any other subset of
 the set of nicks given in the parameter. The only limit on the num¡
 ber of nicks that may be checked is that the combined length MUST NOT
 be too large as to cause the server to chop it off so it fits in 512

Kalt [Page 43]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 characters.

 ISON is only processed by the server local to the client sending
 the command and thus not passed onto other servers for further pro¡
 cessing.

 Numeric Replies:

 RPL_ISON ERR_NEEDMOREPARAMS

 Example:

ISON phone trillian WiZ jarlek Avalon Angel Monstah syrk
 ; Sample ISON request for 7 nicks.

Kalt [Page 44]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

5. Replies

 The following is a list of numeric replies which are generated in
 response to the commands given above. Each numeric is given with its
 number, name and reply string.

5.1 Command responses

 Numerics in the range from 001 to 099 are used for client-server
 connections only and should never travel between servers. Replies
 generated in the response to commands are found in the range from 200
 to 399.

 001 RPL_WELCOME
 "Welcome to the Internet Relay Network \
 <nick>!<user>@<host>"
 002 RPL_YOURHOST
 "Your host is <servername>, running version <ver>"
 003 RPL_CREATED
 "This server was created <date>"
 004 RPL_MYINFO
 "<servername> <version> <available user modes> \
 <available channel modes>"

 - The server sends Replies 001 to 004 to a user upon
 successful registration.

 005 RPL_BOUNCE
 "Try server <server name>, port <port number>"

 - Sent by the server to a user to suggest an alternative
 server. This is often used when the connection is
 refused because the server is already full.

 302 RPL_USERHOST
 ":*1<reply> *(" " <reply>)"

 - Reply format used by USERHOST to list replies to
 the query list. The reply string is composed as
 follows:

 <reply> ::= <nick>['*'] '=' <'+'|'-'><hostname>

 The '*' indicates whether the client has registered
 as an Operator. The '-' or '+' characters represent
 whether the client has set an AWAY message or not
 respectively.

Kalt [Page 45]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 303 RPL_ISON
 ":*1<nick> *(" " <nick>)"

 - Reply format used by ISON to list replies to the
 query list.

 301 RPL_AWAY
 "<nick> :<away message>"
 305 RPL_UNAWAY
 ":You are no longer marked as being away"
 306 RPL_NOWAWAY
 ":You have been marked as being away"

 - These replies are used with the AWAY command (if
 allowed). RPL_AWAY is sent to any client sending a
 PRIVMSG to a client which is away. RPL_AWAY is only
 sent by the server to which the client is connected.
 Replies RPL_UNAWAY and RPL_NOWAWAY are sent when the
 client removes and sets an AWAY message.

 311 RPL_WHOISUSER
 "<nick> <user> <host> * :<real name>"
 312 RPL_WHOISSERVER
 "<nick> <server> :<server info>"
 313 RPL_WHOISOPERATOR
 "<nick> :is an IRC operator"
 317 RPL_WHOISIDLE
 "<nick> <integer> :seconds idle"
 318 RPL_ENDOFWHOIS
 "<nick> :End of WHOIS list"
 319 RPL_WHOISCHANNELS
 "<nick> :*(("@" / "+") <channel> " ")"

 - Replies 311 - 313, 317 - 319 are all replies
 generated in response to a WHOIS message. Given that
 there are enough parameters present, the answering
 server MUST either formulate a reply out of the above
 numerics (if the query nick is found) or return an
 error reply. The '*' in RPL_WHOISUSER is there as
 the literal character and not as a wild card. For
 each reply set, only RPL_WHOISCHANNELS may appear
 more than once (for long lists of channel names).
 The '@' and '+' characters next to the channel name
 indicate whether a client is a channel operator or
 has been granted permission to speak on a moderated
 channel. The RPL_ENDOFWHOIS reply is used to mark
 the end of processing a WHOIS message.

Kalt [Page 46]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 314 RPL_WHOWASUSER
 "<nick> <user> <host> * :<real name>"
 369 RPL_ENDOFWHOWAS
 "<nick> :End of WHOWAS"

 - When replying to a WHOWAS message, a server MUST use
 the replies RPL_WHOWASUSER, RPL_WHOISSERVER or
 ERR_WASNOSUCHNICK for each nickname in the presented
 list. At the end of all reply batches, there MUST
 be RPL_ENDOFWHOWAS (even if there was only one reply
 and it was an error).

 321 RPL_LISTSTART
 Obsolete. Not used.

 322 RPL_LIST
 "<channel> <# visible> :<topic>"
 323 RPL_LISTEND
 ":End of LIST"

 - Replies RPL_LIST, RPL_LISTEND mark the actual replies
 with data and end of the server's response to a LIST
 command. If there are no channels available to return,
 only the end reply MUST be sent.

 325 RPL_UNIQOPIS
 "<channel> <nickname>"

 324 RPL_CHANNELMODEIS
 "<channel> <mode> <mode params>"

 331 RPL_NOTOPIC
 "<channel> :No topic is set"
 332 RPL_TOPIC
 "<channel> :<topic>"

 - When sending a TOPIC message to determine the
 channel topic, one of two replies is sent. If
 the topic is set, RPL_TOPIC is sent back else
 RPL_NOTOPIC.

 341 RPL_INVITING
 "<channel> <nick>"

 - Returned by the server to indicate that the
 attempted INVITE message was successful and is
 being passed onto the end client.

Kalt [Page 47]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 342 RPL_SUMMONING
 "<user> :Summoning user to IRC"

 - Returned by a server answering a SUMMON message to
 indicate that it is summoning that user.

 346 RPL_INVITELIST
 "<channel> <invitemask>"
 347 RPL_ENDOFINVITELIST
 "<channel> :End of channel invite list"

 - When listing the 'invitations masks' for a given channel,
 a server is required to send the list back using the
 RPL_INVITELIST and RPL_ENDOFINVITELIST messages. A
 separate RPL_INVITELIST is sent for each active mask.
 After the masks have been listed (or if none present) a
 RPL_ENDOFINVITELIST MUST be sent.

 348 RPL_EXCEPTLIST
 "<channel> <exceptionmask>"
 349 RPL_ENDOFEXCEPTLIST
 "<channel> :End of channel exception list"

 - When listing the 'exception masks' for a given channel,
 a server is required to send the list back using the
 RPL_EXCEPTLIST and RPL_ENDOFEXCEPTLIST messages. A
 separate RPL_EXCEPTLIST is sent for each active mask.
 After the masks have been listed (or if none present)
 a RPL_ENDOFEXCEPTLIST MUST be sent.

 351 RPL_VERSION
 "<version>.<debuglevel> <server> :<comments>"

 - Reply by the server showing its version details.
 The <version> is the version of the software being
 used (including any patchlevel revisions) and the
 <debuglevel> is used to indicate if the server is
 running in "debug mode".

 The "comments" field may contain any comments about
 the version or further version details.

Kalt [Page 48]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 352 RPL_WHOREPLY
 "<channel> <user> <host> <server> <nick> \
 <H|G>[*][@|+] :<hopcount> <real name>"
 315 RPL_ENDOFWHO
 "<name> :End of WHO list"

 - The RPL_WHOREPLY and RPL_ENDOFWHO pair are used
 to answer a WHO message. The RPL_WHOREPLY is only
 sent if there is an appropriate match to the WHO
 query. If there is a list of parameters supplied
 with a WHO message, a RPL_ENDOFWHO MUST be sent
 after processing each list item with <name> being
 the item.

 353 RPL_NAMREPLY
 "("=" / "*" / "@") <channel> \
 :["@" / "+"] <nick> *(" " ["@" / "+"] <nick>)
 - "@" is used for secret channels, "*" for private
 channels, and "=" for others (public channels).

 366 RPL_ENDOFNAMES
 "<channel> :End of NAMES list"

 - To reply to a NAMES message, a reply pair consisting
 of RPL_NAMREPLY and RPL_ENDOFNAMES is sent by the
 server back to the client. If there is no channel
 found as in the query, then only RPL_ENDOFNAMES is
 returned. The exception to this is when a NAMES
 message is sent with no parameters and all visible
 channels and contents are sent back in a series of
 RPL_NAMEREPLY messages with a RPL_ENDOFNAMES to mark
 the end.

 364 RPL_LINKS
 "<mask> <server> :<hopcount> <server info>"
 365 RPL_ENDOFLINKS
 "<mask> :End of LINKS list"

 - In replying to the LINKS message, a server MUST send
 replies back using the RPL_LINKS numeric and mark the
 end of the list using an RPL_ENDOFLINKS reply.

Kalt [Page 49]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 367 RPL_BANLIST
 "<channel> <banmask>"
 368 RPL_ENDOFBANLIST
 "<channel> :End of channel ban list"

 - When listing the active 'bans' for a given channel,
 a server is required to send the list back using the
 RPL_BANLIST and RPL_ENDOFBANLIST messages. A separate
 RPL_BANLIST is sent for each active banmask. After the
 banmasks have been listed (or if none present) a
 RPL_ENDOFBANLIST MUST be sent.

 371 RPL_INFO
 ":<string>"
 374 RPL_ENDOFINFO
 ":End of INFO list"

 - A server responding to an INFO message is required to
 send all its 'info' in a series of RPL_INFO messages
 with a RPL_ENDOFINFO reply to indicate the end of the
 replies.

 375 RPL_MOTDSTART
 ":- <server> Message of the day - "
 372 RPL_MOTD
 ":- <text>"
 376 RPL_ENDOFMOTD
 ":End of MOTD command"

 - When responding to the MOTD message and the MOTD file
 is found, the file is displayed line by line, with
 each line no longer than 80 characters, using
 RPL_MOTD format replies. These MUST be surrounded
 by a RPL_MOTDSTART (before the RPL_MOTDs) and an
 RPL_ENDOFMOTD (after).

 381 RPL_YOUREOPER
 ":You are now an IRC operator"

 - RPL_YOUREOPER is sent back to a client which has
 just successfully issued an OPER message and gained
 operator status.

 382 RPL_REHASHING
 "<config file> :Rehashing"

 - If the REHASH option is used and an operator sends
 a REHASH message, an RPL_REHASHING is sent back to

Kalt [Page 50]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 the operator.

 383 RPL_YOURESERVICE
 "You are service <servicename>"

 - Sent by the server to a service upon successful
 registration.

 391 RPL_TIME
 "<server> :<string showing server's local time>"

 - When replying to the TIME message, a server MUST send
 the reply using the RPL_TIME format above. The string
 showing the time need only contain the correct day and
 time there. There is no further requirement for the
 time string.

 392 RPL_USERSSTART
 ":UserID Terminal Host"
 393 RPL_USERS
 ":<username> <ttyline> <hostname>"
 394 RPL_ENDOFUSERS
 ":End of users"
 395 RPL_NOUSERS
 ":Nobody logged in"

 - If the USERS message is handled by a server, the
 replies RPL_USERSTART, RPL_USERS, RPL_ENDOFUSERS and
 RPL_NOUSERS are used. RPL_USERSSTART MUST be sent
 first, following by either a sequence of RPL_USERS
 or a single RPL_NOUSER. Following this is
 RPL_ENDOFUSERS.

Kalt [Page 51]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 200 RPL_TRACELINK
 "Link <version & debug level> <destination> \
 <next server> V<protocol version> \
 <link uptime in seconds> <backstream sendq>\
 <upstream sendq>"
 201 RPL_TRACECONNECTING
 "Try. <class> <server>"
 202 RPL_TRACEHANDSHAKE
 "H.S. <class> <server>"
 203 RPL_TRACEUNKNOWN
 "???? <class> [<client IP address in dot form>]"
 204 RPL_TRACEOPERATOR
 "Oper <class> <nick>"
 205 RPL_TRACEUSER
 "User <class> <nick>"
 206 RPL_TRACESERVER
 "Serv <class> <int>S <int>C <server> \
 <nick!user|*!*>@<host|server> V<protocol version>"
 207 RPL_TRACESERVICE
 "Service <class> <name> <type> <active type>"
 208 RPL_TRACENEWTYPE
 "<newtype> 0 <client name>"
 209 RPL_TRACECLASS
 "Class <class> <count>"
 210 RPL_TRACERECONNECT
 Unused.
 261 RPL_TRACELOG
 "File <logfile> <debug level>"
 262 RPL_TRACEEND
 "<server name> <version & debug level> :End of TRACE"

 - The RPL_TRACE* are all returned by the server in
 response to the TRACE message. How many are
 returned is dependent on the TRACE message and
 whether it was sent by an operator or not. There
 is no predefined order for which occurs first.
 Replies RPL_TRACEUNKNOWN, RPL_TRACECONNECTING and
 RPL_TRACEHANDSHAKE are all used for connections
 which have not been fully established and are either
 unknown, still attempting to connect or in the
 process of completing the 'server handshake'.
 RPL_TRACELINK is sent by any server which handles
 a TRACE message and has to pass it on to another
 server. The list of RPL_TRACELINKs sent in
 response to a TRACE command traversing the IRC
 network should reflect the actual connectivity of
 the servers themselves along that path.
 RPL_TRACENEWTYPE is to be used for any connection

Kalt [Page 52]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 which does not fit in the other categories but is
 being displayed anyway.
 RPL_TRACEEND is sent to indicate the end of the list.

 211 RPL_STATSLINKINFO
 "<linkname> <sendq> <sent messages> \
 <sent Kbytes> <received messages> \
 <received Kbytes> <time open>"

 - reports statistics on a connection. <linkname>
 identifies the particular connection, <sendq> is
 the amount of data that is queued and waiting to be
 sent <sent messages> the number of messages sent,
 and <sent Kbytes> the amount of data sent, in
 Kbytes. <received messages> and <received Kbytes>
 are the equivalent of <sent messages> and <sent
 Kbytes> for received data, respectively. <time
 open> indicates how long ago the connection was
 opened, in seconds.

 212 RPL_STATSCOMMANDS
 "<command> <count> <byte count> <remote count>"

 - reports statistics on commands usage.

 219 RPL_ENDOFSTATS
 "<stats letter> :End of STATS report"

 242 RPL_STATSUPTIME
 ":Server Up %d days %d:%02d:%02d"

 - reports the server uptime.

 243 RPL_STATSOLINE
 "O <hostmask> * <name>"

 - reports the allowed hosts that may become IRC
 operators.

 221 RPL_UMODEIS
 "<user mode string>"

 - To answer a query about a client's own mode,
 RPL_UMODEIS is sent back.

Kalt [Page 53]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 234 RPL_SERVLIST
 "<name> <server> <mask> <type> <hopcount> <info>"
 235 RPL_SERVLISTEND
 "<mask> <type> :End of service listing"

 - When listing services in reply to a SERVLIST message,
 a server is required to send the list back using the
 RPL_SERVLIST and RPL_SERVLISTEND messages. A separate
 RPL_SERVLIST is sent for each service. After the
 services have been listed (or if none present) a
 RPL_SERVLISTEND MUST be sent.

 251 RPL_LUSERCLIENT
 ":There are <integer> users and <integer> \
 services on <integer> servers"
 252 RPL_LUSEROP
 "<integer> :operator(s) online"
 253 RPL_LUSERUNKNOWN
 "<integer> :unknown connection(s)"
 254 RPL_LUSERCHANNELS
 "<integer> :channels formed"
 255 RPL_LUSERME
 ":I have <integer> clients and <integer> \
 servers"

 - In processing an LUSERS message, the server
 sends a set of replies from RPL_LUSERCLIENT,
 RPL_LUSEROP, RPL_USERUNKNOWN,
 RPL_LUSERCHANNELS and RPL_LUSERME. When
 replying, a server MUST send back
 RPL_LUSERCLIENT and RPL_LUSERME. The other
 replies are only sent back if a non-zero count
 is found for them.

Kalt [Page 54]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 256 RPL_ADMINME
 "<server> :Administrative info"
 257 RPL_ADMINLOC1
 ":<admin info>"
 258 RPL_ADMINLOC2
 ":<admin info>"
 259 RPL_ADMINEMAIL
 ":<admin info>"

 - When replying to an ADMIN message, a server
 is expected to use replies RLP_ADMINME
 through to RPL_ADMINEMAIL and provide a text
 message with each. For RPL_ADMINLOC1 a
 description of what city, state and country
 the server is in is expected, followed by
 details of the institution (RPL_ADMINLOC2)
 and finally the administrative contact for the
 server (an email address here is REQUIRED)
 in RPL_ADMINEMAIL.

 263 RPL_TRYAGAIN
 "<command> :Please wait a while and try again."

 - When a server drops a command without processing it,
 it MUST use the reply RPL_TRYAGAIN to inform the
 originating client.

Kalt [Page 55]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

5.2 Error Replies

 Error replies are found in the range from 400 to 599.

 401 ERR_NOSUCHNICK
 "<nickname> :No such nick/channel"

 - Used to indicate the nickname parameter supplied to a
 command is currently unused.

 402 ERR_NOSUCHSERVER
 "<server name> :No such server"

 - Used to indicate the server name given currently
 does not exist.

 403 ERR_NOSUCHCHANNEL
 "<channel name> :No such channel"

 - Used to indicate the given channel name is invalid.

 404 ERR_CANNOTSENDTOCHAN
 "<channel name> :Cannot send to channel"

 - Sent to a user who is either (a) not on a channel
 which is mode +n or (b) not a chanop (or mode +v) on
 a channel which has mode +m set or where the user is
 banned and is trying to send a PRIVMSG message to
 that channel.

 405 ERR_TOOMANYCHANNELS
 "<channel name> :You have joined too many \
 channels"

 - Sent to a user when they have joined the maximum
 number of allowed channels and they try to join
 another channel.

 406 ERR_WASNOSUCHNICK
 "<nickname> :There was no such nickname"

 - Returned by WHOWAS to indicate there is no history
 information for that nickname.

 407 ERR_TOOMANYTARGETS
 "<target> :<error code> recipients. <abort message>"

 - Returned to a client which is attempting to send a

Kalt [Page 56]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 PRIVMSG/NOTICE using the user@host destination format
 and for a user@host which has several occurrences.

 - Returned to a client which trying to send a
 PRIVMSG/NOTICE to too many recipients.

 - Returned to a client which is attempting to JOIN a safe
 channel using the shortname when there are more than one
 such channel.

 408 ERR_NOSUCHSERVICE
 "<service name> :No such service"

 - Returned to a client which is attempting to send a SQUERY
 to a service which does not exist.

 409 ERR_NOORIGIN
 ":No origin specified"

 - PING or PONG message missing the originator parameter.

 411 ERR_NORECIPIENT
 ":No recipient given (<command>)"
 412 ERR_NOTEXTTOSEND
 ":No text to send"
 413 ERR_NOTOPLEVEL
 "<mask> :No toplevel domain specified"
 414 ERR_WILDTOPLEVEL
 "<mask> :Wildcard in toplevel domain"
 415 ERR_BADMASK
 "<mask> :Bad Server/host mask"

 - 412 - 415 are returned by PRIVMSG to indicate that
 the message wasn't delivered for some reason.
 ERR_NOTOPLEVEL and ERR_WILDTOPLEVEL are errors that
 are returned when an invalid use of
 "PRIVMSG $<server>" or "PRIVMSG #<host>" is attempted.

 421 ERR_UNKNOWNCOMMAND
 "<command> :Unknown command"

 - Returned to a registered client to indicate that the
 command sent is unknown by the server.

 422 ERR_NOMOTD
 ":MOTD File is missing"

 - Server's MOTD file could not be opened by the server.

Kalt [Page 57]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 423 ERR_NOADMININFO
 "<server> :No administrative info available"

 - Returned by a server in response to an ADMIN message
 when there is an error in finding the appropriate
 information.

 424 ERR_FILEERROR
 ":File error doing <file op> on <file>"

 - Generic error message used to report a failed file
 operation during the processing of a message.

 431 ERR_NONICKNAMEGIVEN
 ":No nickname given"

 - Returned when a nickname parameter expected for a
 command and isn't found.

 432 ERR_ERRONEUSNICKNAME
 "<nick> :Erroneous nickname"

 - Returned after receiving a NICK message which contains
 characters which do not fall in the defined set. See

section 2.3.1 for details on valid nicknames.

 433 ERR_NICKNAMEINUSE
 "<nick> :Nickname is already in use"

 - Returned when a NICK message is processed that results
 in an attempt to change to a currently existing
 nickname.

 436 ERR_NICKCOLLISION
 "<nick> :Nickname collision KILL from <user>@<host>"

 - Returned by a server to a client when it detects a
 nickname collision (registered of a NICK that
 already exists by another server).

 437 ERR_UNAVAILRESOURCE
 "<nick/channel> :Nick/channel is \
 temporarily unavailable"

 - Returned by a server to a user trying to join a channel
 currently blocked by the channel delay mechanism.

 - Returned by a server to a user trying to change nickname

Kalt [Page 58]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 when the desired nickname is blocked by the nick delay
 mechanism.

 441 ERR_USERNOTINCHANNEL
 "<nick> <channel> :They aren't on that channel"

 - Returned by the server to indicate that the target
 user of the command is not on the given channel.

 442 ERR_NOTONCHANNEL
 "<channel> :You're not on that channel"

 - Returned by the server whenever a client tries to
 perform a channel affecting command for which the
 client isn't a member.

 443 ERR_USERONCHANNEL
 "<user> <channel> :is already on channel"

 - Returned when a client tries to invite a user to a
 channel they are already on.

 444 ERR_NOLOGIN
 "<user> :User not logged in"

 - Returned by the summon after a SUMMON command for a
 user was unable to be performed since they were not
 logged in.

 445 ERR_SUMMONDISABLED
 ":SUMMON has been disabled"

 - Returned as a response to the SUMMON command. MUST be
 returned by any server which doesn't implement it.

 446 ERR_USERSDISABLED
 ":USERS has been disabled"

 - Returned as a response to the USERS command. MUST be
 returned by any server which does not implement it.

 451 ERR_NOTREGISTERED
 ":You have not registered"

 - Returned by the server to indicate that the client
 MUST be registered before the server will allow it
 to be parsed in detail.

Kalt [Page 59]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 461 ERR_NEEDMOREPARAMS
 "<command> :Not enough parameters"

 - Returned by the server by numerous commands to
 indicate to the client that it didn't supply enough
 parameters.

 462 ERR_ALREADYREGISTRED
 ":Unauthorized command (already registered)"

 - Returned by the server to any link which tries to
 change part of the registered details (such as
 password or user details from second USER message).

 463 ERR_NOPERMFORHOST
 ":Your host isn't among the privileged"

 - Returned to a client which attempts to register with
 a server which does not been setup to allow
 connections from the host the attempted connection
 is tried.

 464 ERR_PASSWDMISMATCH
 ":Password incorrect"

 - Returned to indicate a failed attempt at registering
 a connection for which a password was required and
 was either not given or incorrect.

 465 ERR_YOUREBANNEDCREEP
 ":You are banned from this server"

 - Returned after an attempt to connect and register
 yourself with a server which has been setup to
 explicitly deny connections to you.

 466 ERR_YOUWILLBEBANNED

 - Sent by a server to a user to inform that access to the
 server will soon be denied.

Kalt [Page 60]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 467 ERR_KEYSET
 "<channel> :Channel key already set"
 471 ERR_CHANNELISFULL
 "<channel> :Cannot join channel (+l)"
 472 ERR_UNKNOWNMODE
 "<char> :is unknown mode char to me for <channel>"
 473 ERR_INVITEONLYCHAN
 "<channel> :Cannot join channel (+i)"
 474 ERR_BANNEDFROMCHAN
 "<channel> :Cannot join channel (+b)"
 475 ERR_BADCHANNELKEY
 "<channel> :Cannot join channel (+k)"
 476 ERR_BADCHANMASK
 "<channel> :Bad Channel Mask"
 477 ERR_NOCHANMODES
 "<channel> :Channel doesn't support modes"
 478 ERR_BANLISTFULL
 "<channel> <char> :Channel list is full"

 481 ERR_NOPRIVILEGES
 ":Permission Denied- You're not an IRC operator"

 - Any command requiring operator privileges to operate
 MUST return this error to indicate the attempt was
 unsuccessful.

 482 ERR_CHANOPRIVSNEEDED
 "<channel> :You're not channel operator"

 - Any command requiring 'chanop' privileges (such as
 MODE messages) MUST return this error if the client
 making the attempt is not a chanop on the specified
 channel.

 483 ERR_CANTKILLSERVER
 ":You can't kill a server!"

 - Any attempts to use the KILL command on a server
 are to be refused and this error returned directly
 to the client.

 484 ERR_RESTRICTED
 ":Your connection is restricted!"

 - Sent by the server to a user upon connection to indicate
 the restricted nature of the connection (user mode "+r").

 485 ERR_UNIQOPPRIVSNEEDED

Kalt [Page 61]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 ":You're not the original channel operator"

 - Any MODE requiring "channel creator" privileges MUST
 return this error if the client making the attempt is not
 a chanop on the specified channel.

 491 ERR_NOOPERHOST
 ":No O-lines for your host"

 - If a client sends an OPER message and the server has
 not been configured to allow connections from the
 client's host as an operator, this error MUST be
 returned.

 501 ERR_UMODEUNKNOWNFLAG
 ":Unknown MODE flag"

 - Returned by the server to indicate that a MODE
 message was sent with a nickname parameter and that
 the a mode flag sent was not recognized.

 502 ERR_USERSDONTMATCH
 ":Cant change mode for other users"

 - Error sent to any user trying to view or change the
 user mode for a user other than themselves.

Kalt [Page 62]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

5.3 Reserved numerics

 These numerics are not described above since they fall into one of
 the following categories:

 1. no longer in use;

 2. reserved for future planned use;

 3. in current use but are part of a non-generic 'feature' of
 the current IRC server.

 231 RPL_SERVICEINFO 232 RPL_ENDOFSERVICES
 233 RPL_SERVICE
 300 RPL_NONE 316 RPL_WHOISCHANOP
 361 RPL_KILLDONE 362 RPL_CLOSING
 363 RPL_CLOSEEND 373 RPL_INFOSTART
 384 RPL_MYPORTIS

 213 RPL_STATSCLINE 214 RPL_STATSNLINE
 215 RPL_STATSILINE 216 RPL_STATSKLINE
 217 RPL_STATSQLINE 218 RPL_STATSYLINE
 240 RPL_STATSVLINE 241 RPL_STATSLLINE
 244 RPL_STATSHLINE 244 RPL_STATSSLINE
 246 RPL_STATSPING 247 RPL_STATSBLINE
 250 RPL_STATSDLINE

 492 ERR_NOSERVICEHOST

6. Current implementations

 The IRC software, version 2.10 is the only complete implementation
 of the IRC protocol (client and server). Because of the small amount
 of changes in the client protocol since the publication of RFC 1459
 [IRC], implementations that follow it are likely to be compliant with
 this protocol or to require a small amount of changes to reach com¡
 pliance.

7. Current problems

 There are a number of recognized problems with the IRC Client Pro¡
 tocol, and more generally with the IRC Server Protocol. In order to
 preserve backward compatibility with old clients, this protocol has
 almost not evolved since the publication of RFC 1459 [IRC].

7.1 Nicknames

 The idea of the nickname on IRC is very convenient for users to

https://datatracker.ietf.org/doc/html/rfc1459
https://datatracker.ietf.org/doc/html/rfc1459

Kalt [Page 63]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 use when talking to each other outside of a channel, but there is
 only a finite nickname space and being what they are, it's not uncom¡
 mon for several people to want to use the same nick. If a nickname
 is chosen by two people using this protocol, either one will not suc¡
 ceed or both will removed by use of a server KILL (See Section

3.7.1).

7.2 Limitation of wildcards

 There is no way to escape the escape character "\" (%x5C). While
 this isn't usually a problem, it makes it impossible to form a mask
 with a backslash character ("\") preceding a wildcard.

7.3 Security considerations

 Security issues related to this protocol are discussed in the "IRC
 Server Protocol" [IRC-SERVER] as they are mostly an issue for the
 server side of the connection.

8. Current support and availability

 Mailing lists for IRC related discussion:
 General discussion: ircd-users@irc.org
 Protocol development: ircd-dev@irc.org

 Software implementations:
ftp://ftp.irc.org/irc/server
ftp://ftp.funet.fi/pub/unix/irc
ftp://ftp.irc.org/irc/clients

 Newsgroup: alt.irc

9. Acknowledgements

 Parts of this document were copied from the RFC 1459 [IRC] which
 first formally documented the IRC Protocol. It has also benefited
 from many rounds of review and comments. In particular, the follow¡
 ing people have made significant contributions to this document:

 Matthew Green, Michael Neumayer, Volker Paulsen, Kurt Roeckx, Vesa
 Ruokonen, Magnus Tjernstrom, Stefan Zehl.

10. References

[KEYWORDS] "Key words for use in RFCs to Indicate Requirement Levels",

ftp://ftp.irc.org/irc/server
ftp://ftp.funet.fi/pub/unix/irc
ftp://ftp.irc.org/irc/clients
https://datatracker.ietf.org/doc/html/rfc1459

Kalt [Page 64]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

 Network Working Group RFC 2119, S. Bradner, March 1997.

[ABNF] "Augmented BNF for Syntax Specifications: ABNF",
 Network Working Group RFC 2234, D. Crocker, P. Overell, November 1997

[HNAME] "Requirements for Internet Hosts -- Application and Support",
 Network Working Group RFC 1123, R. Braden, October 1989
[IRC] "Internet Relay Chat Protocol", Network Working Group RFC 1459,
 J. Oikarinen & D. Reed, May 1993

[IRC-ARCH] "Internet Relay Chat: Architecture",
 Work In Progress: draft-kalt-irc-arch-xx.txt

[IRC-CHAN] "Internet Relay Chat: Channel Management",
 Work In Progress: draft-kalt-irc-chan-xx-txt

[IRC-SERVER] "Internet Relay Chat: Server Protocol",
 Work In Progress: draft-kalt-irc-server-xx.txt

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc1459
https://datatracker.ietf.org/doc/html/draft-kalt-irc-arch-xx.txt
https://datatracker.ietf.org/doc/html/draft-kalt-irc-chan-xx-txt
https://datatracker.ietf.org/doc/html/draft-kalt-irc-server-xx.txt

Kalt [Page 65]

Internet Draft Internet Relay Chat: Client Protocol 13 Aug 1999

11. Author's Address

 Christophe Kalt
 99 Teaneck Rd, Apt #117
 Ridgefield Park, NJ 07660
 USA

 Email: kalt@stealth.net

Kalt [Page 66]

