
Network Working Group PH. Kamp
Internet-Draft The Varnish Cache Project
Intended status: Informational October 05, 2016
Expires: April 8, 2017

HTTP header common structure
draft-kamp-httpbis-structure-00

Abstract

 An abstract data model for HTTP headers, "Common Structure", and a
 HTTP/1 serialization of it, generalized from current HTTP headers.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 8, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Kamp Expires April 8, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft I-D October 2016

1. Introduction

 The HTTP protocol does not impose any structure or datamodel on the
 information in HTTP headers, the HTTP/1 serialization is the
 datamodel: An ASCII string without control characters.

 HTTP header definitions specify how the string must be formatted and
 while families of similar headers exist, it still requires an
 uncomfortable large number of bespoke parser and validation routines
 to process HTTP traffic correctly.

 In order to improve performance HTTP/2 and HPACK uses naive text-
 compression, which incidentally decoupled the on-the-wire
 serialization from the data model.

 During the development of HPACK it became evident that significantly
 bigger gains were available if semantic compression could be used,
 most notably with timestamps. However, the lack of a common data
 structure for HTTP headers would make semantic compression one long
 list of special cases.

 Parallel to this, various proposals for how to fulfill data-
 transportation needs, and to a lesser degree to impose some kind of
 order on HTTP headers, at least going forward were floated.

 All of these proposals, JSON, CBOR etc. run into the same basic
 problem: Their serialization is incompatible with [RFC7230]'s ABNF
 definition of 'field-value'.

 For binary formats, such as CBOR, a wholesale base64/85
 reserialization would be needed, with negative results for both
 debugability and bandwidth.

 For textual formats, such as JSON, the format must first be neutered
 to not violate field-value's ABNF, and then workarounds added to
 reintroduce the features just lost, for instance UNICODE strings, and
 suddenly it is no longer JSON anymore.

 This proposal starts from the other end, and builds and generalizes a
 data structure definition from existing HTTP headers, which means
 that HTTP/1 serialization and 'field-value' compatibility is built
 in.

 If all new HTTP headers are defined to fit into this Common Structure
 we have at least halted the proliferation of bespoke parsers and
 started to pave the road for semantic compression serializations of
 HTTP traffic.

https://datatracker.ietf.org/doc/html/rfc7230

Kamp Expires April 8, 2017 [Page 2]

Internet-Draft I-D October 2016

1.1. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119].

2. Definition of HTTP header Common Structure

 The data model of Common Structure is an ordered sequence of named
 dictionaries. Please see Appendix A for how this model was derived.

 The definition of the data model is on purpose abstract, uncoupled
 from any protocol serialization or programming environment
 representation, meant as the foundation on which all such
 manifestations of the model can be built.

 Common Structure in ABNF:

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Kamp Expires April 8, 2017 [Page 3]

Internet-Draft I-D October 2016

 import token from RFC7230
 import DIGIT from RFC5234

 common-structure = 1* (identifier dictionary)

 dictionary = * (identifier value)

 value = identifier /
 number /
 ascii_string /
 unicode_string /
 blob /
 timestamp /
 common-structure

 identifier = (token / "*") [token / "*"]

 number = ["-"] 1*15 DIGIT
 # XXX: Not sure how to do this in ABNF:
 # XXX: A single "." allowed between any two digits
 # The range is limited is to ensure it can be
 # correctly represented in IEEE754 64 bit
 # binary floating point format.

 ascii_string = * %x20-7e
 # This is a "safe" string in the sense that it
 # contains no control characters or multi-byte
 # sequences. If that is not fancy enough, use
 # unicode_string.

 unicode_string = * unicode_codepoint
 # XXX: Is there a place to import this from ?
 # Unrestricted unicode, because there is no sane
 # way to restrict or otherwise make unicode "safe".

 blob = * %0x00-ff
 # Intended for cryptographic data and as a general
 # escape mechanism for unmet requirements.

 timestamp = POSIX time_t with optional millisecond resolution
 # XXX: Is there a place to import this from ?

3. HTTP/1 serialization of HTTP header Common Structure

 In ABNF:

 import OWS from {{RFC7230}}
 import HEXDIG, DQUOTE from {{RFC5234}}

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc5234

Kamp Expires April 8, 2017 [Page 4]

Internet-Draft I-D October 2016

 h1_common-structure-header =
 (field-name ":" OWS ">" h1_common_structure "<")
 # Self-identifying HTTP headers
 (field-name ":" OWS h1_common_structure) /
 # legacy HTTP headers on white-list, see {{iana}}

 h1_common_structure = h1_element * ("," h1_element)

 h1_element = identifier * (";" identifier ["=" h1_value])

 h1_value = identifier /
 number /
 h1_ascii_string /
 h1_unicode_string /
 h1_blob /
 h1_timestamp /
 h1_common-structure

 h1_ascii_string = DQUOTE *(
 ("\" DQUOTE) /
 ("\" "\") /
 0x20-21 /
 0x23-5B /
 0x5D-7E
) DQUOTE
 # This is a proper subset of h1_unicode_string
 # NB only allowed backslash escapes are \" and \\

 h1_unicode_string = DQUOTE *(
 ("\" DQUOTE)
 ("\" "\") /
 ("\" "u" 4*HEXDIG) /
 0x20-21 /
 0x23-5B /
 0x5D-7E /
 0x80-F7
) DQUOTE
 # XXX: how to say/import "UTF-8 encoding" ?
 # HTTP1 unfriendly codepoints (00-1f, 7f) must be
 # encoded with \uXXXX escapes

 h1_blob = "'" base64 "'"
 # XXX: where to import base64 from ?

 h1_timestamp = number
 # UNIX/POSIX time_t semantics.
 # fractional seconds allowed.

Kamp Expires April 8, 2017 [Page 5]

Internet-Draft I-D October 2016

 h1_common_structure = ">" h1_common_structure "<"

 XXX: Allow OWS in parsers, but not in generators ?

 In programming environments which do not define a native
 representation or serialization of Common Structure, the HTTP/1
 serialization should be used.

4. When to use Common Structure parser

 All future standardized and all private HTTP headers using Common
 Structure should self identify as such. In the HTTP/1 serialization
 by making the first character ">" and the last "<". (These two
 characters are deliberately "the wrong way" to not clash with
 exsisting usages.)

 Legacy HTTP headers which fit into Common Structure, are marked as
 such in the IANA Message Header Registry (see {iana}), and a snapshot
 of the registry can be used to trigger parsing according to Common
 Structure of these headers.

5. Desired normative effects

 All new HTTP headers SHOULD use the Common Structure if at all
 possible.

6. Open/Outstanding issues to resolve

6.1. Single/multiple headers

 Should we allow splitting common structure data over multiple headers
 ?

 Pro:

 Avoids size restrictions, easier on-the-fly editing

 Contra:

 Cannot act on any such header until all headers have been received.

 We must define where headers can be split (between identifier and
 dictionary ?, in the middle of dictionaries ?)

 Most on-the-fly editing is hackish at best.

Kamp Expires April 8, 2017 [Page 6]

Internet-Draft I-D October 2016

7. Future work

7.1. Redefining existing headers for better performance

 The HTTP/1 serializations self-identification mechanism makes it
 possible to extend the definition of existing Appendix C headers into
 Common Structure.

 For instance one could imagine:

 Date: >1475061449.201<

 Which would be faster to parse and validate than the current
 definition of the Date header and more precise too.

 Some kind of signal/negotiation mechanism would be required to make
 this work in practice.

7.2. Define a validation dictionary

 A machine-readable specification of the legal contents of HTTP
 headers would go a long way to improve efficiency and security in
 HTTP implementations.

8. IANA considerations

 The IANA Message Header Registry will be extended with an additional
 field named "Common Structure" which can have the values "True",
 "False" or "Unknown".

 The RFC723x headers listed in Appendix B will get the value "True" in
 the new field.

 The RFC723x headers listed in Appendix C will get the value "False"
 in the new field.

 All other existing entries in the registry will be set to "Unknown"
 until and if the owner of the entry requests otherwise.

9. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119

Kamp Expires April 8, 2017 [Page 7]

Internet-Draft I-D October 2016

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

Appendix A. Does HTTP headers have any common structure ?

 Several proposals have been floated in recent years to use some
 preexisting structured data serialization or other for HTTP headers,
 to impose some sanity.

 None of these proposals have gained traction and no obvious candidate
 data serializations have been left unexamined.

 This effort tries to tackle the question from the other side, by
 asking if there is a common structure in existing HTTP headers we can
 generalize for this purpose.

A.1. Survey of HTTP header structure

 The RFC723x family of HTTP/1 standards control 49 entries in the IANA
 Message Header Registry, and they share two common motifs.

 The majority of RFC723x HTTP headers are lists. A few of them are
 ordered, ('Content-Encoding'), some are unordered ('Connection') and
 some are ordered by 'q=%f' weight parameters ('Accept')

 In most cases, the list elements are some kind of identifier, usually
 derived from ABNF 'token' as defined by [RFC7230].

 A subgroup of headers, mostly related to MIME, uses what one could
 call a 'qualified token'::

 qualified_token = token_or_asterix ["/" token_or_asterix]

 The second motif is parameterized list elements. The best known is
 the "q=0.5" weight parameter, but other parameters exist as well.

 Generalizing from these motifs, our candidate "Common Structure" data
 model becomes an ordered list of named dictionaries.

 In pidgin ABNF, ignoring white-space for the sake of clarity, the
 HTTP/1.1 serialization of Common Structure is is something like:

https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc5234
http://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc7230

Kamp Expires April 8, 2017 [Page 8]

Internet-Draft I-D October 2016

 token_or_asterix = token from {{RFC7230}}, but also allowing "*"

 qualified_token = token_or_asterix ["/" token_or_asterix]

 field-name, see {{RFC7230}}

 Common_Structure_Header = field-name ":" 1#named_dictionary

 named_dictionary = qualified_token [*(";" param)]

 param = token ["=" value]

 value = we'll get back to this in a moment.

 Nineteen out of the RFC723x's 48 headers, almost 40%, can already be
 parsed using this definition, and none the rest have requirements
 which could not be met by this data model. See Appendix B and

Appendix C for the full survey details.

A.2. Survey of values in HTTP headers

 Surveying the datatypes of HTTP headers, standardized as well as
 private, the following picture emerges:

A.2.1. Numbers

 Integer and floating point are both used. Range and precision is
 mostly unspecified in controlling documents.

 Scientific notation (9.192631770e9) does not seem to be used
 anywhere.

 The ranges used seem to be minus several thousand to plus a couple of
 billions, the high end almost exclusively being POSIX time_t
 timestamps.

A.2.2. Timestamps

 RFC723x text format, but POSIX time_t represented as integer or
 floating point is not uncommon. ISO8601 have also been spotted.

A.2.3. Strings

 The vast majority are pure ASCII strings, with either no escapes, %xx
 URL-like escapes or C-style back-slash escapes, possibly with the
 addition of \uxxxx UNICODE escapes.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230

Kamp Expires April 8, 2017 [Page 9]

Internet-Draft I-D October 2016

 Where non-ASCII character sets are used, they are almost always
 implicit, rather than explicit. UTF8 and ISO-8859-1[5] seem to be
 most common.

A.2.4. Binary blobs

 Often used for cryptographic data. Usually in base64 encoding,
 sometimes ""-quoted more often not. base85 encoding is also seen,
 usually quoted.

A.2.5. Identifiers

 Seems to almost always fit in the RFC723x 'token' definition.

A.3. Is this actually a useful thing to generalize ?

 The number one wishlist item seems to be UNICODE strings, with a big
 side order of not having to write a new parser routine every time
 somebody comes up with a new header.

 Having a common parser would indeed be a good thing, and having an
 underlying data model which makes it possible define a compressed
 serialization, rather than rely on serialization to text followed by
 text compression (ie: HPACK) seems like a good idea too.

 However, when using a datamodel and a parser general enough to
 transport useful data, it will have to be followed by a validation
 step, which checks that the data also makes sense.

 Today validation, such as it is, is often done by the bespoke
 parsers.

 This then is probably where the next big potential for improvement
 lies:

 Ideally a machine readable "data dictionary" which makes it possibly
 to copy that text out of RFCs, run it through a code generator which
 spits out validation code which operates on the output of the common
 parser.

 But history has been particularly unkind to that idea.

 Most attempts studied as part of this effort, have sunk under
 complexity caused by reaching for generality, but where scope has
 been wisely limited, it seems to be possible.

 So file that idea under "future work".

Kamp Expires April 8, 2017 [Page 10]

Internet-Draft I-D October 2016

Appendix B. RFC723x headers with "common structure"

 Accept [RFC7231, Section 5.3.2]
 Accept-Charset [RFC7231, Section 5.3.3]
 Accept-Encoding [RFC7231, Section 5.3.4][RFC7694, Section 3]
 Accept-Language [RFC7231, Section 5.3.5]
 Age [RFC7234, Section 5.1]
 Allow [RFC7231, Section 7.4.1]
 Connection [RFC7230, Section 6.1]
 Content-Encoding [RFC7231, Section 3.1.2.2]
 Content-Language [RFC7231, Section 3.1.3.2]
 Content-Length [RFC7230, Section 3.3.2]
 Content-Type [RFC7231, Section 3.1.1.5]
 Expect [RFC7231, Section 5.1.1]
 Max-Forwards [RFC7231, Section 5.1.2]
 MIME-Version [RFC7231, Appendix A.1]
 TE [RFC7230, Section 4.3]
 Trailer [RFC7230, Section 4.4]
 Transfer-Encoding [RFC7230, Section 3.3.1]
 Upgrade [RFC7230, Section 6.7]
 Vary [RFC7231, Section 7.1.4]

Appendix C. RFC723x headers with "uncommon structure"

 1 of the RFC723x headers is only reserved, and therefore have no
 structure at all:

 Close [RFC7230, Section 8.1]

 5 of the RFC723x headers are HTTP dates:

 Date [RFC7231, Section 7.1.1.2]
 Expires [RFC7234, Section 5.3]
 If-Modified-Since [RFC7232, Section 3.3]
 If-Unmodified-Since [RFC7232, Section 3.4]
 Last-Modified [RFC7232, Section 2.2]

 24 of the RFC723x headers use bespoke formats which only a single or
 in rare cases two headers share:

 Accept-Ranges [RFC7233, Section 2.3]
 bytes-unit / other-range-unit

 Authorization [RFC7235, Section 4.2]
 Proxy-Authorization [RFC7235, Section 4.4]
 credentials

 Cache-Control [RFC7234, Section 5.2]

Kamp Expires April 8, 2017 [Page 11]

Internet-Draft I-D October 2016

 1#cache-directive

 Content-Location [RFC7231, Section 3.1.4.2]
 absolute-URI / partial-URI

 Content-Range [RFC7233, Section 4.2]
 byte-content-range / other-content-range

 ETag [RFC7232, Section 2.3]
 entity-tag

 Forwarded [RFC7239]
 1#forwarded-element

 From [RFC7231, Section 5.5.1]
 mailbox

 If-Match [RFC7232, Section 3.1]
 If-None-Match [RFC7232, Section 3.2]
 "*" / 1#entity-tag

 If-Range [RFC7233, Section 3.2]
 entity-tag / HTTP-date

 Host [RFC7230, Section 5.4]
 uri-host [":" port]

 Location [RFC7231, Section 7.1.2]
 URI-reference

 Pragma [RFC7234, Section 5.4]
 1#pragma-directive

 Range [RFC7233, Section 3.1]
 byte-ranges-specifier / other-ranges-specifier

 Referer [RFC7231, Section 5.5.2]
 absolute-URI / partial-URI

 Retry-After [RFC7231, Section 7.1.3]
 HTTP-date / delay-seconds

 Server [RFC7231, Section 7.4.2]
 User-Agent [RFC7231, Section 5.5.3]
 product *(RWS (product / comment))

 Via [RFC7230, Section 5.7.1]
 1#(received-protocol RWS received-by [RWS comment])

https://datatracker.ietf.org/doc/html/rfc7239

Kamp Expires April 8, 2017 [Page 12]

Internet-Draft I-D October 2016

 Warning [RFC7234, Section 5.5]
 1#warning-value

 Proxy-Authenticate [RFC7235, Section 4.3]
 WWW-Authenticate [RFC7235, Section 4.1]
 1#challenge

Author's Address

 Poul-Henning Kamp
 The Varnish Cache Project

 Email: phk@varnish-cache.org

Kamp Expires April 8, 2017 [Page 13]

