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Abstract

This document defines hybrid key exchange methods based on classical

ECDH key exchange and post-quantum key encapsulation schemes. These

methods are defined for use in the SSH Transport Layer Protocol. It

also defines post-quantum public key authentication methods based on

post-quantum signature schemes. These methods are defined for use in

the SSH Authentication Protocol.

EDNOTE: The goal of this draft is to start the standardization of PQ

algorithms in SSH early to mitigate the potential record-and-harvest

later with a quantum computer attacks. This draft is not expected to

be finalized before the NIST PQ Project has standardized PQ

algorithms. After NIST has standardized then this document will

replace TBD1, TBD3 with the appropriate algorithms and parameters

before proceeding to ratification.

EDNOTE: Discussion of this work is encouraged to happen on the IETF

WG Mailing List or in the GitHub repository which contains the

draft: https://github.com/csosto-pk/pq-ssh/issues .

Change Log [EDNOTE: Remove befor publicaton].

Initial draft

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents
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at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 24 April 2021.
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1. Introduction

Secure Shell (SSH) [RFC4251] performs key establishment using key

exchange methods based exclusively on (Elliptic Curve) Diffie-

Hellman style schemes. SSH [RFC4252], [RFC8332], [RFC5656], 

[RFC8709] also defines public key authentication methods based on
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RSA or ECDSA/EdDSA signature schemes. The cryptographic security of

these key exchange and signature schemes relies on certain instances

of the discrete logarithm and integer factorization problems being

computationally infeasable to solve for adversaries.

However, when sufficiently large quantum computers become available

these instances would no longer be computationally infeasable

rendering the current key exchange and authentication methods in SSH

insecure [I-D.hoffman-c2pq]. While large quantum computers are not

available today an adversary can record the encrypted communication

sent between the client and server in an SSH session and then later

decrypt the communication when sufficiently large quantum computers

become available. This kind of attack is known as a "record-and-

harvest" attack. Record-and-harvest attacks do not apply

retroactively to authentication but a quantum computer could

threaten SSH authentication by impersonating as a legitimate client

or server.

This document proposes to address the problem by extending the SSH

Transport Layer Protocol [RFC4253] with hybrid key exchange methods

and the SSH Authentication Protocol [RFC4252] with public key

methods based on post-quantum signature schemes. A hybrid key

exchange method maintains the same level of security provided by

current key exchange methods, but also adds quantum resistance. The

security provided by the individual key exchange scheme in a hybrid

key exchange method is independent. This means that the hybrid key

exchange method will always be at least as secure as the most secure

key exchange scheme executed as part of the hybrid key exchange

method.

In the context of the NIST Post-Quantum Cryptography Standardization

Project [NIST_PQ], key exchange algorithms are formulated as key

encapsulation mechanisms (KEMs), which consist of three algorithms:

'KeyGen() -> (pk, sk)': A probabilistic key generation algorithm,

which generates a public key 'pk' and a secret key 'sk'.

'Encaps(pk) -> (ct, ss)': A probabilistic encapsulation

algorithm, which takes as input a public key 'pk' and outputs a

ciphertext 'ct' and shared secret 'ss'.

'Decaps(sk, ct) -> ss': A decapsulation algorithm, which takes as

input a secret key 'sk' and ciphertext 'ct' and outputs a shared

secret 'ss', or in some cases a distinguished error value.

The main security property for KEMs is indistinguishability under

adaptive chosen ciphertext attack (IND-CCA2), which means that

shared secret values should be indistinguishable from random strings

even given the ability to have arbitrary ciphertexts decapsulated.
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IND-CCA2 corresponds to security against an active attacker, and the

public key / secret key pair can be treated as a long-term key or

reused. A weaker security notion is indistinguishability under

chosen plaintext attack (IND-CPA), which means that the shared

secret values should be indistinguishable from random strings given

a copy of the public key. IND-CPA roughly corresponds to security

against a passive attacker, and sometimes corresponds to one-time

key exchange.

The corresponding post-quantum signature algorithms defined in the 

NIST Post-Quantum Cryptography Standardization Project [NIST_PQ] are

'KeyGen() -> (pk, sk)': A probabilistic key generation algorithm,

which generates a public key 'pk' and a secret key 'sk'.

'Sign(m, sk) -> sig': A deterministic signing algorithm, which

takes as input a message 'm' and a private key 'sk' and outputs a

signature 'sig'.

'Verify(m, pk, sigma) -> pass/fail': A verification algorithm,

which takes as input a message 'm', a public key 'pk' and a

signature 'sig' and outputs a verification pass or failure of the

signature on the message.

The post-quantum KEMs used for hybrid key exchange in the document

are TBD1. The post-quantum signature algorithm used for key based

authentication is TBD3. [EDNOTE: Placeholder. Algorithms will be

identified after NIST Round 3 concludes.] The post-quantum

algorithms are defined in NIST Post-quantum Project [NIST_PQ].

[EDNOTE: Update link. Algorithms can change based on NIST's Round 3

standardization].

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

2. Hybrid Key Exchange

2.1. Hybrid Key Exchange Method Abstraction

This section defines the abstract structure of a hybrid key exchange

method. The structure must be instantiated with two key exchange

schemes. The byte, string and mpint are to be interpreted in this

document as described in [RFC4251].

The client sends
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where C_INIT would be the concatenation of C_PQ and C_CL.

The server sends

where S_REPLY would be the concatenation of S_PQ and S_CL.

[EDNOTE: Initially we were using S_CL, S_PQ, C_CL, C_PQ which were

encoding the server and client client and server classical and post-

quantum public key/ciphertext as its own string. We since switched

to an encoding method which concatenates them together as a single

string in the C_INIT, S_REPLY message. This method concatenates the

raw values rather than the length of each value plus the value. The

total length of the concatenation is still known, but the relative

lengths of the individual values that were concatenated is no longer

part of the representation. If that is the WG consensus we need to

put a note of this in the Appendix for historical reference and

expand on the concatenated string here in this section.]

C_PQ represents the 'pk' output of the corresponding KEMs' 'KeyGen'

at the client. S_PQ represents the ciphertext 'ct' output of the

corresponding KEMs' 'Encaps' algorithm generated by the server to

the client's public key. The client decapsulates the ciphertext by

using its private key which leads to K_PQ, a post-quantum shared

secret for SSH.

C_CL and S_CL represent the ephemeral public key of the client and

server respectively used for the classical (EC)DH key exchange which

leads to K_CL, a classical shared secret for SSH.

2.2. Key Derivation

The shared secrets K_CL and K_PQ are the output from the two key

exchange schemes X and Y, respectively, that instantiates an

abstract hybrid key exchange method Section 2.1. The SSH shared

secret K is derived as the hash algorithm specified in the named

hybrid key exchange method name over the concatenation of K_PQ and

K_CL:

The resulting bytes are fed as to the key exchange method's hash

function to generate encryption keys.

       byte SSH_MSG_HBR_INIT

       string C_INIT

¶

¶

¶

       byte SSH_MSG_HBR_REPLY

       string S_REPLY

¶

¶

¶

¶

¶

¶

        K = HASH(K_PQ, K_CL)¶

¶



FIPS-compliance of shared secret concatenation. [NIST-SP-800-56C] or 

[NIST-SP-800-135] give NIST recommendations for key derivation

methods in key exchange protocols. Some hybrid combinations may

combine the shared secret from a NIST-approved algorithm (e.g., ECDH

using the nistp256/secp256r1 curve) with a shared secret from a non-

approved algorithm (e.g., post-quantum). [NIST-SP-800-56C] lists

simple concatenation as an approved method for generation of a

hybrid shared secret in which one of the constituent shared secret

is from an approved method.

2.3. HASH

The derivation of encryption keys MUST be done according to Section

7.2 in [RFC4253] with a modification on the exchange hash H. The

hybrid key exchange hash H is the result of computing the HASH,

where HASH is the hash algorithm specified in the named hybrid key

exchange method name, over the concatenation of the following

The HASH functions used for the definitions in this specification

are SHA-256 [nist-sha2] [RFC4634][EDNOTE: Update here if necessary].

2.4. Hybrid Key Exchange Method Names

The hybrid key exchange method names defined in this document are

[EDNOTE: Placeholder. Algorithms will be identified after NIST Round

3 concludes.]

2.4.1. ecdh-nistp256-TBD1-sha256

ecdh-nistp256-TBD1-sha256 defines that the classical C_CL or S_CL

from the client or server NIST P-256 curve public key as defined in 

[nist-sp800-186]. Private and public keys are generated as described

therein. Public keys are defined as strings of 32 bytes for NIST

P-256. The K_CL shared secret is generated from the exchanged C_CL

and S_CL public keys as defined in [RFC5656] (key agreement method

ecdh-sha2-nistp256) with SHA-256 [nist-sha2] [RFC4634] .

¶

¶

      string V_C, client identification string (CR and LF excluded)

      string V_S, server identification string (CR and LF excluded)

      string I_C, payload of the client's SSH_MSG_KEXINIT

      string I_S, payload of the server's SSH_MSG_KEXINIT

      string C_INIT, client message octet string

      string S_REPLY, server message octet string

      string K, SSH shared secret

¶

¶

¶

      ecdh-nistp256-TBD1-sha256

      x25519-TBD1-sha256

      sntrup4591761x25519-sha512@tinyssh.org (currently implemented)

¶

¶

¶



The post-quantum C_PQ or S_PQ string from the client and server are

TBD1. The K_PQ shared secret is decapsulated from the ciphertext

S_PQ using the client private key [EDNOTE: Placeholder. Update based

on the algorithm identified after NIST Round 3 concludes.]

2.4.2. x25519-TBD1-sha256

x25519-TBD1-sha256 defines that the classical C_CL or S_CL from the

client or server is Curve25519 public key as defined in [RFC7748].

Private and public keys are generated as described therein. Public

keys are defined as strings of 32 bytes for Curve25519. The K_CL

shared secret is generated from the exchanged C_CL and S_CL public

keys as defined in [RFC8731] (key agreement method curve25519-

sha256) with SHA-256 [nist-sha2] [RFC4634] .

The post-quantum C_PQ or S_PQ string from the client and server are

TBD1. The K_PQ shared secret is decapsulated from the ciphertext

S_PQ using the client private key as defined in [EDNOTE:

Placeholder. Update based on the algorithm identified after NIST

Round 3 concludes.]

3. Key Authentication

[EDNOTE: Discuss if hybrid auth keys which combine classical and PQ

signatures are necessary. Since authentication cannot be broken

retroactively, even if the PQ signature algorithms got broken, we

could switch to a classical algorithm to at least keep the classical

security. On the other hand, that would take time to deploy while

these entities would be vulnerabile to impersonation attacks. Hybrid

signatures add some overhead, but could provide the peace of mind of

remaining secure with the classical algorithm without scrambling to

deploy a change even if the PQ algorithms got broken. ]

3.1. Public Key Format

Here, 'key' is the x-octet public key described in the TBD3

specification.

[EDNOTE: Placeholder. Algorithms will be identified after NIST Round

3 concludes.]

3.2. Signature Format

¶

¶

¶

¶

      string    "ssh-TBD3"

      string    key

¶

¶

¶

       string  "ssh-TBD3"

       string  signature

¶



Here, 'signature' is the x-octet signature produced in accordance

with the TBD3 specification.

[EDNOTE: Placeholder. Algorithms will be identified after NIST Round

3 concludes.]

3.3. Signing and Verification

Signatures are generated according to the procedure in TBD3

specification

Signatures are verified according to the procedure in TBD3

specification

[EDNOTE: Placeholder. Algorithms will be identified after NIST Round

3 concludes.]

4. Message Size

An implementation adhering to [RFC4253] must be able to support

packets with an uncompressed payload length of 32768 bytes or less

and a total packet size of 35000 bytes or less (including

'packet_length', 'padding_length', 'payload', 'random padding', and

'mac'). These numbers represent what must be 'minimally supported'

by implementations. This can present a problem when using post-

quantum key exchange schemes because some post-quantum schemes can

produce much larger messages than what is normally produced by

existing key exchange methods defined for SSH. This document does

not define any named domain parameters (see Section 7) that cause

any hybrid key exchange method related packets to exceed the

minimally supported packet length. This document does not define

behaviour in cases where a hybrid key exchange message cause a

packet to exceed the minimally supported packet length.

5. Acknowledgements

6. IANA Considerations

This memo includes requests of IANA for SSH_MSG_HBR_INIT,

SSH_MSG_HBR_REPLY, ecdh-nistp256-TBD1-sha256, x25519-TBD1-sha256,

and ssh-TBD3.

7. Security Considerations

[EDNOTE: The security considerations given in [RFC5656] therefore

also applies to the ECDH key exchange scheme defined in this

document. Similarly for the X25519 document. PQ Algorithms are newer

and standardized by NIST. And more. Should include something about

the combination method for the KEM shared secrets. ]
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[RFC2119]

[RFC4251]

[RFC4252]

[RFC4253]

[EDNOTE: Discussion on whether an IND-CCA KEM is required or whether

IND-CPA suffices.] Any KEM used in the manner described in this

document MUST explicitly be designed to be secure in the event that

the public key is re-used, such as achieving IND-CCA2 security or

having a transform like the Fujisaki-Okamoto transform [FO][HHK]

applied. While it is recommended that implementations avoid reuse of

KEM public keys, implementations that do reuse KEM public keys MUST

ensure that the number of reuses of a KEM public key abides by any

bounds in the specification of the KEM or subsequent security

analyses. Implementations MUST NOT reuse randomness in the

generation of KEM ciphertexts.

Public keys, ciphertexts, and secrets should be constant length.

This document assumes that the length of each public key,

ciphertext, and shared secret is fixed once the algorithm is fixed.

This is the case for all Round 3 finalists and alternate candidates.

Note that variable-length secrets are, generally speaking,

dangerous. In particular, when using key material of variable length

and processing it using hash functions, a timing side channel may

arise. In broad terms, when the secret is longer, the hash function

may need to process more blocks internally. In some unfortunate

circumstances, this has led to timing attacks, e.g. the Lucky

Thirteen [LUCKY13] and Raccoon [RACCOON] attacks.

Therefore, this specification MUST only be used with algorithms

which have fixed-length shared secrets (after the variant has been

fixed by the algorithm identifier in the Method Names negotiation in

Section 2.4).
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