
Workgroup: Network Working Group

Internet-Draft:

draft-kampanakis-curdle-ssh-pq-ke-01

Published: 10 April 2023

Intended Status: Experimental

Expires: 12 October 2023

Authors: P. Kampanakis

AWS

D. Stebila

University of Waterloo

T. Hansen

AWS

Post-quantum Hybrid Key Exchange in SSH

Abstract

This document defines post-quantum hybrid key exchange methods based

on classical ECDH key exchange and post-quantum key encapsulation

schemes. These methods are defined for use in the SSH Transport

Layer Protocol.

[EDNOTE: Discussion of this work is encouraged to happen on the IETF

WG Mailing List or in the GitHub repository which contains the

draft: https://github.com/csosto-pk/pq-ssh/issues.]

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 12 October 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Requirements Language

2. PQ-hybrid Key Exchange

2.1. PQ-hybrid Key Exchange Method Abstraction

2.2. PQ-hybrid Key Exchange Message Numbers

2.3. PQ-hybrid Key Exchange Method Names

2.3.1. ecdh-nistp256-kyber-512r3-sha256-d00@openquantumsafe.org

2.3.2. ecdh-nistp384-kyber-768r3-sha384-d00@openquantumsafe.org

2.3.3. ecdh-nistp521-kyber-1024r3-sha512-

d00@openquantumsafe.org

2.3.4. x25519-kyber-512r3-sha256-d00@amazon.com

2.4. Shared Secret K

2.5. Key Derivation

3. Message Size

4. Acknowledgements

5. IANA Considerations

6. Security Considerations

7. References

7.1. Normative References

7.2. Informative References

Authors' Addresses

1. Introduction

Secure Shell (SSH) RFC4251 [RFC4251] performs key establishment

using key exchange methods based on (Elliptic Curve) Diffie-Hellman

style schemes. SSH [RFC4252] [RFC8332] [RFC5656] [RFC8709] also

defines public key authentication methods based on RSA, ECDSA, or

EdDSA signature schemes. The cryptographic security of these key

exchange and signature schemes relies on certain instances of the

discrete logarithm and integer factorization problems being

computationally infeasible to solve for adversaries.

However, if sufficiently large quantum computers become available

these instances would no longer be computationally infeasible

rendering the current key exchange and authentication methods in SSH

insecure [I-D.hoffman-c2pq]. While large quantum computers are not

available today an adversary could record the encrypted

¶

Change Log [EDNOTE: Remove before publicaton.]

* draft-kampanakis-curdle-ssh-pq-ke-00

 Initial draft replacing draft-kampanakis-curdle-pq-ssh-00

¶

¶

communication sent between the client and server in an SSH session

and later decrypt it when sufficiently large quantum computers

become available. This kind of attack is known as a "record-and-

harvest" attack.

This document addresses the problem by extending the SSH Transport

Layer Protocol RFC4253 [RFC4253] key exchange with post-quantum (PQ)

hybrid (PQ-hybrid) key exchange methods. The security provided by

each individual key exchange scheme in a PQ-hybrid key exchange

method is independent. This means that the PQ-hybrid key exchange

method will always be at least as secure as the most secure key

exchange scheme executed as part of the exchange. [PQ-PROOF]

contains proofs of security for such PQ-hybrid key exchange schemes.

In the context of the NIST Post-Quantum Cryptography Standardization

Project [NIST_PQ], key exchange algorithms are formulated as key

encapsulation mechanisms (KEMs), which consist of three algorithms:

'KeyGen() -> (pk, sk)': A probabilistic key generation algorithm,

which generates a public key 'pk' and a secret key 'sk'.

'Encaps(pk) -> (ct, ss)': A probabilistic encapsulation

algorithm, which takes as input a public key 'pk' and outputs a

ciphertext 'ct' and shared secret 'ss'.

'Decaps(sk, ct) -> ss': A decapsulation algorithm, which takes as

input a secret key 'sk' and ciphertext 'ct' and outputs a shared

secret 'ss', or in some cases a distinguished error value.

The main security property for KEMs is indistinguishability under

adaptive chosen ciphertext attack (IND-CCA2), which means that

shared secret values should be indistinguishable from random strings

even given the ability to have arbitrary ciphertexts decapsulated.

IND-CCA2 corresponds to security against an active attacker, and the

public key / secret key pair can be treated as a long-term key or

reused. A weaker security notion is indistinguishability under

chosen plaintext attack (IND-CPA), which means that the shared

secret values should be indistinguishable from random strings given

a copy of the public key. IND-CPA roughly corresponds to security

against a passive attacker, and sometimes corresponds to one-time

key exchange.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

2. PQ-hybrid Key Exchange

2.1. PQ-hybrid Key Exchange Method Abstraction

This section defines the abstract structure of a PQ-hybrid key

exchange method. This structure must be instantiated with two key

exchange schemes. The byte and string types are to be interpreted in

this document as described in RFC4251 [RFC4251].

In a PQ-hybrid key exchange, instead of SSH_MSG_KEXDH_INIT [RFC4253]

or SSH_MSG_KEX_ECDH_INIT [RFC5656], the client sends

where C_INIT is the concatenation of C_PK2 and C_PK1. C_PK1 and

C_PK2 represent the ephemeral client public keys used for each key

exchange of the PQ-hybrid mechanism. Typically, C_PK1 represents a

classical (i.e., ECDH) key exchange public key. C_PK2 represents the

'pk' output of the corresponding post-quantum KEM's 'KeyGen' at the

client.

Instead of SSH_MSG_KEXDH_REPLY [RFC4253] or SSH_MSG_KEX_ECDH_REPLY

[RFC5656], the server sends

where S_REPLY is the concatenation of S_CT2 and S_PK1. Typically,

S_PK1 represents the ephemeral (EC)DH server public key. S_CT2

represents the ciphertext 'ct' output of the corresponding KEM's

'Encaps' algorithm generated by the server which encapsulates a

secret to the client public key C_PK2.

[EDNOTE: Initially we were encoding the server and client client and

server classical and post-quantum public key/ciphertext as its own

string. We since switched to an encoding method which concatenates

them together as a single string in the C_INIT, S_REPLY message.

This method concatenates the raw values rather than the length of

each value plus the value. The total length of the concatenation is

still known, but the relative lengths of the individual values that

were concatenated is no longer part of the representation. This

assumes that the lengths of individual values are fixed once the

algorithm is selected, which is the case for classical key exchange

methods currently supported by SSH and all post-quantum KEMs in

Round 3 of the NIST post-quantum standardization project. If that is

the WG consensus we need to put a note of this in the Appendix for

¶

¶

 byte SSH_MSG_KEX_HYBRID_INIT

 string C_INIT

¶

¶

¶

 byte SSH_MSG_KEX_HYBRID_REPLY

 string K_S, server's public host key

 string S_REPLY

 string the signature on the exchange hash

¶

¶

historical reference and expand on the concatenated string here in

this section.]

C_PK1, S_PK1, C_PK2, S_CT2 are used to establish two shared secrets,

K_CL and K_PQ. K_CL is the output from the classical ECDH exchange

using C_PK1 and S_PK1. K_PQ is the post-quantum shared secret

decapsulated from S_CT2. K_CL and K_PQ are used together to generate

the shared secret K according to Section 2.4.

2.2. PQ-hybrid Key Exchange Message Numbers

The message numbers 30-49 are key-exchange-specific and in a private

namespace defined in [RFC4250] that may be redefined by any key

exchange method [RFC4253] without requiring an IANA registration

process.

The following message numbers have been defined in this document:

2.3. PQ-hybrid Key Exchange Method Names

The PQ-hybrid key exchange method names defined in this document (to

be used in SSH_MSG_KEXINIT [RFC4253]) are

These instantiate abstract PQ-hybrid key exchanges defined in

Section 2.1.

2.3.1. ecdh-nistp256-kyber-512r3-sha256-d00@openquantumsafe.org

ecdh-nistp256-kyber-512r3-sha256-d00@openquantumsafe.org defines

that the classical client and server public keys C_PK1, S_PK1 belong

to the NIST P-256 curve [nist-sp800-186]. The private and public

keys are generated as described therein. The public keys are defined

as octet strings for NIST P-256 as per [RFC5656]; point compression

may be used. The K_CL shared secret is generated from the exchanged

C_PK1 and S_PK1 public keys as defined in [RFC5656] (key agreement

method ecdh-sha2-nistp256).

The post-quantum C_PK2 and S_CT2 represent Kyber512 public key and

ciphertext from the the client and server respectively which are

encoded as octet strings. The K_PQ shared secret is decapsulated

from the ciphertext S_CT2 using the client post-quantum KEM private

key [EDNOTE: Add PQ KEM specification link here].

¶

¶

¶

¶

 #define SSH_MSG_KEX_HYBRID_INIT 30

 #define SSH_MSG_KEX_HYBRID_REPLY 31

¶

¶

 ecdh-nistp256-kyber-512r3-sha256-d00@openquantumsafe.org

 ecdh-nistp384-kyber-768r3-sha384-d00@openquantumsafe.org

 ecdh-nistp521-kyber-1024r3-sha512-d00@openquantumsafe.org

 x25519-kyber-512r3-sha256-d00@amazon.com

¶

¶

¶

¶

The HASH function used in the key exchange [RFC4253] is SHA-256

[nist-sha2] [RFC4634][EDNOTE: Keeping SHA-256 for now to align with

the Kyber security level. Update later if necessary].

[EDNOTE: Placeholder. ecdh-nistp256-kyber-512r3-sha256-

d00@openquantumsafe.org currently follows OQS OpehSSH's method

names. We will update if necessary.]

2.3.2. ecdh-nistp384-kyber-768r3-sha384-d00@openquantumsafe.org

ecdh-nistp384-kyber-768r3-sha384-d00@openquantumsafe.org defines

that the classical client and server public keys C_PK1, S_PK1 belong

to the NIST P-384 curve [nist-sp800-186]. The private and public

keys are generated as described therein. The public keys are defined

as octet strings for NIST P-384 as per [RFC5656]; point compression

may be used. The K_CL shared secret is generated from the exchanged

C_PK1 and S_PK1 public keys as defined in [RFC5656] (key agreement

method ecdh-sha2-nistp384).

The post-quantum C_PK2 and S_CT2 represent Kyber512 public key and

ciphertext from the the client and server respectively which are

encoded as octet strings. The K_PQ shared secret is decapsulated

from the ciphertext S_CT2 using the client post-quantum KEM private

key [EDNOTE: Add PQ KEM specification link here].

The HASH function used in the key exchange [RFC4253] is SHA-384

[nist-sha2] [RFC4634][EDNOTE: Keeping SHA-384 for now to align with

the Kyber security level. Update later if necessary].

[EDNOTE: Placeholder. ecdh-nistp384-kyber-768r3-sha384-

d00@openquantumsafe.org currently follows OQS OpehSSH's method

names. We will update if necessary.]

2.3.3. ecdh-nistp521-kyber-1024r3-sha512-d00@openquantumsafe.org

ecdh-nistp521-kyber-1024r3-sha512-d00@openquantumsafe.org defines

that the classical client and server public keys C_PK1, S_PK1 belong

to the NIST P-521 curve [nist-sp800-186]. The private and public

keys are generated as described therein. The public keys are defined

as octet strings for NIST P-521 as per [RFC5656]; point compression

may be used. The K_CL shared secret is generated from the exchanged

C_PK1 and S_PK1 public keys as defined in [RFC5656] (key agreement

method ecdh-sha2-nistp521).

The post-quantum C_PK2 and S_CT2 represent Kyber512 public key and

ciphertext from the the client and server respectively which are

encoded as octet strings. The K_PQ shared secret is decapsulated

from the ciphertext S_CT2 using the client post-quantum KEM private

key [EDNOTE: Add PQ KEM specification link here].

¶

¶

¶

¶

¶

¶

¶

¶

The HASH function used in the key exchange [RFC4253] is SHA-512

[nist-sha2] [RFC4634][EDNOTE: Keeping SHA-512 for now to align with

the Kyber security level. Update later if necessary].

[EDNOTE: Placeholder. ecdh-nistp521-kyber-1024r3-sha512-

d00@openquantumsafe.org currently follows OQS OpehSSH's method

names. We will update if necessary.]

2.3.4. x25519-kyber-512r3-sha256-d00@amazon.com

x25519-kyber-512r3-sha256-d00@amazon.com defines that the classical

client and server public keys C_PK1, S_PK1 belong to the Curve25519

curve [RFC7748]. Private and public keys are generated as described

therein. The public keys are defined as strings of 32 bytes as per

[RFC8731]. The K_CL shared secret is generated from the exchanged

C_PK1 and S_PK1 public keys as defined in [RFC8731] (key agreement

method curve25519-sha256).

The post-quantum C_PK2 and S_CT2 represent Kyber512 public key and

ciphertext from the the client and server respectively which are

encoded as octet strings The K_PQ shared secret is decapsulated from

the ciphertext S_CT2 using the client post-quantum KEM private key

as defined in [EDNOTE: Add PQ KEM specification link here].

The HASH function used in the key exchange [RFC4253] is SHA-256

[nist-sha2] [RFC4634][EDNOTE: Keeping SHA-256 for now to align with

the Kyber security level. Update later if necessary].

[EDNOTE: Placeholder. x25519-kyber-512r3-sha256-d00@amazon.com is

experimentally following OpehSSH's experimental implementation of

the sntrup4591761x25519-sha512@tinyssh.org method name, but this

draft uses Kyber which was NIST's Round PQ KEM pick. We will update

later if necessary.]

2.4. Shared Secret K

The PQ-hybrid key exchange establishes K_CL and K_PQ by using scalar

multiplication and post-quantum KEM decapsulation ('Decaps')

respectively. The shared secret, K, is the HASH output of the

concatenation of the two shared secrets K_CL and K_PQ as

This is the same logic as in [I-D.ietf-tls-hybrid-design] where the

classical and post-quantum exchanged secrets are concatenated and

used in the key schedule.

The ECDH shared secret was traditionally encoded as an integer as

per [RFC4253], [RFC5656], and [RFC8731] and used in deriving the

key. In this specification, the two shared secrets, K_PQ and K_CL,

¶

¶

¶

¶

¶

¶

¶

 K = HASH(K_PQ || K_CL)¶

¶

are fed into the hash function to derive K. Thus, K_PQ and K_CL are

encoded as fixed-length byte arrays, not as integers. Byte arrays

are defined in Section 5 of [RFC4251].

[EDNOTE: The keys are derived following the same SSH logic (as

explained in the Key Derivation Section)

That is option 2a key derivation.

Other key derivation options include the following SSH logic

Option (2a) resembles (1), but is slightly faster because the latter

hashes the shared key K 6 times, so the larger the K, the more

compression function invocations we will need.

This is the option implemented in OpenSSH experimentally when the

sntrup4591761x25519-sha512@tinyssh.org method is used.

Or (Option 3) using the dualPRF and the Extract-and-Expand logic of

TLS, NIST etc

Note that (2b), (2c) and (3) deviate from SSH significantly and

might be viewed as too far from the current SSH design. It probably

would be a good approach for SSH to move from basic hashing

everywhere to use proper KDFs with extract/expand, but that might be

a separate step from this PQ-hybrid draft.

We need to decide how the keys should be derived from the PQ-ybrid

shared secret K. The options that end up not being chosen should be

added in an Appendix as reference. Currently we picked option 2a to

follow the logic in OpenSSH with method sntrup4591761x25519-

sha512@tinyssh.org, but that could change later.]

¶

¶

 Initial IV c2s: HASH(K || H || "A" || session_id)

 Initial IV s2c: HASH(K || H || "B" || session_id)

 Encryption key c2s: HASH(K || H || "C" || session_id)

 Encryption key s2c: HASH(K || H || "D" || session_id)

 Integrity key c2s: HASH(K || H || "E" || session_id)

 Integrity key s2c: HASH(K || H || "F" || session_id)

¶

¶

¶

 (1) K = K_PQ || K_CL or

 (2b) K = HMAC-HASH(K_PQ, K_CL) or

 (2c) K = HMAC-HASH(0, K_PQ || K_CL)

¶

¶

¶

¶

 K = HKDF-HASH(0, K_PQ || K_CL) // Extract

 Initial IV c2s || Initial IV s2c || Encryption key c2s ||

 Encryption key s2c || Integrity key c2s ||

 Integrity key s2c =

 HKDF-HASH(K, H || session_id, 6(size(HASH)) // Expand

¶

¶

¶

2.5. Key Derivation

The derivation of encryption keys MUST be done from the shared

secret K according to Section 7.2 in [RFC4253] with a modification

on the exchange hash H.

The PQ-hybrid key exchange hash H is the result of computing the

HASH, where HASH is the hash algorithm specified in the named PQ-

hybrid key exchange method name, over the concatenation of the

following

K, the shared secret used in H, was traditionally encoded as an

integer (mpint) as per [RFC4253], [RFC5656], and [RFC8731]. In this

specification, K is the hash output of the two concatenated byte

arrays (Section 2.4) which is not an integer. Thus, K is encoded as

a string using the process described in Section 5 of [RFC4251] and

is then fed along with other data in H to the key exchange method's

HASH function to generate encryption keys.

3. Message Size

An implementation adhering to [RFC4253] must be able to support

packets with an uncompressed payload length of 32768 bytes or less

and a total packet size of 35000 bytes or less (including

'packet_length', 'padding_length', 'payload', 'random padding', and

'mac'). These numbers represent what must be 'minimally supported'

by implementations. This can present a problem when using post-

quantum key exchange schemes because some post-quantum schemes can

produce much larger messages than what is normally produced by

existing key exchange methods defined for SSH. This document does

not define any method names (Section 2.3) that cause any PQ-hybrid

key exchange method related packets to exceed the minimally

supported packet length. This document does not define behaviour in

cases where a PQ-hybrid key exchange message cause a packet to

exceed the minimally supported packet length.

¶

¶

 string V_C, client identification string (CR and LF excluded)

 string V_S, server identification string (CR and LF excluded)

 string I_C, payload of the client's SSH_MSG_KEXINIT

 string I_S, payload of the server's SSH_MSG_KEXINIT

 string K_S, server's public host key

 string C_INIT, client message octet string

 string S_REPLY, server message octet string

 string K, SSH shared secret

¶

¶

¶

4. Acknowledgements

5. IANA Considerations

This memo includes requests of IANA to register new method names

"ecdh-nistp256-kyber-512r3-sha256-d00@openquantumsafe.org", "ecdh-

nistp384-kyber-768r3-sha384-d00@openquantumsafe.org", "ecdh-

nistp521-kyber-1024r3-sha512-d00@openquantumsafe.org", and "x25519-

kyber-512r3-sha256-d00@amazon.com" to be registered by IANA in the

"Key Exchange Method Names" registry for SSH [IANA-SSH].

6. Security Considerations

[PQ-PROOF] contains proofs of security for such PQ-hybrid key

exchange schemes.

[NIST-SP-800-56C] or [NIST-SP-800-135] give NIST recommendations for

key derivation methods in key exchange protocols. Some PQ-hybrid

combinations may combine the shared secret from a NIST-approved

algorithm (e.g., ECDH using the nistp256/secp256r1 curve) with a

shared secret from a non-approved algorithm (e.g., post-quantum).

[NIST-SP-800-56C] lists simple concatenation as an approved method

for generation of a PQ-hybrid shared secret in which one of the

constituent shared secret is from an approved method. [EDNOTE: Thus,

the key exchange defined here is FIPS approved assuming the ECDH

exchanged parameters are FIPS approved.]

The way the derived binary secret string is encoded (i.e., adding or

removing zero bytes for encoding) before it is hashed may lead to a

variable-length secret which raises the potential for a side-channel

attack. In broad terms, when the secret is longer, the hash function

may need to process more blocks internally which could determine the

length of what is hashed. This could leak the most significant bit

of the derived secret and/or allow detection of when the most

significant bytes are zero. In some unfortunate circumstances, this

has led to timing attacks, e.g. the Lucky Thirteen [LUCKY13] and

Raccoon [RACCOON] attacks.

[EDNOTE: We need to decide if we want to allow variable-length

secret K. RFC8731 decided not to address this potential problem due

to backwards compatibility. In this spec we could do the same or say

that this specification MUST only be used with algorithms which have

fixed-length shared secrets (after the variant has been fixed by the

algorithm identifier in the Method Names negotiation in Section 2.3.

Or we could mandate variable length keys be rejected.]

[EDNOTE: The security considerations given in [RFC5656] therefore

also applies to the ECDH key exchange scheme defined in this

document. Similarly for the X25519 document. PQ Algorithms are newer

¶

¶

¶

¶

¶

[RFC2119]

[RFC4251]

[RFC4252]

[RFC4253]

[FO]

and standardized by NIST. We should include text about the

combination method for the KEM shared secrets.]

[EDNOTE: Discussion on whether an IND-CCA KEM is required or whether

IND-CPA suffices.] Any KEM used in the manner described in this

document MUST explicitly be designed to be secure in the event that

the public key is re-used, such as achieving IND-CCA2 security or

having a transform like the Fujisaki-Okamoto transform [FO][HHK]

applied. While it is recommended that implementations avoid reuse of

KEM public keys, implementations that do reuse KEM public keys MUST

ensure that the number of reuses of a KEM public key abides by any

bounds in the specification of the KEM or subsequent security

analyses. Implementations MUST NOT reuse randomness in the

generation of KEM ciphertexts.

Public keys, ciphertexts, and secrets should be constant length.

This document assumes that the length of each public key,

ciphertext, and shared secret is fixed once the algorithm is fixed.

This is the case for all NIST Round 3 finalists and alternate

candidates.

7. References

7.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)

Protocol Architecture", RFC 4251, DOI 10.17487/RFC4251,

January 2006, <https://www.rfc-editor.org/info/rfc4251>.

Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)

Authentication Protocol", RFC 4252, DOI 10.17487/RFC4252,

January 2006, <https://www.rfc-editor.org/info/rfc4252>.

Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)

Transport Layer Protocol", RFC 4253, DOI 10.17487/

RFC4253, January 2006, <https://www.rfc-editor.org/info/

rfc4253>.

7.2. Informative References

Fujisaki, E. and T. Okamoto, "Secure Integration of

Asymmetric and Symmetric Encryption Schemes", DOI

10.1007/s00145-011-9114-1, Journal of Cryptology Vol. 26,

pp. 80-101, December 2011, <https://doi.org/10.1007/

s00145-011-9114-1>.

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4251
https://www.rfc-editor.org/info/rfc4252
https://www.rfc-editor.org/info/rfc4253
https://www.rfc-editor.org/info/rfc4253
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1

[HHK]

[I-D.hoffman-c2pq]

[I-D.ietf-tls-hybrid-design]

[IANA-SSH]

[LUCKY13]

[nist-sha2]

[NIST-SP-800-135]

[NIST-SP-800-56C]

Hofheinz, D., Hövelmanns, K., and E. Kiltz, "A Modular

Analysis of the Fujisaki-Okamoto Transformation", DOI

10.1007/978-3-319-70500-2_12, Theory of Cryptography pp.

341-371, 2017, <https://doi.org/

10.1007/978-3-319-70500-2_12>.

Hoffman, P. E., "The Transition from Classical to

Post-Quantum Cryptography", Work in Progress, Internet-

Draft, draft-hoffman-c2pq-07, 26 May 2020, <https://

datatracker.ietf.org/doc/html/draft-hoffman-c2pq-07>.

Stebila, D., Fluhrer, S., and S.

Gueron, "Hybrid key exchange in TLS 1.3", Work in

Progress, Internet-Draft, draft-ietf-tls-hybrid-

design-06, 27 February 2023, <https://

datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-

design-06>.

IANA, "Secure Shell (SSH) Protocol Parameters", 2021,

<https://www.iana.org/assignments/ssh-parameters/ssh-

parameters.xhtml>.

Al Fardan, N.J. and K.G. Paterson, "Lucky Thirteen:

Breaking the TLS and DTLS record protocols", 2013,

<https://ieeexplore.ieee.org/

iel7/6547086/6547088/06547131.pdf>.

NIST, "FIPS PUB 180-4", 2015, <https://nvlpubs.nist.gov/

nistpubs/FIPS/NIST.FIPS.180-4.pdf>.

National Institute of Standards and Technology

(NIST), "Recommendation for Existing Application-Specific

Key Derivation Functions", December 2011, <https://

doi.org/10.6028/NIST.SP.800-135r1>.

National Institute of Standards and Technology

(NIST), "Recommendation for Key-Derivation Methods in

https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://datatracker.ietf.org/doc/html/draft-hoffman-c2pq-07
https://datatracker.ietf.org/doc/html/draft-hoffman-c2pq-07
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-06
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-06
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-06
https://www.iana.org/assignments/ssh-parameters/ssh-parameters.xhtml
https://www.iana.org/assignments/ssh-parameters/ssh-parameters.xhtml
https://ieeexplore.ieee.org/iel7/6547086/6547088/06547131.pdf
https://ieeexplore.ieee.org/iel7/6547086/6547088/06547131.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://doi.org/10.6028/NIST.SP.800-135r1
https://doi.org/10.6028/NIST.SP.800-135r1

[nist-sp800-186]

[NIST_PQ]

[PQ-PROOF]

[RACCOON]

[RFC4250]

[RFC4634]

[RFC5656]

[RFC7748]

[RFC8332]

[RFC8709]

[RFC8731]

Key-Establishment Schemes", August 2020, <https://

doi.org/10.6028/NIST.SP.800-56Cr2>.

NIST, "SP 800-186", 2019, <https://

nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.

800-186-draft.pdf>.

NIST, "Post-Quantum Cryptography", 2020, <https://

csrc.nist.gov/projects/post-quantum-cryptography>.

Campagna, M. and A. Petcher, "Security of Hybrid Key

Encapsulation", 2020, <https://eprint.iacr.org/

2020/1364>.

Merget, R., Brinkmann, M., Aviram, N., Somorovsky, J.,

Mittmann, J., and J. Schwenk, "Raccoon Attack: Finding

and Exploiting Most-Significant-Bit-Oracles in TLS-

DH(E)", September 2020, <https://raccoon-attack.com/>.

Lehtinen, S. and C. Lonvick, Ed., "The Secure Shell (SSH)

Protocol Assigned Numbers", RFC 4250, DOI 10.17487/

RFC4250, January 2006, <https://www.rfc-editor.org/info/

rfc4250>.

Eastlake 3rd, D. and T. Hansen, "US Secure Hash

Algorithms (SHA and HMAC-SHA)", RFC 4634, DOI 10.17487/

RFC4634, July 2006, <https://www.rfc-editor.org/info/

rfc4634>.

Stebila, D. and J. Green, "Elliptic Curve Algorithm

Integration in the Secure Shell Transport Layer", RFC

5656, DOI 10.17487/RFC5656, December 2009, <https://

www.rfc-editor.org/info/rfc5656>.

Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves

for Security", RFC 7748, DOI 10.17487/RFC7748, January

2016, <https://www.rfc-editor.org/info/rfc7748>.

Bider, D., "Use of RSA Keys with SHA-256 and SHA-512 in

the Secure Shell (SSH) Protocol", RFC 8332, DOI 10.17487/

RFC8332, March 2018, <https://www.rfc-editor.org/info/

rfc8332>.

Harris, B. and L. Velvindron, "Ed25519 and Ed448 Public

Key Algorithms for the Secure Shell (SSH) Protocol", RFC

8709, DOI 10.17487/RFC8709, February 2020, <https://

www.rfc-editor.org/info/rfc8709>.

Adamantiadis, A., Josefsson, S., and M. Baushke, "Secure

Shell (SSH) Key Exchange Method Using Curve25519 and

https://doi.org/10.6028/NIST.SP.800-56Cr2
https://doi.org/10.6028/NIST.SP.800-56Cr2
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186-draft.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186-draft.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186-draft.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://eprint.iacr.org/2020/1364
https://eprint.iacr.org/2020/1364
https://raccoon-attack.com/
https://www.rfc-editor.org/info/rfc4250
https://www.rfc-editor.org/info/rfc4250
https://www.rfc-editor.org/info/rfc4634
https://www.rfc-editor.org/info/rfc4634
https://www.rfc-editor.org/info/rfc5656
https://www.rfc-editor.org/info/rfc5656
https://www.rfc-editor.org/info/rfc7748
https://www.rfc-editor.org/info/rfc8332
https://www.rfc-editor.org/info/rfc8332
https://www.rfc-editor.org/info/rfc8709
https://www.rfc-editor.org/info/rfc8709

Curve448", RFC 8731, DOI 10.17487/RFC8731, February 2020,

<https://www.rfc-editor.org/info/rfc8731>.

Authors' Addresses

Panos Kampanakis

AWS

Email: kpanos@amazon.com

Douglas Stebila

University of Waterloo

Email: dstebila@uwaterloo.ca

Torben Hansen

AWS

Email: htorben@amazon.com

https://www.rfc-editor.org/info/rfc8731
mailto:kpanos@amazon.com
mailto:dstebila@uwaterloo.ca
mailto:htorben@amazon.com

	Post-quantum Hybrid Key Exchange in SSH
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language

	2. PQ-hybrid Key Exchange
	2.1. PQ-hybrid Key Exchange Method Abstraction
	2.2. PQ-hybrid Key Exchange Message Numbers
	2.3. PQ-hybrid Key Exchange Method Names
	2.3.1. ecdh-nistp256-kyber-512r3-sha256-d00@openquantumsafe.org
	2.3.2. ecdh-nistp384-kyber-768r3-sha384-d00@openquantumsafe.org
	2.3.3. ecdh-nistp521-kyber-1024r3-sha512-d00@openquantumsafe.org
	2.3.4. x25519-kyber-512r3-sha256-d00@amazon.com

	2.4. Shared Secret K
	2.5. Key Derivation

	3. Message Size
	4. Acknowledgements
	5. IANA Considerations
	6. Security Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Authors' Addresses

