
Internet Engineering Task Force H. Kario
Internet-Draft Red Hat, Inc.
Updates: 4462 (if approved) Sep 30, 2020
Intended status: Standards Track
Expires: April 3, 2021

Quantum-Resistant GSS-API Key Exchange for SSH
draft-kario-gss-qr-kex-00

Abstract

 This document specifies additions and amendments to RFC4462. It
 defines a new key exchange method that uses GSS-API in a way to
 provide key exchange method that is resistant to attacks by quantum
 computers. The purpose of this specification is to provide an easy-
 to-implement upgrade to environments that require resistance against
 quantum computers before widely accepted post-quantum cryptography
 algorithms are established.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 3, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Kario Expires April 3, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/rfc4462
https://datatracker.ietf.org/doc/html/rfc4462
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft GSS Keyex QR Sep 2020

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Rationale . 2
3. Document Conventions . 3
4. New Quantum Resistant Key Exchange Methods 3
4.1. Generic Quantum Resistant GSS-API key Exchange 4

5. IANA Considerations . 7
6. Security Considerations 7
6.1. Symmetric cipher security 7
6.2. User authentication 8
6.3. Used GSSAPI Mechanisms 8
6.4. GSSAPI Delegation . 8

7. References . 8
7.1. Normative References 8
7.2. Informative References 9

 Author's Address . 10

1. Introduction

 SSH GSS-API Methods [RFC4462] allows the use of GSSAPI for
 authentication and key exchange in SSH. Unfortunately for resistance
 against quantum computers all of the methods in RFC 4462 as well as
 all of the new methods introduced in SSH GSS-API SHA-2 Methods
 [RFC8732] derive their security from Finite-Field Diffie-Hellman or
 Elliptic Curve Diffie-Hellman key exchanges. Both FFDH and ECDH are
 believed to be vulnerable to Shor's algorithm running on quantum
 computers. This document updates RFC4462 with new methods intended
 for use in environments where use of quantum resistant algorithms is
 more important that the forward secrecy provided by FFDH and ECDH.

2. Rationale

 Due to security concerns with FFDH and ECDH against attacks using
 quantum computers, we propose a new key exchange method that does not
 use FFDH or ECDH to agree on a shared secret to derive later
 encryption keys but rather uses GSS-API as a secure communication
 channel to exchange secrets that are then used to derive encryption
 keys.

 To provide resistance against quantum computer attacks the connection
 needs to also carefully select encryption ciphers, and host
 authentication methods.

https://datatracker.ietf.org/doc/html/rfc4462
https://datatracker.ietf.org/doc/html/rfc4462
https://datatracker.ietf.org/doc/html/rfc8732
https://datatracker.ietf.org/doc/html/rfc4462

Kario Expires April 3, 2021 [Page 2]

Internet-Draft GSS Keyex QR Sep 2020

3. Document Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 RFC2119 [RFC2119] RFC8174 [RFC8174] when, and only when, they
 appear in all capitals, as shown here.

4. New Quantum Resistant Key Exchange Methods

 This document adopts the same naming convention as defined in
 [RFC4462] to define families of methods that cover any GSS-API
 mechanism used with a specific SHA-2 Hash. It also reuses much of
 the the scheme defined in Section 2.1 of [RFC4462].

 The following new key exchange algorithms are defined:

 +--------------------------+--------------------------------+
 | Key Exchange Method Name | Implementation Recommendations |
 +--------------------------+--------------------------------+
 | gss-qr-sha256-* | SHOULD/RECOMMENDED |
 | gss-qr-sha512-* | MAY/OPTIONAL |
 +--------------------------+--------------------------------+

 Each key exchange method is implicitly registered by this document.
 The IESG is considered to be the owner of all these key exchange
 methods; this does NOT imply that the IESG is considered to be the
 owner of the underlying GSS-API mechanism.

 Each method in any family of methods specifies GSS-API-authenticated
 exchanges as described in Section 2.1 of [RFC4462]. The method name
 for each method is the concatenation of the family name prefix with
 the Base64 encoding of the MD5 hash [RFC1321] of the ASN.1 DER
 encoding [ISO-IEC-8825-1] of the underlying GSS-API mechanism's OID.
 Base64 encoding is described in Section 6.8 of [RFC2045].

 Family method references

 +--------------------+---------------+
 | Family Name prefix | Hash Function |
 +--------------------+---------------+
 | gss-qr-sha256- | SHA-256 |
 | gss-qr-sha512- | SHA-512 |
 +--------------------+---------------+

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc4462
https://datatracker.ietf.org/doc/html/rfc4462#section-2.1
https://datatracker.ietf.org/doc/html/rfc4462#section-2.1
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2045#section-6.8

Kario Expires April 3, 2021 [Page 3]

Internet-Draft GSS Keyex QR Sep 2020

4.1. Generic Quantum Resistant GSS-API key Exchange

 This section reuses much of the scheme defined in Section 2.1 of
 [RFC4462] though it does not transport FFDH key shares in the
 exchanged messages.

 This section defers to [RFC7546] as the source of information on GSS-
 API context establishment operations, Section 3 being the most
 relevant. All security considerations described in [RFC7546] apply
 here too.

 The parties generate nonces in the key exchange. The generated
 nonces MUST be at least 256 bits long and come from a quantum safe
 CSPRNG. The nonces MUST NOT be reused in other key exchanges.

 The client initiates negotiation by calling GSS_Init_sec_context()
 and the server responds to it by calling GSS_Accept_sec_context().
 For the negotiation, client MUST set the mutual_req_flag,
 conf_req_flag, and integ_req_flag flag to "true". In addition,
 deleg_req_flag MAY be set to "true" to request access delegation, if
 requested by the user. Since the key exchange process authenticates
 only the host, the setting of anon_req_flag is immaterial to this
 process. If the client does not support the "gssapi-keyex" user
 authentication method described in Section 4 of [RFC4462], or does
 not intend to use that method in conjunction with the GSS-API context
 established during key exchange, then anon_req_flag SHOULD be set to
 "true". Otherwise, this flag MAY be set to true if the client wishes
 to hide its identity. This key exchange process will exchange only a
 single message token once the context has been established;
 therefore, the replay_det_req_flag and sequence_req_flag SHOULD be
 set to "false".

 During GSS context establishment, multiple tokens may be exchanged by
 the client and the server. When the GSS context is established
 (major_status is GSS_S_COMPLETE), the parties check that mutual_state
 and integ_avail are both "true". If not, the key exchange MUST fail.

 To verify the integrity of the handshake both peers use the Hash
 Function defined by the selected Key Exchange method to calculate the
 running hash of exchanged messages, H_S and H_C.

 H_S = hash(V_C || V_S || I_C || KC_S || ... || KC_C).

 H_C = hash(V_C || V_S || I_C || KC_S || ... || KC_C || KC).

 The GSS_wrap() call is used by the server and client to encrypt the
 calculated hash and the selected nonce. The peers use the

https://datatracker.ietf.org/doc/html/rfc4462#section-2.1
https://datatracker.ietf.org/doc/html/rfc4462#section-2.1
https://datatracker.ietf.org/doc/html/rfc7546
https://datatracker.ietf.org/doc/html/rfc7546
https://datatracker.ietf.org/doc/html/rfc4462#section-4

Kario Expires April 3, 2021 [Page 4]

Internet-Draft GSS Keyex QR Sep 2020

 GSS_unwrap() to decrypt the value used to check if the other peer has
 received the same messages and to get the nonce it selected.

 Peers MUST verify if the length of the selected nonce is not shorter
 than 32 octets. If the received nonce is shorter, the key exchange
 MUST fail.

 The following is an overview of the key exchange process:

 Client Server
 ------ ------
 Calls GSS_Init_sec_context().
 SSH_MSG_KEXGSS_INIT --------------->

 (Loop)
 | Calls GSS_Accept_sec_context().
 | <------------ SSH_MSG_KEXGSS_CONTINUE
 | Calls GSS_Init_sec_context().
 | SSH_MSG_KEXGSS_CONTINUE ------------>

 Calls GSS_Accept_sec_context().
 Generates ephemeral nonce.
 Computes hash H_S.
 Calls GSS_wrap(H_S || nonce_S).
 <------------ SSH_MSG_KEXGSS_COMPLETE

 Computes hash H_S.
 Calls GSS_unwrap().
 Verifies that computed H_S matches received value.
 Computes hash H_C.
 Generates ephemeral nonce.
 Calls GSS_wrap(H_C || nonce_C).
 SSH_MSG_KEXGSS_COMPLETE ------------>
 Computes hash H_C.
 Calls GSS_unwrap().
 Verifies that computed H_C matches received value.

 This is implemented with the following messages:

 The client sends:

 byte SSH_MSG_KEXGSS_INIT
 string output_token (from GSS_Init_sec_context())

 The server sends:

 byte SSH_MSG_KEXGSS_CONTINUE
 string output_token (from GSS_Accept_sec_context())

Kario Expires April 3, 2021 [Page 5]

Internet-Draft GSS Keyex QR Sep 2020

 Each time the client receives the message described above, it makes
 another call to GSS_Init_sec_context().

 The client sends:

 byte SSH_MSG_KEXGSS_CONTINUE
 string output_token (from GSS_Init_sec_context())

 The final server message is either:

 byte SSH_MSG_KEXGSS_COMPLETE
 string enc_nonce (GSS_wrap() of H_S and nonce_S)
 boolean TRUE
 string output_token (from GSS_Accept_sec_context())

 Or the following if no output_token is available:

 byte SSH_MSG_KEXGSS_COMPLETE
 string enc_nonce (GSS_wrap() of H_S and nonce_S)
 boolean FALSE

 As the final message the client sends either:

 byte SSH_MSG_KEXGSS_COMPLETE
 string enc_nonce (GSS_wrap() of H_C and nonce_C)
 boolean TRUE
 string output_token (from GSS_Accept_sec_context())

 Or the following if no output_token is available:

 byte SSH_MSG_KEXGSS_COMPLETE
 string enc_nonce (GSS_wrap() of H_C and nonce_C)
 boolean FALSE

 The hashes H_S and H_C are computed as the HASH hash of the
 concatenation of the following:

 string V_C, the client's version string (CR, NL excluded)
 string V_S, server's version string (CR, NL excluded)
 string I_C, payload of the client's SSH_MSG_KEXINIT
 string I_S, payload of the server's SSH_MSG_KEXINIT
 string KC_S, payload of the server's SSH_MSG_KEXGSS_CONTINUE
 string KC_C, payload of the client's SSH_MSG_KEXGSS_CONTINUE
 string KC_S, payload of the server's second SSH_MSG_KEXGSS_CONTINUE
 string KC_C, payload of the client's second SSH_MSG_KEXGSS_CONTINUE
 ...
 string KC, payload of the server's SSH_MSG_KEXGSS_COMPLETE

Kario Expires April 3, 2021 [Page 6]

Internet-Draft GSS Keyex QR Sep 2020

 Those values are called exchange hashes, and they are used to
 authenticate the key exchange. The exchange hashes SHOULD be kept
 secret. If no SSH_MSG_KEXGSS_CONTINUE messages have been sent by the
 server or received by the client, then an empty string is used in
 place of KC_S and KC_C when computing the exchange hash. When
 multiple SSH_MSG_KEXGSS_CONTINUE messages have been sent by either
 side, then they should all be included in the exchange hash, in order
 they have been processed by both sides of the connection. For the
 H_S hash, the KC is an empty string.

 Once a party has both the server nonce (nonce_S) and the client nonce
 (nonce_C) it concatenates them, in this order, to compute the used
 shared secret K:

 K = nonce_S || nonce_C

 If the client receives a SSH_MSG_KEXGSS_CONTINUE message after a call
 to GSS_Init_sec_context() has returned a major_status code of
 GSS_S_COMPLETE, a protocol error has occurred and the key exchange
 MUST fail.

 If the client receives a SSH_MSG_KEXGSS_COMPLETE message and a call
 to GSS_Init_sec_context() does not result in a major_status code of
 GSS_S_COMPLETE, a protocol error has occurred and the key exchange
 MUST fail.

5. IANA Considerations

 This document augments the SSH Key Exchange Method Names in
 [RFC4462].

 IANA is requested to update the SSH Protocol Parameters
 [IANA-KEX-NAMES] registry with the following entries:

 +--------------------------+------------+
 | Key Exchange Method Name | Reference |
 +--------------------------+------------+
 | gss-qr-sha256-* | This draft |
 | gss-qr-sha512-* | This draft |
 +--------------------------+------------+

6. Security Considerations

6.1. Symmetric cipher security

 Current understanding of quantum computer capabilities suggest that
 symmetric ciphers with keys smaller than 256 bits will require less
 than the current recommended minimal work factor of 2^128 operations.

https://datatracker.ietf.org/doc/html/rfc4462

Kario Expires April 3, 2021 [Page 7]

Internet-Draft GSS Keyex QR Sep 2020

 As such, connections that use this key exchange methods MUST use
 ciphers with at least 256 bit keys to retain quantum resistance.

6.2. User authentication

 For the connection to remain resistant against quantum computers, the
 user authentication needs to also use quantum resistant algorithms.
 In particular, it's RECOMMENDED that connections use gssapi-keyex for
 client authentication. The publickey mechanism MUST NOT be used
 unless the asymmetric keys used for it use post-quantum algorithms.
 DSA, ECDSA, and RSA keys MUST NOT be used.

6.3. Used GSSAPI Mechanisms

 The security of the key exchange depends on the security of the used
 GSSAPI mechanism. The described key exchange will be quantum
 resistant only in case the used GSSAPI mechanism is quantum
 resistant.

 For example, the Kerberos 5 mechanism is quantum resistant only when
 it's used together with algorithms and key sizes that are quantum
 resistant. Quantum safe algorithm SHOULD be used throught the
 kerberos infrastructure, both for authentication and encryption.
 Currently aes256-cts-hmac-sha384-192 mechanism defined in [RFC8009]
 for encryption is an example of such an algorithm.

6.4. GSSAPI Delegation

 Some GSSAPI mechanisms can act on a request to delegate credentials
 to the target host when the deleg_req_flag is set. In this case,
 extra care must be taken to ensure that the acceptor being
 authenticated matches the target the user intended. Some mechanisms
 implementations (like commonly used krb5 libraries) may use insecure
 DNS resolution to canonicalize the target name; in these cases
 spoofing a DNS response that points to an attacker-controlled machine
 may results in the user silently delegating credentials to the
 attacker, who can then impersonate the user at will.

7. References

7.1. Normative References

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 DOI 10.17487/RFC1321, April 1992,
 <https://www.rfc-editor.org/info/rfc1321>.

https://datatracker.ietf.org/doc/html/rfc8009
https://datatracker.ietf.org/doc/html/rfc1321
https://www.rfc-editor.org/info/rfc1321

Kario Expires April 3, 2021 [Page 8]

Internet-Draft GSS Keyex QR Sep 2020

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,
 <https://www.rfc-editor.org/info/rfc2045>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4462] Hutzelman, J., Salowey, J., Galbraith, J., and V. Welch,
 "Generic Security Service Application Program Interface
 (GSS-API) Authentication and Key Exchange for the Secure
 Shell (SSH) Protocol", RFC 4462, DOI 10.17487/RFC4462, May
 2006, <https://www.rfc-editor.org/info/rfc4462>.

 [RFC7546] Kaduk, B., "Structure of the Generic Security Service
 (GSS) Negotiation Loop", RFC 7546, DOI 10.17487/RFC7546,
 May 2015, <https://www.rfc-editor.org/info/rfc7546>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8732] Sorce, S. and H. Kario, "Generic Security Service
 Application Program Interface (GSS-API) Key Exchange with
 SHA-2", RFC 8732, DOI 10.17487/RFC8732, February 2020,
 <https://www.rfc-editor.org/info/rfc8732>.

7.2. Informative References

 [IANA-KEX-NAMES]
 Internet Assigned Numbers Authority, "Secure Shell (SSH)
 Protocol Parameters: Key Exchange Method Names", June
 2005, <https://www.iana.org/assignments/ssh-parameters/

ssh-parameters.xhtml#ssh-parameters-16>.

 [ISO-IEC-8825-1]
 International Organization for Standardization /
 International Electrotechnical Commission, "ASN.1 encoding
 rules: Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished Encoding
 Rules (DER)", ISO/IEC 8825-1, November 2015,
 <http://standards.iso.org/ittf/PubliclyAvailableStandards/

c068345_ISO_IEC_8825-1_2015.zip>.

https://datatracker.ietf.org/doc/html/rfc2045
https://www.rfc-editor.org/info/rfc2045
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4462
https://www.rfc-editor.org/info/rfc4462
https://datatracker.ietf.org/doc/html/rfc7546
https://www.rfc-editor.org/info/rfc7546
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8732
https://www.rfc-editor.org/info/rfc8732
https://www.iana.org/assignments/ssh-parameters/ssh-parameters.xhtml#ssh-parameters-16
https://www.iana.org/assignments/ssh-parameters/ssh-parameters.xhtml#ssh-parameters-16
http://standards.iso.org/ittf/PubliclyAvailableStandards/c068345_ISO_IEC_8825-1_2015.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c068345_ISO_IEC_8825-1_2015.zip

Kario Expires April 3, 2021 [Page 9]

Internet-Draft GSS Keyex QR Sep 2020

 [NIST-SP-800-131Ar1]
 National Institute of Standards and Technology,
 "Transitions: Recommendation for Transitioning of the Use
 of Cryptographic Algorithms and Key Lengths", NIST Special
 Publication 800-131A Revision 1, November 2015,
 <http://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.800-131Ar1.pdf>.

 [RFC6194] Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security
 Considerations for the SHA-0 and SHA-1 Message-Digest
 Algorithms", RFC 6194, DOI 10.17487/RFC6194, March 2011,
 <https://www.rfc-editor.org/info/rfc6194>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/info/rfc6234>.

 [RFC8009] Jenkins, M., Peck, M., and K. Burgin, "AES Encryption with
 HMAC-SHA2 for Kerberos 5", RFC 8009, DOI 10.17487/RFC8009,
 October 2016, <https://www.rfc-editor.org/info/rfc8009>.

Author's Address

 Hubert Kario
 Red Hat, Inc.
 Purkynova 115
 Brno 612 00
 Czech Republic

 Email: hkario@redhat.com

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf
https://datatracker.ietf.org/doc/html/rfc6194
https://www.rfc-editor.org/info/rfc6194
https://datatracker.ietf.org/doc/html/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://datatracker.ietf.org/doc/html/rfc8009
https://www.rfc-editor.org/info/rfc8009

Kario Expires April 3, 2021 [Page 10]

