
QUIC K. Oku
Internet-Draft Fastly
Intended status: Experimental C. Huitema
Expires: January 6, 2020 Private Octopus Inc.
 July 05, 2019

Authenticated Handshake for QUIC
draft-kazuho-quic-authenticated-handshake-01

Abstract

 This document explains a variant of QUIC protocol version 1 that uses
 the ESNI Keys to authenticate the Initial packets thereby making the
 entire handshake tamper-proof.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 6, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Oku & Huitema Expires January 6, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Authenticated Handshake for QUIC July 2019

Table of Contents

1. Introduction . 2
1.1. Notational Conventions 3

2. Differences from QUIC version 1 3
2.1. Protocol Version Number 3
2.2. The "QUIC-AH" TLS Extension 3
2.3. Initial Packet . 4
2.3.1. Mapping to Connections 4
2.3.2. Protection . 4
2.3.3. Destination Connection ID 4

2.4. Version Negotiation Packet 5
2.5. Connection Close Packet 5
2.6. Retry Packet . 6

3. Considerations . 6
3.1. Using GCM to Authenticate Initial Packets 6
3.2. Split Mode . 7

4. Security Considerations 7
4.1. Resisting the duplicate context attack 8
4.2. Resisting Address Substitution Attacks 8

5. IANA Considerations . 9
6. Normative References . 9
Appendix A. Acknowledgements 10
Appendix B. Change Log . 10
B.1. Since draft-kazuho-quic-authenticated-handshake-00 . . . 10

 Authors' Addresses . 10

1. Introduction

 As defined in Secure Using TLS to Secure QUIC [QUIC-TLS], QUIC
 version 1 [QUIC-TRANSPORT] protects the payload of every QUIC packet
 using AEAD making the protocol injection- and tamper-proof, with the
 exception being the Initial packets. Initial packets are merely
 obfuscated because there is no shared secret between the endpoints
 when they start sending the Initial packets against each other.

 However, when Encrypted Server Name Indication for TLS 1.3 [TLS-ESNI]
 is used, a shared secret between the endpoints can be used for
 authentication from the very first packet of the connection.

 This document defines a Packet Protection method for Initial packets
 that incorporates the ESNI shared secret, so that spoofed Initial
 packets will be detected and droped.

https://datatracker.ietf.org/doc/html/draft-kazuho-quic-authenticated-handshake-00

Oku & Huitema Expires January 6, 2020 [Page 2]

Internet-Draft Authenticated Handshake for QUIC July 2019

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Differences from QUIC version 1

 The document describes the changes from QUIC version 1.

 Implementations MUST conform to the specifications of QUIC version 1
 unless a different behavior is defined in this document.

2.1. Protocol Version Number

 The long header packets exchanged using this specification carry the
 QUIC version number of 0xXXXXXXXX (TBD).

2.2. The "QUIC-AH" TLS Extension

 The QUIC-AH TLS Extension indicates the versions of QUIC supported by
 the server that have the authenticated handshake flavors, along with
 the versions being exposed on the wire for each of those versions.

 struct {
 uint32 base_version;
 uint32 wire_versions<4..2^16-4>;
 } SupportedVersion;

 struct {
 SupportedVersion supported_versions<8..2^16-4>;
 } QUIC_AH;

 This specification defines a variant of QUIC version 1. Therefore, a
 ESNI Resource Records being published for a server providing support
 for this specification MUST include a QUIC_AH extension that contains
 a SupportedVersion structure with the "base_version" set to 1.

 A client MUST NOT initiate a connection establishment attempt
 specified in this document unless it sees a compatible base version
 number in the QUIC_AH extension of the ESNI Resource Record
 advertised by the server.

 The "wire_versions" field indicates the version numbers to be
 contained in the long header packets, for each of the base versions
 that the server supports. The wire versions SHOULD be chosen at
 random, as the exposure of arbitrary version numbers prevents network

https://datatracker.ietf.org/doc/html/rfc2119

Oku & Huitema Expires January 6, 2020 [Page 3]

Internet-Draft Authenticated Handshake for QUIC July 2019

 devices from incorrectly assuming that the version numbers are
 stable.

 For each connection establishment attempt, a client SHOULD randomly
 choose one wire version, and the endpoints MUST use long header
 packets containing the chosen wire version throughout that connection
 establishment attempt.

2.3. Initial Packet

2.3.1. Mapping to Connections

 A server associates an Initial packet to an existing connection using
 the Destination Connection ID, QUIC version, and the five tuple. If
 all of the values match to that of an existing connection, the packet
 is processed accordingly. Otherwise, a server MUST handle the packet
 as potentially creating a new connection.

2.3.2. Protection

 Initial packets are encrypted and authenticated differently from QUIC
 version 1.

 AES [AES] in counter (CTR) mode is used for encrypting the payload.
 The key and iv being used are identical to that of QUIC version 1.

 HMAC [RFC2104] is used for authenticating the header. The message
 being authenticated is the concatenation of the packet header without
 Header Protection and the payload in cleartext. The underlying hash
 function being used is the one selected for encrypting the Encrypted
 SNI extension. The HMAC key is calculated using the following
 formula, where Zx is the extracted DH shared secret of Encrypted SNI:

 hmac_key = HKDF-Expand-Label(Zx, "quic initial auth", Hash(ESNIContents),
 digest_size)

 The first sixteen (16) octets of the HMAC output replaces the
 authentication tag of QUIC version 1.

 Other types of packets are protected using the Packet Protection
 method defined in QUIC version 1.

2.3.3. Destination Connection ID

 When establishing a connection, a client MUST initially set the
 Destination Connection ID to the hashed value of the first payload of
 the CRYPTO stream (i.e., the ClientHello message) truncated to first

https://datatracker.ietf.org/doc/html/rfc2104

Oku & Huitema Expires January 6, 2020 [Page 4]

Internet-Draft Authenticated Handshake for QUIC July 2019

 sixteen (16) bytes. The hash function being used is the one selected
 by Encrypted SNI.

 When processing the first payload carried by a CRYPTO stream, a
 server MUST, in addition to verifying the authentication tag, verify
 that the truncated hash value of the payload is identical to the
 Destination Connection ID or to the original Connection ID recovered
 from the the Retry Token. A server MUST NOT create or modify
 connection state if either or both the verification fails.

2.4. Version Negotiation Packet

 A client MUST ignore Version Negotiation packets. When the client
 gives up of establishing a connection, it MAY report the failure
 differently based on the receipt of (or lack of) Version Negotiation
 packets.

2.5. Connection Close Packet

 A Connection Close packet shares a long packet header with a type
 value of 0x3 with the Retry packet. The two types of packets are
 identified by the lower 4-bits of the first octet. The packet is a
 Connection Close packet if all the bits are set to zero. Otherwise,
 the packet is a Retry packet.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 |1|1| 3 | 0 |
 +-+
 | Version (32) |
 +-+
 |DCIL(4)|SCIL(4)|
 +-+
 | Destination Connection ID (0/32..144) ...
 +-+
 | Source Connection ID (0/32..144) ...
 +-+
 | Error Code (16) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 (: #connection-close-format title="Connection Close Packet")

 A Connection Close packet is sent by a server when a connection error
 occurs prior to deriving the HMAC key. In all other conditions,
 connection close MUST be signalled using the CONNECTION_CLOSE frame.

Oku & Huitema Expires January 6, 2020 [Page 5]

Internet-Draft Authenticated Handshake for QUIC July 2019

 A client that receives a Connection Close packet before an Initial
 packet SHOULD retain the error code, and continue the connection
 establishment attempt as if it did not see the packet. When the
 attempt times out, it MAY assume that the error code was a legitimate
 value sent by the server. A client MAY ignore Connection Close
 packets.

2.6. Retry Packet

 A client SHOULD send one Initial packet in response to each Retry
 packet it receives. The Destination Connection ID of the Initial
 packet MUST be set to the value specified by the Retry packet,
 however the keys for encrypting and authenticating the packet MUST
 continue to be the original ones. A server sending a Retry packet is
 expected to include the original Connection ID in the Retry Token it
 emits, and to use the value contained in the token attached to the
 Initial packet for unprotecting the payload.

 Payload of the CRYPTO frame contained in the resent Initial packets
 MUST be identical to that of the Initial packet that triggered the
 retry.

 When the client does not receive a valid Initial packet after a
 handshake timeout, it SHOULD send an Initial packet with the
 Destination Connection ID and the token set to the original value.

 A client MUST ignore Retry packets received anterior to an Initial
 packet that successfully authenticates.

3. Considerations

3.1. Using GCM to Authenticate Initial Packets

 An alternative approach to using the combination of AES-CTR and HMAC
 is to continue using AES-GCM. In such approach, the additional
 authenticated data (AAD) will incorporate the ESNI shared secret to
 detect spoofed or broken packets.

 A server that receives an Initial packet for a new connection will at
 first decrypt the payload using AES-CTR, derive ESNI shared secret
 from the Hello message being contained, then use that to verify the
 GCM tag.

 The benefit of the approach is that we will have less divergence from
 QUIC version 1. The downside is that the authentication algorithm
 would be hard-coded to GCM, and that some AEAD APIs might not provide
 an interface to handle input in this particular way.

Oku & Huitema Expires January 6, 2020 [Page 6]

Internet-Draft Authenticated Handshake for QUIC July 2019

 We can also consider adding a small checksum to the Initial packets
 so that the server can determine if the packet is corrupt. The
 downside is that the endpoints would be required to calculate the
 checksum for Initial packets that carry server's messages and ACKs as
 well, even though the correctness of the packet can be verified using
 the ordinary procedure of AEAD.

3.2. Split Mode

 To support server-side deployments using "Split Mode" ([TLS-ESNI];
section 3), the following properties need to be exchanged between the

 fronting server and the hidden server, in addition to those generally
 required by a QUIC version 1 proxy and the Encrypted SNI extension:

 o hmac_key

 o ODCID

 Both the fronting server and the hidden server need access to the
 hmac_key to authenticate the Initial packets. However, because the
 key is derived from the shared DH secret of ESNI, it is not
 necessarily available to the hidden server.

 ODCID is necessary to decrypt an Initial packet sent in response to a
 Retry. However, the value is typically available only to the server
 that generates the Retry. The fronting server and the hidden server
 need to exchange the ODCID, or provide the secret for extracting the
 ODCID from a Retry token.

4. Security Considerations

 The authenticated handshake is designed to enable successful
 connections even if clients and servers are attacked by a powerful
 "man on the side", which cannot delete packets but can inject packets
 and will always win the race against original packets.i We want to
 enable the following pattern: ```

 Client Attacker Server

 CInitial -> CInitial' -> CInitial -> <- SInitial <- SInitial' <-
 SInitial

 CHandshake -> CHandshake -> ``` The goal is a successful handshake
 despite injection by the attacker of fake Client Initial packet
 (CInitial') or Server Initial packet (SInitial').

 The main defense against forgeries is the HMAC authentication of the
 Initial packets using an ESNI derived key that is not accessible to

Oku & Huitema Expires January 6, 2020 [Page 7]

Internet-Draft Authenticated Handshake for QUIC July 2019

 the attacker. This prevents all classes of attacks using forged
 Initial packets. There are however two methods that are still
 available to the attackers:

 1) Forge an Initial packet that will claim the same context as the
 client request,

 2) Send duplicates of the client request from a fake source address.

 These two attacks and their mitigation are discussed in the next
 sections.

4.1. Resisting the duplicate context attack

 The attacker mounts a duplicate context attack by observing the
 original Client Initial packet, and then creating its own Client
 Initial packet in which source and destination CID are the same as in
 the original packet. The ESNI secret will be different, because the
 packet is composed by the server. The goal of the attacker is to let
 the server create a context associated with the CID, so that when the
 original Client Initial later arrives it gets discarded.

 This attack is mitigated by verifying that the Destination CID of the
 Client Initial matches the hash of the first CRYPTO stream payload.

 If the server uses address verification, there may be a Retry
 scenario: ``` Client Attacker Server

 CInitial -> <- Retry (with Token) CInitial2 (including Token) -> <-
 Sinitial

 CHandshake -> ``` The Destination CID of the second Client Initial
 packet is selected by the server, or by a device acting on behalf of
 the server. This destination CID will not match the hash of the
 CRYPTO stream payload. However, in the retry scenario, the server is
 already rquired to know the Destination CID from the original Client
 Initial packet (ODCID), because it has to echo it in the transport
 parameters extension. The server can then verify that the hash of
 the CRYPTO stream payload matches the ODCID.

4.2. Resisting Address Substitution Attacks

 The DCID of the original Initial packet is defined as the hash of the
 first payload of the CRYPTO stream. This prevents attackers from
 sending "fake" Initial packets that would be processed in the same
 server connection context as the authentic packet. However, it does
 not prevent address substitution attacks such as: ``` Client Attacker
 Server

Oku & Huitema Expires January 6, 2020 [Page 8]

Internet-Draft Authenticated Handshake for QUIC July 2019

 CInitial(from A) -> CInitial(from A') -> CInitial(from A) -> ``` In
 this attack, the attacker races a copy of the Initial packet,
 substituting a faked value for the client's source address. The goal
 of the attack is to cause the server to associate the fake address
 with the connection context, causing the connection to fail.

 The server cannot prevent this attack by just verifying the HMAC,
 because the address field is not covered by the checksum
 authentication. To actually mitigate the attack, the server needs to
 create different connection contexts for each pair of Initial DCID
 and source Address. The resulting exchange will be: ``` Client
 Attacker Server

 CInitial(from A) -> CInitial(A') -> <- SInitial-X(to A') CInitial(A)
 -> <- SInitial-Y(to A) CHandshake-Y -> ```

 The server behavior is required even if the server uses address
 verification procedures, because the attacker could mount a complex
 attack in which it obtains a Retry Token for its own address, then
 forwards it to the client: ``` Client Attacker Server

 CInitial(from A) -> CInitial(from A') -> <- Retry(to A', T(A')) <-
 Retry(to A, T(A')) CInitial2(from A, T(A')) -> CInitial(from A',
 T(A')) ->

 CInitial(from A) ->
 <- Retry(T(A)) CInitial3(from A,
T(A)) -> ``` At the end of this exchange, the server will have received two
valid client Initial packets that both path address verification and the ESNI
based HMAC, and both have the same CRYPTO stream initial payload and the same
ODCID. If it kept only one of them, the attacker would have succeeded in
distrupting the connection attempt.

5. IANA Considerations

 TBD

6. Normative References

 [AES] "Advanced encryption standard (AES)", National Institute
 of Standards and Technology report,
 DOI 10.6028/nist.fips.197, November 2001.

 [QUIC-TLS]
 Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure
 QUIC", draft-ietf-quic-tls-20 (work in progress), April
 2019.

 [QUIC-TRANSPORT]

https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-20

 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", draft-ietf-quic-

transport-20 (work in progress), April 2019.

Oku & Huitema Expires January 6, 2020 [Page 9]

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-20
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-20

Internet-Draft Authenticated Handshake for QUIC July 2019

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997, <https://www.rfc-

editor.org/info/rfc2104>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-

editor.org/info/rfc2119>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [TLS-ESNI]
 Rescorla, E., Oku, K., Sullivan, N., and C. Wood,
 "Encrypted Server Name Indication for TLS 1.3", draft-

ietf-tls-esni-03 (work in progress), March 2019.

Appendix A. Acknowledgements

 TBD

Appendix B. Change Log

B.1. Since draft-kazuho-quic-authenticated-handshake-00

 o Change DCID to Hash(ClientHello) (#8)

 o Describe attacks (#12)

 o Describe how Initial packets are mapped to connections (#10)

 o Clarify the requirements to support split mode (#11)

 o Version number greasing (#13)

Authors' Addresses

 Kazuho Oku
 Fastly

 Email: kazuhooku@gmail.com

https://datatracker.ietf.org/doc/html/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-03
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-03
https://datatracker.ietf.org/doc/html/draft-kazuho-quic-authenticated-handshake-00

Oku & Huitema Expires January 6, 2020 [Page 10]

Internet-Draft Authenticated Handshake for QUIC July 2019

 Christian Huitema
 Private Octopus Inc.

 Email: huitema@huitema.net

Oku & Huitema Expires January 6, 2020 [Page 11]

