
N/A T. Keiser
Internet-Draft Sine Nomine
Intended status: Informational S. Jenkins
Expires: March 14, 2013
 A. Deason, Ed.
 Sine Nomine
 September 10, 2012

AFS-3 Protocol Capabilities Query Mechanism
draft-keiser-afs3-capabilities-00

Abstract

 AFS-3 is a distributed file system based upon prototypes developed at
 Carnegie Mellon University during the 1980s. AFS-3 heavily leverages
 Remote Procedure Calls (RPCs) as the foundation for its distributed
 architecture. In 2003, new RPCs were introduced into AFS-3 that
 provide for capability querying between file servers and cache
 managers. This memo provides a formal specification for that
 functionality, and provides analogous extensions to the volume server
 RPC interface.

Internet Draft Comments

 Comments regarding this draft are solicited. Please include the
 AFS-3 protocol standardization mailing list
 (afs3-standardization@openafs.org) as a recipient of any comments.

AFS-3 Document State

 This document is in state "draft", as per the document state
 definitions set forth in [I-D.wilkinson-afs3-standardisation].

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79. This document may not be modified,
 and derivative works of it may not be created, and it may not be
 published except as an Internet-Draft.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

Keiser, et al. Expires March 14, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft AFS-3 Capabilities September 2012

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 14, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Keiser, et al. Expires March 14, 2013 [Page 2]

Internet-Draft AFS-3 Capabilities September 2012

Table of Contents

1. Introduction . 4
1.1. Purpose . 4
1.2. Motivations . 5
1.3. Abbreviations . 5

2. Conventions . 6
3. Capability Query Mechanism 6
3.1. Capability Bit Vector (array index 0) 6
3.2. Interpretation by caller 7

4. afsint Capability Query Interface 7
4.1. Cache Coherence . 8

5. afscbint Capability Query Interface 8
5.1. Cache Coherence . 9

6. volint Capability Query Interface 9
6.1. Cache Coherence . 9

7. Acknowledgements . 10
8. IANA Considerations . 10
9. AFS Assigned Numbers Registrar Considerations 10
9.1. AFSVol Capabilities Registry 10

10. Security Considerations 11
11. References . 11
11.1. Normative References 11
11.2. Informative References 11

Appendix A. Sample RPC-L for afsint Capabilities Mechanism . . . 13
Appendix B. Sample RPC-L for afscbint Capabilities Mechanism . . 14
Appendix C. Sample RPC-L for volint Capabilities Mechanism . . . 15

 Authors' Addresses . 15

Keiser, et al. Expires March 14, 2013 [Page 3]

Internet-Draft AFS-3 Capabilities September 2012

1. Introduction

 AFS-3 [CMU-ITC-88-062] [CMU-ITC-87-068] is a distributed file system
 that has its origins in the VICE project [CMU-ITC-84-020]
 [CMU-ITC-85-039] at the Carnegie Mellon University Information
 Technology Center [CMU-ITC-83-025], a joint venture between CMU and
 IBM. VICE later became AFS when CMU moved development to a new
 commercial venture called Transarc Corporation, which later became
 IBM Pittsburgh Labs. AFS-3 is a suite of un-standardized network
 protocols based on a remote procedure call (RPC) suite known as Rx.
 While de jure standards for AFS-3 fail to exist, the various AFS-3
 implementations have agreed upon certain de facto standards, largely
 helped by the existence of an open source fork called OpenAFS that
 has served the role of reference implementation. In addition to
 using OpenAFS as a reference, IBM wrote and donated developer
 documentation that contains somewhat outdated specifications for the
 Rx protocol and all AFS-3 remote procedure calls, as well as a
 detailed description of the AFS-3 system architecture.

 Unlike most network file systems (e.g., NFS), where protocol updates
 are traditionally handled in large batches, AFS-3 aims for
 incremental, evolutionary change to its wire protocol. Because of
 this lack of RPC interface major versions, it is the responsibility
 of calling peers to ascertain what capabilities (i.e., available RPC
 interfaces, call semantics, etc.) are supported by the peer.
 Naturally, this is a best-effort mechanism since the capabilities are
 assumed to be malleable by, e.g., transparent code upgrades at the
 remote peer.

 To this end, the afsint [AFS3-FSCM] and afscbint Rx RPC service
 endpoints--RXAFS (UDP port 7000, Rx service id 1), and RXAFSCB (UDP
 port 7001, Rx service id 1), respectively--were (circa 2003) each
 extended with a capabilities query RPC. These RPCs return (among
 other things) an OUT parameter containing an XDR [RFC4506] variable-
 length array of reserved fields, which future extensions could
 utilize to advertise support of new protocol extensions.

1.1. Purpose

 This memo serves several purposes:

 1. it serves as a historical record of the interfaces and semantics
 (of the file server and cache manager capabilities query
 interfaces), as they were designed and implemented circa 2003,
 and informally specified in 2006;

 2. it specifies the general data encoding and semantics for all
 present AFS-3 capabilities interfaces (thus, hopefully, serving

https://datatracker.ietf.org/doc/html/rfc4506

Keiser, et al. Expires March 14, 2013 [Page 4]

Internet-Draft AFS-3 Capabilities September 2012

 as a normative reference for future capability drafts); and

 3. specifies a new capabilities interface for the volint Rx RPC
 service endpoint--AFSVol (UDP port 7005, Rx service id 4)--in
 order to permit future extensions to the AFS-3 volume server.

1.2. Motivations

 The legacy method for extending AFS-3 protocols has been to define
 new RPCs with prototypes that augment existing RPC interfaces with
 additional arguments, or that supplant legacy data structures with
 new data structure definitions (and associated new RPCs that
 references those definitions). While this solves the XDR decoding
 backwards compatibility problem, it does so at the expense of
 requiring an O(n) search to find out which RPC version is implemented
 on a given endpoint: by iterating backwards from the newest to the
 oldest implementation of a given interface--until an invocation does
 not return the RXGEN_OPCODE error. Consequently, the "get
 capabilities" mechanisms specified in this document reduce the worst-
 case capability probing from N round trips to 2--at the potential
 expense of 1 additional round-trip, occasionally, to prevent
 capabilities cache staleness.

1.3. Abbreviations

 AFS - Historically, AFS stood for the Andrew File System; AFS
 no longer stands for anything

 afscbint - AFS-3 Cache Manager RPC Interface Definition

 afsint - AFS-3 File Server RPC Interface Definition

 AFSVol - AFS Volume Server Rx RPC Implementation

 CM - AFS-3 Cache Manager

 FS - AFS-3 File Server

 RPC - Remote Procedure Call

 RPC-L - Rx RPC Interface Definition Language (fork of ONC RPC
 [RFC5531] .x file format)

 Rx - The Remote Procedure Call mechanism utilized by AFS-3
 [AFS3-RX]

https://datatracker.ietf.org/doc/html/rfc5531

Keiser, et al. Expires March 14, 2013 [Page 5]

Internet-Draft AFS-3 Capabilities September 2012

 RXAFS - AFS File Server Rx RPC Implementation

 RXAFSCB - AFS Cache Manager Rx RPC Implementation

 TTL - Time to Live for cached data

 volint - AFS-3 Volume Server RPC Interface Definition

 volser - AFS-3 Volume Server

 XDR - eXternal Data Representation [RFC4506]

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Capability Query Mechanism

 Many AFS-3 services permit evolution by querying the capabilities of
 the service that they are contacting. This is accomplished via a
 special RPC code point that is defined for many AFS-3 RPC services.
 This RPC returns an opaque bit string to the caller. In terms of
 RPC-L, this bit string is defined as a variable-length sequence of
 32-bit unsigned integers [I-D.keiser-afs3-xdr-primitive-types]:

 const AFSCAPABILITIESMAX = 196;
 typedef afs_uint32 Capabilities<AFSCAPABILITIESMAX>;

 This XDR encoding permits the size of a capabilities payload to grow
 quite large, while simultaneously keeping the payload small--until
 more elements in the variable-length array are allocated. Moreover,
 it allows the semantics of the XDR variable-length array to be
 defined gradually. The cost for this flexibility is that the 32-bit
 value of all zeroes MUST be treated the same as if the array index
 had not been returned at all.

3.1. Capability Bit Vector (array index 0)

 The file server and cache manager both define the first array
 slot--of their capabilities arrays--to be a bit vector, where each
 bit position SHALL be advertised as zero, until such time as a bit
 position is:

https://datatracker.ietf.org/doc/html/rfc4506
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Keiser, et al. Expires March 14, 2013 [Page 6]

Internet-Draft AFS-3 Capabilities September 2012

 1. allocated by the AFS Assigned Numbers Registrar;

 2. its semantics are agreed upon by the AFS-3 standardization group
 (if applicable); and

 3. the attendant functionality is implemented by the callee of the
 capability query RPC.

3.2. Interpretation by caller

 Interpreting the capabilities bit string returned by a server is
 complicated by the fact that the client and/or the server may
 implement differing subsets of the AFS-3 protocol. For this reason,
 differing subsets of the standardized capability bit vector array
 indices may be supported by the caller and callee.

 For example: the client may know how to decode the contents of
 capability array indices 0, 1, and 3; the server may implement the
 encodings of indices 0, 1, and 4. In this example, the server would
 return a 20-octet array where indices 2 and 3 are all zero bits. As
 noted earlier, the client SHALL interpret the 32-bit value of zero
 for indices 2 and 3 to mean that the server does not support the
 standardized encodings for these indices, let alone the standards
 whose capability metadata is encoded therein. Of course, the client
 would ignore the contents of array indices 2 and 4, as it has no
 means of decoding those capabilities. Therefore, the client will
 decode and interpret the intersection of known capabilities: array
 indices 0, and 1.

4. afsint Capability Query Interface

 In 2003, the AFS-3 community agreed to define file server and cache
 manager capability RPC code points. The RPC-L definition of the file
 server's (afsint) code point is as follows:

 proc GetCapabilities(
 OUT Capabilities *caps
) multi = 65540;

 The first array element in this variable-length array was defined as
 a 32-bit bit vector of capability flags (See Section 3.1). Four flag
 bits were subsequently allocated:

Keiser, et al. Expires March 14, 2013 [Page 7]

Internet-Draft AFS-3 Capabilities September 2012

 VICED_CAPABILITY_ERRORTRANS = 1

 Advertise support for the UAE error code translation table
 mechanism. When this flag is asserted, the server may translate
 system errno codes into the UAE namespace to preserve accuracy.

 VICED_CAPABILITY_64BITFILES = 2

 Advertise support for 64-bit variants of the FetchData and
 StoreData RPCs (i.e., RXAFS_FetchData64, and RXAFS_StoreData64).

 VICED_CAPABILITY_WRITELOCKACL = 4

 Advertise that RXAFS_SetLock and RXAFS_ExtendLock will permit
 ViceLockType of LockWrite (1) when the caller only possesses
 credentials conferring the PRSFS_INSERT privilege
 [afs3-stds-jaltman-2006-08-01].

 VICED_CAPABILITY_SANEACLS = 8

 Hint to the client that volumes on this file server are, to the
 best knowledge of the system administrator, sane with respect to
 the lock ("k") permission bit [afs3-stds-jhutz-2006-07-19].

4.1. Cache Coherence

 Clients SHOULD issue an RXAFS_GetCapabilities call frequently in
 order to limit the capability incoherence time window. It is
 RECOMMENDED that clients issue RXAFS_GetCapabilities where they would
 have formerly issued RXAFS_GetTime (usually during periodic server
 probing, and NAT table entry refreshing).

5. afscbint Capability Query Interface

 In 2003, the AFS-3 community agreed to define file server and cache
 manager capability RPC code points. The afscbint RPC-L definition is
 as follows:

 proc TellMeAboutYourself(
 OUT struct interfaceAddr *addrs,
 OUT Capabilities *caps
) = 65538;

 The semantics of the addrs parameter are as defined for
 RXAFSCB_WhoAreYou (a multi-home aware evolution beyond RXAFSCB_Probe
 [AFS3-FSCM], which was implemented by IBM during the 1990s). The
 first array element in the variable-length caps array was defined as

Keiser, et al. Expires March 14, 2013 [Page 8]

Internet-Draft AFS-3 Capabilities September 2012

 a 32-bit bit vector of capability flags. One flag was subsequently
 allocated and standardized:

 CLIENT_CAPABILITY_ERRORTRANS = 1

 Advertise support for the UAE error code translation table
 mechanism. When this flag is asserted, the server may translate
 system errno codes into the UAE namespace to preserve accuracy.

5.1. Cache Coherence

 Clients SHOULD issue an RXAFSCB_TellMeAboutYourself call frequently
 in order to limit the capability incoherence time window.

6. volint Capability Query Interface

 This memo introduces a capabilities namespace, and GetCapabilities
 interface to the volint service. The GetCapabilities interface SHALL
 be be functionally identical to the previously-defined
 RXAFS_GetCapabilities interface (see Section 4). Its RPC-L
 definition SHALL be:

 proc GetCapabilities(
 OUT Capabilities * capabilities
) = XXX;

 Figure 1

 The "Capabilities" type referenced here is the same one utilized by
 the afsint interface. As with that interface, the first index in the
 capabilities array MUST be interpreted as a 32-bit bit vector, where
 all bits SHALL be set to zero--until such time as they meet the
 requirements set forth in Section 3.1.

6.1. Cache Coherence

 One important distinction between this capability querying interface
 and the ones utilized by afsint is: afsint is a stateful circuit --
 file servers can reset the cached state across themselves and clients
 via the RXAFSCB_InitCallBackState, RXAFSCB_InitCallBackState2, and
 RXAFSCB_InitCallBackState3 RPCs. Because volint is a stateless (with
 the exception of rxkad and voltrans) client/server protocol, there is
 no means of maintaining volint capabilities cache coherence. It is
 RECOMMENDED that clients receiving RPC error codes, or extended union
 legs that they cannot decode, perform a new AFSVolGetCapabilities
 invocation to ensure that capabilities cache incoherence is detected.

Keiser, et al. Expires March 14, 2013 [Page 9]

Internet-Draft AFS-3 Capabilities September 2012

 Clearly, the above technique is open to races; volint clients SHOULD
 try to limit race probability by minimizing the time window between
 GetCapabilities calls, and invocation of capabilities-dependent RPCs.
 All volint clients MUST flush cached capabilities at most two hours
 after retrieving them via AFSVolGetCapabilities.

7. Acknowledgements

 The author would like to thank, in particular, Jeffrey Altman, and
 Jeffrey Hutzelman for their contributions to the 2006 mailing list
 discussions regarding the capabilities RPCs; and Derrick Brashear for
 the capabilities RPC language he wrote in
 [I-D.brashear-afs3-pts-extended-names], which the author found quite
 useful while writing this specification.

8. IANA Considerations

 This memo includes no request to IANA.

9. AFS Assigned Numbers Registrar Considerations

 This memo makes one registry allocation request of the AFS Assigned
 Numbers Registrar.

9.1. AFSVol Capabilities Registry

 This memo requests the allocation of a new registry with the formal
 name "AFSVol Capabilities". This registry will be used to track
 allocations of AFSVol capability bits. The capability bit namespace
 contains 6272 bits, subdivided into 196 32-bit buckets. Allocation
 requests for this namespace MUST be in the form of an RFC.
 Furthermore, final approval for allocations SHALL be made by a
 Designated Expert [RFC5226] to be nominated by the AFS-3 Working
 Group. Should the AFS-3 Working Group be unable to assign a
 Designated Expert, the AFS Assigned Numbers Registrar will be free to
 appoint one or more Designated Experts to aid the registrar in the
 process of vetting requests for this namespace. All allocation
 requests for this registry MUST include the following information:

 o capability name, and

 o RFC section reference to definition of how this capability bit
 alters AFSVol protocol semantics.

 In addition, an allocation request MAY include any of the following

https://datatracker.ietf.org/doc/html/rfc5226

Keiser, et al. Expires March 14, 2013 [Page 10]

Internet-Draft AFS-3 Capabilities September 2012

 optional elements:

 o capability description,

 o desired capability bucket number and bit position,

 o RFC section reference to discussion regarding backwards
 compatibility, or

 o RFC section reference to relevant security considerations.

10. Security Considerations

 Given that these capability querying interfaces may be invoked over
 unprotected (e.g., rxnull) connections, application developers should
 be extremely careful when utilizing capability data to negotiate
 security-related mechanisms. When such functionality is required,
 the implementor should make every effort to access the required
 capability bits over an Rx connection whose security class guarantees
 the capability bits are at least integrity-protected.

11. References

11.1. Normative References

 [I-D.keiser-afs3-xdr-primitive-types]
 Keiser, T., "AFS-3 Rx RPC XDR Primitive Type Definitions",

draft-keiser-afs3-xdr-primitive-types-00 (work in
 progress), June 2011.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

11.2. Informative References

 [AFS3-FSCM]
 Zayas, E., "AFS-3 Programmer's Reference: File Server/
 Cache Manager Interface", Transarc Corp. Tech. Rep. FS-00-
 D162, August 1991.

 [AFS3-RX] Zayas, E., "AFS-3 Programmer's Reference: Specification
 for the Rx Remote Procedure Call Facility", Transarc Corp.

https://datatracker.ietf.org/doc/html/draft-keiser-afs3-xdr-primitive-types-00
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226

Keiser, et al. Expires March 14, 2013 [Page 11]

Internet-Draft AFS-3 Capabilities September 2012

 Tech. Rep. FS-00-D164, August 1991.

 [CMU-ITC-83-025]
 Morris, J., Van Houweling, D., and K. Slack, "The
 Information Technology Center", CMU ITC Tech. Rep. CMU-
 ITC-83-025, 1983.

 [CMU-ITC-84-020]
 West, M., "VICE File System Services", CMU ITC Tech.
 Rep. CMU-ITC-84-020, August 1984.

 [CMU-ITC-85-039]
 Satyanarayanan, M., Howard, J., Nichols, D., Sidebotham,
 R., Spector, A., and M. West, "The ITC Distributed File
 System: Principles and Design", Proc. 10th ACM Symp.
 Operating Sys. Princ. Vol. 19, No. 5, December 1985.

 [CMU-ITC-87-068]
 Howard, J., Kazar, M., Menees, S., Nichols, D.,
 Satyanarayanan, M., Sidebotham, R., and M. West, "Scale
 and Performance in a Distributed File System", ACM Trans.
 Comp. Sys. Vol. 6, No. 1, pp. 51-81, February 1988.

 [CMU-ITC-88-062]
 Howard, J., "An Overview of the Andrew File System"",
 Proc. 1988 USENIX Winter Tech. Conf. pp. 23-26,
 February 1988.

 [I-D.brashear-afs3-pts-extended-names]
 Brashear, D., "Authentication Name Mapping extension for
 AFS-3 Protection Service",

draft-brashear-afs3-pts-extended-names-09 (work in
 progress), March 2011.

 [I-D.wilkinson-afs3-standardisation]
 Wilkinson, S., "Options for AFS Standardisation",

draft-wilkinson-afs3-standardisation-00 (work in
 progress), June 2010.

 [RFC4506] Eisler, M., "XDR: External Data Representation Standard",
 STD 67, RFC 4506, May 2006.

 [RFC5531] Thurlow, R., "RPC: Remote Procedure Call Protocol
 Specification Version 2", RFC 5531, May 2009.

 [afs3-stds-jaltman-2006-08-01]
 Altman, J., "Locking, ACLs, and Capabilities", AFS-3 Stds
 List 000067, August 2006, <http://lists.openafs.org/

https://datatracker.ietf.org/doc/html/draft-brashear-afs3-pts-extended-names-09
https://datatracker.ietf.org/doc/html/draft-wilkinson-afs3-standardisation-00
https://datatracker.ietf.org/doc/html/rfc4506
https://datatracker.ietf.org/doc/html/rfc5531
http://lists.openafs.org/

Keiser, et al. Expires March 14, 2013 [Page 12]

Internet-Draft AFS-3 Capabilities September 2012

 pipermail/afs3-standardization/2006-August/000067.html>.

 [afs3-stds-jhutz-2006-07-19]
 Hutzelman, J., "Locking, ACLs, and Capabilities", AFS-3
 Stds List 000063, July 2006, <http://lists.openafs.org/

pipermail/afs3-standardization/2006-July/000063.html>.

 [openafs-delta-capabilities-20030304]
 Brashear, D., "DELTA capabilities-20030304", OpenAFS
 Git 2712c1202ab17436ced8b466575c8bebdd9f68b7, March 2003,
 <http://git.openafs.org/
 ?p=openafs.git;a=commitdiff;h=2712c1202ab17436ced8b466575c
 8bebdd9f68b7>.

Appendix A. Sample RPC-L for afsint Capabilities Mechanism

 The following is excerpted from an OpenAFS change-set implementing
 the RXAFS_GetCapabilities functionality
 [openafs-delta-capabilities-20030304].

 /*
 * Copyright 2000, International Business Machines Corporation
 * and others. All Rights Reserved.
 *
 * This software has been released under the terms of the IBM
 * Public License. For details, see the LICENSE file in the
 * top-level source directory or online at
 * http://www.openafs.org/dl/license10.html
 */

 const AFSCAPABILITIESMAX = 196;
 typedef afs_uint32 Capabilities<AFSCAPABILITIESMAX>;

 /* Viced Capability Flags */
 const VICED_CAPABILITY_ERRORTRANS = 0x0001;
 const VICED_CAPABILITY_64BITFILES = 0x0002;
 const VICED_CAPABILITY_WRITELOCKACL = 0x0004;
 const VICED_CAPABILITY_SANEACLS = 0x0008;

 proc GetCapabilities(
 OUT Capabilities *caps
) multi = 65540;

http://lists.openafs.org/pipermail/afs3-standardization/2006-July/000063.html
http://lists.openafs.org/pipermail/afs3-standardization/2006-July/000063.html
http://git.openafs.org/
http://www.openafs.org/dl/license10.html

Keiser, et al. Expires March 14, 2013 [Page 13]

Internet-Draft AFS-3 Capabilities September 2012

Appendix B. Sample RPC-L for afscbint Capabilities Mechanism

 The following is excerpted from an OpenAFS change-set implementing
 the RXAFSCB_TellMeAboutYourself functionality
 [openafs-delta-capabilities-20030304].

 /*
 * Copyright 2000, International Business Machines Corporation
 * and others. All Rights Reserved.
 *
 * This software has been released under the terms of the IBM
 * Public License. For details, see the LICENSE file in the
 * top-level source directory or online at
 * http://www.openafs.org/dl/license10.html
 */

 const AFSCAPABILITIESMAX = 196;
 typedef afs_uint32 Capabilities<AFSCAPABILITIESMAX>;

 /* Cache Manager Capability Flags */
 const CLIENT_CAPABILITY_ERRORTRANS = 0x0001;

 const AFS_MAX_INTERFACE_ADDR = 32;
 struct interfaceAddr {
 int numberOfInterfaces;
 afsUUID uuid;
 afs_int32 addr_in[AFS_MAX_INTERFACE_ADDR];
 afs_int32 subnetmask[AFS_MAX_INTERFACE_ADDR];
 afs_int32 mtu[AFS_MAX_INTERFACE_ADDR];
 };

 proc TellMeAboutYourself(
 OUT struct interfaceAddr *addrs,
 OUT Capabilities *caps
) = 65538;

http://www.openafs.org/dl/license10.html

Keiser, et al. Expires March 14, 2013 [Page 14]

Internet-Draft AFS-3 Capabilities September 2012

Appendix C. Sample RPC-L for volint Capabilities Mechanism

 /*
 * Copyright 2000, International Business Machines Corporation
 * and others. All Rights Reserved.
 *
 * This software has been released under the terms of the IBM
 * Public License. For details, see the LICENSE file in the
 * top-level source directory or online at
 * http://www.openafs.org/dl/license10.html
 */

 const AFSVOL_CAPABILITIES_MAX = 196;
 typedef afs_uint32 AFSVolCapabilities<AFSVOL_CAPABILITIES_MAX>;

 proc GetCapabilities(
 OUT AFSVolCapabilities * caps
) = XXX;

Authors' Addresses

 Thomas Keiser
 Sine Nomine Associates
 43596 Blacksmith Square
 Ashburn, VA 20147
 USA

 Email: tkeiser@gmail.com

 Steven Jenkins

 Email: steven.jenkins@gmail.com

 Andrew Deason (editor)
 Sine Nomine Associates
 43596 Blacksmith Square
 Ashburn, Virginia 20147-4606
 USA

 Phone: +1 703 723 6673
 Email: adeason@sinenomine.net

http://www.openafs.org/dl/license10.html

Keiser, et al. Expires March 14, 2013 [Page 15]

