
Network Working Group T.E. Keiser

Internet-Draft Sine Nomine

Intended status: Informational June 02, 2011

Expires: December 04, 2011

AFS-3 Rx RPC XDR Primitive Type Definitions

draft-keiser-afs3-xdr-primitive-types-00

Abstract

AFS-3 embeds a set of XDR primitive type definitions, which are

referenced throughout the various AFS-3 protocol specifications. This

memo defines the mapping between these AFS-3 primitive types, and the

underlying XDR primitives.

Internet Draft Comments

Comments regarding this draft are solicited. Please include the AFS-3

protocol standardization mailing list (afs3-

standardization@openafs.org) as a recipient of any comments.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on December 04, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Abbreviations

2. Conventions

3. Primitive Integer Types

3.1. char

3.2. unsigned char

3.3. short

3.4. unsigned short

3.5. 1- and 2-octet integer types

4. afsUUID

4.1. Encoding

4.2. Decoding

5. IANA Considerations

6. AFS Assign Numbers Registrar Considerations

7. Security Considerations

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Base Type Definitions

Author's Address

1. Introduction

AFS-3 [AFS1] [AFS2] is a distributed file system that has its origins

in the VICE project [CMU-ITC-84-020] [VICE1] at the Carnegie Mellon

University Information Technology Center [CMU-ITC-83-025], a joint

venture between CMU and IBM. VICE later became AFS when CMU moved

development to a new commercial venture called Transarc Corporation,

which later became IBM Pittsburgh Labs. AFS-3 is a suite of un-

standardized network protocols based on a remote procedure call (RPC)

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

AFS -

DCE -

LSB -

MSB -

RPC -

Rx -

UUID -

XDR -

suite known as Rx [AFS3-RX]. While de jure standards for AFS-3 fail to

exist, the various AFS-3 implementations have agreed upon certain de

facto standards, largely helped by the existence of an open source fork

called OpenAFS that has served the role of reference implementation. In

addition to using OpenAFS as a reference, IBM wrote and donated

developer documentation that contains somewhat outdated specifications

for the Rx protocol and all AFS-3 remote procedure calls, as well as a

detailed description of the AFS-3 system architecture.

The Rx RPC protocol utilizes XDR [RFC4506] as its means of encoding RPC

call and response payloads. While XDR provides type definitions for

each popular bit-length integer, it does so using relatively ambiguous

names (e.g., hyper). To improve readability, AFS-3 standards reference

custom XDR types that embed the bit length within the type name. This

memo standardizes those primitive types, as well as the encoding for

the AFS-3 UUID.

1.1. Abbreviations

Historically, AFS stood for the Andrew File System; AFS no

longer stands for anything

The Distributed Computing Environment

Least-Significant Bit

Most-Significant Bit

Remote Procedure Call

The Remote Procedure Call mechanism utilized by AFS-3

Universally Unique IDentifier

eXternal Data Representation

2. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

3. Primitive Integer Types

AFS-3 defines a number of special types which are direct mappings onto

existing XDR types. Thus, these types are essentially XDR typedefs:

AFS-3 type name -> XDR primitive type [Reference]

--------------- ------------------ -----------

char int RFC 4506 Section 4.1

unsigned char unsigned int RFC 4506 Section 4.2

afs_int8 int RFC 4506 Section 4.1

afs_uint8 unsigned int RFC 4506 Section 4.2

short int RFC 4506 Section 4.1

unsigned short unsigned int RFC 4506 Section 4.2

afs_int16 int RFC 4506 Section 4.1

afs_uint16 unsigned int RFC 4506 Section 4.2

afs_int32 int RFC 4506 Section 4.1

afs_uint32 unsigned int RFC 4506 Section 4.2

afs_int64 hyper RFC 4506 Section 4.5

afs_uint64 unsigned hyper RFC 4506 Section 4.5

AFS-3 common typedefs

3.1. char

This type is considered deprecated; future protocol specifications

should reference the "afs_int8" type instead.

3.2. unsigned char

This type is considered deprecated; future protocol specifications

should reference the "afs_uint8" type instead.

3.3. short

This type is considered deprecated; future protocol specifications

should reference the "afs_int16" type instead.

3.4. unsigned short

This type is considered deprecated; future protocol specifications

should reference the "afs_uint16" type instead.

3.5. 1- and 2-octet integer types

Please note that XDR uses a 4-octet alignment, and thus these 1- and 2-

octet types will take 4 octets on the wire. Consequently, this is

merely a way of defining data structures that have an optimized in-

memory footprint, without imbuing any wire-encoding advantage.

4. afsUUID

AFS-3, being closely related to DCE, relies heavily upon a UUID type.

The AFS-3 UUID type is identical to the DCE-variant, version 1 UUID

type (see Appendix A of [dce_rpc]). The C data structure definition for

such a UUID is as follows:

 struct afsUUID {

 afs_uint32 time_low;

 afs_uint16 time_mid;

 afs_uint16 time_hi_and_version;

 char clock_seq_hi_and_reserved;

 char clock_seq_low;

 char node[6];

 };

 typedef struct afsUUID afsUUID;

An afsUUID type is XDR encoded on the wire as follows:

(MSB) (LSB)

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| time_low |

+-+

| 0 | time_mid |

+-+

| 0 | time_hi_and_version |

+-+

| {3} | {1} |

+-+

| {3} | {2} |

+-+

| {3} | node[0] |

+-+

| {3} | node[1] |

+-+

| {3} | node[2] |

+-+

| {3} | node[3] |

+-+

| {3} | node[4] |

+-+

| {3} | node[5] |

+-+

 {1} clock_seq_hi_and_reserved

 {2} clock_seq_low

 {3} sign extended padding: 0, or 0xffffff depending on value

 of MSB in field to be sign-extended and padded

afsUUID XDR encoding

4.1. Encoding

XDR encoding an "afsUUID" type SHALL involve the following sequence of

operations:

Encode "time_low" field as an XDR unsigned integer (afs_uint32)

Encode "time_mid" field as an XDR unsigned integer

Encode "time_hi_and_version" field as an XDR unsigned integer

Encode "clock_seq_hi_and_reserved" field as an XDR signed

integer

Encode "clock_seq_low" field as an XDR signed integer

Encode "node[0]" field as an XDR signed integer

Encode "node[1]" field as an XDR signed integer

Encode "node[2]" field as an XDR signed integer

Encode "node[3]" field as an XDR signed integer

Encode "node[4]" field as an XDR signed integer

Encode "node[5]" field as an XDR signed integer

Many of the fields which are encoded in this data structure are smaller

than four octets. In order to XDR encode these fields, they must first

be resized. Since many of these fields are signed, this involves sign

extension. This process depends upon the machine architecture.

Virtually all machines in existence today utilize 2s-complement integer

arithmetic, where this process merely involves padding with zeros if

the MSB is zero or ones if the MSB is one.

4.2. Decoding

XDR decoding an "afsUUID" type SHALL involve the following sequence of

operations:

Decode an XDR unsigned integer into the "time_low" field

Decode an XDR unsigned integer. If the integer is greater than

65535, the decoding SHALL fail. Copy the least-significant 16

bits into the "time_mid" field.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

1.

2.

Decode an XDR unsigned integer. If the integer is greater than

65535, the decoding SHALL fail. Copy the least-significant 16

bits into the "time_hi_and_version" field.

Decode an XDR signed integer. If the integer is greater than

32767, or less than -32768, the decoding SHALL fail. Copy the

least-significant 16 bits into the "clock_seq_hi_and_reserved"

field.

Decode an XDR signed integer. If the integer is greater than

32767, or less than -32768, the decoding SHALL fail. Copy the

least-significant 16 bits into the "clock_seq_low" field.

Decode an XDR signed integer. If the integer is greater than

127, or less than -128, the decoding SHALL fail. Copy the

least-significant 8 bits into the "node[0]" field.

Decode an XDR signed integer. If the integer is greater than

127, or less than -128, the decoding SHALL fail. Copy the

least-significant 8 bits into the "node[1]" field.

Decode an XDR signed integer. If the integer is greater than

127, or less than -128, the decoding SHALL fail. Copy the

least-significant 8 bits into the "node[2]" field.

Decode an XDR signed integer. If the integer is greater than

127, or less than -128, the decoding SHALL fail. Copy the

least-significant 8 bits into the "node[3]" field.

Decode an XDR signed integer. If the integer is greater than

127, or less than -128, the decoding SHALL fail. Copy the

least-significant 8 bits into the "node[4]" field.

Decode an XDR signed integer. If the integer is greater than

127, or less than -128, the decoding SHALL fail. Copy the

least-significant 8 bits into the "node[5]" field.

5. IANA Considerations

This memo includes no request to IANA.

6. AFS Assign Numbers Registrar Considerations

This memo includes no request to the AFS Assigned Numbers Registrar.

7. Security Considerations

This document merely describes various AFS-3 XDR types. Any protocol

specification which uses these primitives types must ensure the

3.

4.

5.

6.

7.

8.

9.

10.

11.

security of the resulting XDR data streams, e.g., via prescription of a

suitable Rx RPC security class.

8. References

8.1. Normative References

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC4506]
Eisler, M., "XDR: External Data Representation

Standard", STD 67, RFC 4506, May 2006.

8.2. Informative References

[CMU-

ITC-84-020]

West, M.J., "VICE File System Services", CMU ITC

Tech. Rep. CMU-ITC-84-020, August 1984.

[CMU-

ITC-83-025]

Morris, J.H., Van Houweling, D. and K. Slack, "The

Information Technology Center", CMU ITC Tech. Rep.

CMU-ITC-83-025, 1983.

[AFS3-RX]

Zayas, E.R., "AFS-3 Programmer's Reference:

Specification for the Rx Remote Procedure Call

Facility", Transarc Corp. Tech. Rep. FS-00-D164,

August 1991.

[VICE1]

Satyanarayanan, M., Howard, J.H., Nichols, D.A.,

Sidebotham, R.N., Spector, A.Z. and M.J. West, "The

ITC Distributed File System: Principles and Design",

Proc. 10th ACM Symp. Operating Sys. Princ. Vol. 19,

No. 5, December 1985.

[AFS1]

Howard, J.H., "An Overview of the Andrew File

System"", Proc. 1988 USENIX Winter Tech. Conf. pp.

23-26, February 1988.

[AFS2]

Howard, J.H., Kazar, M.L., Menees, S.G., Nichols,

D.A., Satyanarayanan, M., Sidebotham, R.N. and M.J.

West, "Scale and Performance in a Distributed File

System", ACM Trans. Comp. Sys. Vol. 6, No. 1, pp.

51-81, February 1988.

[dce_rpc]
The Open Group, "CAE Specification, DCE 1.1: Remote

Procedure Call", CAE C706, August 1997.

Appendix A. Base Type Definitions

typedef afs_int8 int;

typedef afs_uint8 unsigned int;

typedef afs_int16 int;

typedef afs_uint16 unsigned int;

typedef afs_int32 int;

typedef afs_uint32 unsigned int;

typedef afs_int64 hyper;

typedef afs_uint64 unsigned hyper;

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc4506
http://tools.ietf.org/html/rfc4506

Author's Address

Thomas Keiser Keiser Sine Nomine Associates 43596 Blacksmith Square

Ashburn, VA 20147 USA Phone: +1 703 723 6673 EMail:

tkeiser@sinenomine.net

mailto:tkeiser@sinenomine.net

	Abstract
	Internet Draft Comments
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Abbreviations
	2. Conventions
	3. Primitive Integer Types
	3.1. char
	3.2. unsigned char
	3.3. short
	3.4. unsigned short
	3.5. 1- and 2-octet integer types
	4. afsUUID
	4.1. Encoding
	4.2. Decoding
	5. IANA Considerations
	6. AFS Assign Numbers Registrar Considerations
	7. Security Considerations
	8. References
	8.1. Normative References
	8.2. Informative References
	Appendix A. Base Type Definitions
	Author's Address

