
 James Kempf
Internet Draft Erik Guttman
Document: draft-kempf-svrloc-rfc2614bis-00.txt
Expires: August 2002 Feburary 2002

An API for Service Location

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.
 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."
 The list of current Internet-Drafts can be accessed at

http://www.ietf.org/ietf/1id-abstracts.txt
 The list of Internet-Draft Shadow Directories can be accessed at

http://www.ietf.org/shadow.html.

Abstract
 The Service Location Protocol (SLP) provides a way for clients to
 dynamically discovery network services. This document describes a
 standardized API for SLP in the C language. In addition,
 standardized file formats for configuration and serialized
 registrations are defined. This document defines a new API for SLP
 that supercedes the definition in RFC 2614.

Table of Contents

1.0 Introduction...3
1.1 Terminology..3
2.0 File Formats...3
2.1 Configuration File Format....................................4
2.1.1 DA configuration..6
2.1.2 Preconfiguration..6
2.1.3 Tracing and Logging...7
2.1.4 Serialized Proxy Registrations..............................7
2.1.5 Network Configuration Properties............................7
2.1.6 SA Configuration..9
2.1.7 UA Configuration..9
2.2 Serialized Registration File.................................10
2.3 Processing Serialized Registration and Configuration Files..11
3.0 The API...11

https://datatracker.ietf.org/doc/html/draft-kempf-svrloc-rfc2614bis-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2614

3.1 Constant Types...11
3.1.1 URL Lifetimes..11

 Kempf and Guttman Informational [Page 1]

 Internet Draft SLP API Revised Feburary, 2002
3.2 Error Codes..12
3.3 SLPBoolean...13
3.4 Structure Types..14
3.4.1 SLPSrvURL..14
3.4.2 SLPHandle..15
3.5 Callback Types..15
3.5.1 SLPRegReport...15
3.5.2 SLPSrvTypeCallback...16
3.5.3 SLPSrvURLCallback..16
3.5.4 SLPAttrCallback..17
3.6 Opening and Closing an SLPHandle............................18
3.6.1 SLPOpen..18
3.6.2 SLPClose...18
3.7 SA API...19
3.7.1 SLPReg...19
3.7.2 SLPDereg...20
3.7.3 SLPFindSrvTypes..21
3.7.4 SLPFindSrvs..22
3.7.5 SLPFindAttrs...23
3.8 Miscellaneous Functions......................................24
3.8.1 SLPGetRefreshInterval......................................24
3.8.2 SLPFindScopes..24
3.8.3 SLPParseSrvURL...25
3.8.4 SLPParseAttrs..25
3.8.5 SLPEscape..26
3.8.6 SLPUnescape..27
3.8.7 SLPFree..27
3.8.8 SLPGetProperty...28
3.8.9 SLPSetProperty...28
3.8.10 SLPGetExtensionInterface..................................29
3.8.11 SLPFreeExtensionInterface.................................29
4.0 Implementation Considerations...............................30
4.1 Callback Semantics...30
4.2 Asynchronous Semantics.......................................31
4.3 Scope and DA Configuration and Discovery.....................32
4.4 Multithreading...32
4.5 Type Checking for Registrations..............................32
4.6 Refreshing Registrations.....................................33
4.7 Character Set Encoding.......................................33
4.8 Error Handling...33
4.9 Modular Implementations......................................34
4.10 Handling Special Service Types..............................34
4.11 Syntax for String Parameters................................34
4.12 Client Side Syntax Checking.................................35
4.13 SLP Configuration Properties................................35
4.14 Memory Management...35
4.15 Multi-homed Hosts...35
4.16 Unicast UA Requests...36
4.17 UA Caching..36
5.0 Deprecated Features...37

6.0 Example...37
7.0 Security Considerations.....................................39

 Kempf and Guttman Informational [Page 2]

 Internet Draft SLP API Revised Feburary, 2002
8.0 Acknowledgements..39
9.0 References..40
10.0 Editors' Addresses...40
11.0 Full Copyright Statement...................................40

1.0 Introduction

 The Service Location API is designed for standardized access to the
 Service Location Protocol (SLP) through a C language interface. The
 API facilitates writing portable client and service programs. In
 addition, standardized formats for configuration files and for
 serialized registration files are presented. These files allow
 system administrators to configure network parameters, to register
 legacy services that have not been SLP-enabled, and to portably
 exchange configuration and registration files. This document
 supercedes the SLP API definition in RFC 2614 [1] and corresponds to
 the protocol definition described in [8].

1.1 Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [2].

 Please see [8] for specific SLP protocol-related terms.

 SA Server

 Many operating system platforms only allow a single process to
 listen on a particular port number for TCP. Since general
 purpose SAs are required to listen on TCP for SLP requests,
 implementations of the SLP supporting multiple SAs on such
 platforms need to arrange for a single process to do the
 listening. The advertising SAs communicate with that process
 through another mechanism, described here in Section XXX. The
 single listening process is called an SA server. SA servers
 share many characteristics with DAs, but they are not the
 same.

2.0 File Formats

 This section describes the configuration and serialized registration
 file formats. Both files are defined in the UTF-8 character set [4],
 and they must not include a Byte Order Mark (BOM) at the beginning,
 to maximize compatibility with US-ASCII. The rules governing
 attribute tags and values in serialized registration files and
 configuration files are exactly the same as those for the wire
 format described in [8]. Attribute tags and string values require
 SLP reserved characters to be escaped. The SLP reserved characters
 are '(', ')', ',', '\', '!', '<', '=', '>', '~' and control

https://datatracker.ietf.org/doc/html/rfc2614
https://datatracker.ietf.org/doc/html/rfc2119

 characters (characters with UTF codes less than 0x0020 and the
 character 0x007f, which is US-ASCII DEL). The escapes are formed
 exactly as for the wire protocol, i.e. a backslash followed by two
 hex digits representing the character. For example, the escape for
 Kempf and Guttman Informational [Page 3]

 Internet Draft SLP API Revised Feburary, 2002
 ',' is '\2c'. In addition, the characters "\n", "\r", "\t", and '_'
 are prohibited from attribute tags by the SLP wire syntax grammar
 [8]. Other characters may be escaped, and are processed into the
 corresponding characters upon input, exactly as for reserved
 characters.

 In file encodings for attribute values, strings beginning with
 "\ff", an encoding for a nonUTF-8 character, are treated as opaques.
 Exactly as in the wire protocol, syntactically correct opaque
 encodings consist of a string beginning with "\ff" and containing
 only escaped characters that are transformed to bytes. Such
 strings are only syntactically correct as attribute values. In a
 string beginning with "\ff", if any characters are not escaped, it
 is a syntax error.

 Escaped characters in URLs use the URL escape convention [3].

 Property names and values in the configuration file have a few
 reserved characters that are involved in file's lexical definition,
 in addition to those involving attributes described above, for those
 property values that contain attribute list definitions. The
 characters '.' and '=' are reserved in property names and must be
 escaped. The characters ',', '(', and ')' are reserved in all
 property values, not just attribute list definitions, and must be
 escaped. In addition, scope names in the net.slp.configuredScopes
 property use the SLP wire format escape convention for SLP reserved
 characters. This simplifies implementation, since the same code can
 be used to unescape scope names as is used for formatting wire
 messages.

 On platforms that only support US-ASCII and not UTF-8, the upper bit
 of bytes incoming from the configuration and registration files
 determines whether the character is US-ASCII or not. According to
 the standard UTF-8 encoding, the upper bit is zero if the character
 is US-ASCII and one if the character is multibyte and thus not US-
 ASCII. Platforms without intrinsic UTF-8 support are required to
 parse the multibyte character and store it in an appropriate
 internal format. Support for UTF-8 is required to implement the SLP
 protocol (see [8]), and can therefore be used in file processing as
 well.

 The location and name of the configuration file is system-dependent,
 but implementations of the API are encouraged to locate it together
 with other configuration files and name it consistently.

2.1 Configuration File Format

 The configuration file format consists of a newline delimited list
 of zero or more property definitions. Each property definition
 corresponds to a particular configurable SLP, network, or other

 parameter in one or more of the three SLP agents. The file format
 grammar in ABNF [6] syntax is:

 config-file = line-list
 line-list = line / line line-list
 line = property-line / comment-line
 Kempf and Guttman Informational [Page 4]

 Internet Draft SLP API Revised Feburary, 2002
 comment-line = ("#" / ";") 1*allchar newline
 property-line = property newline
 property = tag "=" value-list
 tag = prop / prop "." tag
 prop = 1*tagchar
 list = value / value "," list
 value = int / bool / attribute /
 string / addr
 int = 1*DIGIT
 bool = "true" / "false" / "TRUE" / "FALSE"
 newline = CR / (CRLF)
 string = 1*stringchar
 attribute = ; see the definition of attribute
 ; list in Section 4.3.6 of [8].
 addr = fqdn / hostnumber
 fqdn = ALPHA / ALPHA *[anum / "-"] anum
 anum = ALPHA / DIGIT
 hostnumber = 1*3DIGIT 3("." 1*3DIGIT)
 tagchar = DIGIT / ALPHA / tother / escape
 tother = %x21-%x2d / %x2f /
 %x3a / %x3c-%x40 /
 %x5b-%x60 / %7b-%7e
 ; i.e., all characters except `.',
 ; and `='.
 stringchar = DIGIT / ALPHA / sother / escape
 sother = %x21-%x29 / %x2a-%x2b /
 %x2d-%x2f / %x3a-%x40 /
 %x5b-%x60 / %7b-%7e
 ; i.e., all characters except `,'
 allchar = DIGIT / ALPHA / HTAB / SP
 escape = "\" HEXDIG HEXDIG
 ; Used for reserved characters

 All properties can be changed through the SLPSetProperty() API
 function. However, changing certain properties has no effect on
 further execution in the API library, since these properties are
 only involved in conveying preconfigured information to the API
 library on startup and are not used afterwards. These properties are
 net.slp.configuredScopes, net.slp.configuredDAAddresses, and
 net.slp.enableBroadcast.

 On multi-homed hosts, it may be necessary to have different network
 configuration properties for different interfaces. The
 net.slp.interfaces property indicates which network interfaces are
 SLP enabled. An API library implementation may support configuration
 customization on a per network interface basis by allowing the
 interface IP address or host name to be appended to the property
 name. In that case, the values of the property are only used for
 that particular interface, the generic property (or defaults if no
 generic property is set) applies to all others.

 For example, if a configuration file has the following properties:

 net.slp.interfaces=125.196.42.41,125.196.42.42,125.196.42.43
 net.slp.multicastTTL.125.196.42.42=1

 Kempf and Guttman Informational [Page 5]

 Internet Draft SLP API Revised Feburary, 2002
 then the network interface on subnet 42 is restricted to a TTL of 1,
 while the interfaces on the other subnets have the default multicast
 TTL, 255.

 The following subsections describe an area and its properties.

2.1.1 DA configuration

 The following properties are used for DA configuration. They are
 ignored if the host is not configured as a DA:

 net.slp.isDA
 Type: Boolean
 Default: FALSE
 Use: A Boolean configuring the SLP server to act as a DA.
 If TRUE, run as a DA.

 net.slp.DAHeartBeat
 Type: Unsigned 32 bit integer
 Default: 10800 seconds (3 hours)
 Use: The number of seconds between transmission of
 unsolicited DAAdverts by the DA. This property
 corresponds to the protocol specification parameter
 CONFIG_DA_BEAT [8].

 net.slp.DAAttributes
 Type: List of Attribute
 Default: Null
 Use: A list of parenthesized attribute/value list pairs
 that the DA must advertise in DAAdverts.

2.1.2 Preconfiguration

 The following properties convey statically configured or DHCP-
 configured information to all agents. Changing these properties
 using SLPSetProperty() has no effect on execution.

 net.slp.configuredScopes
 Type: List of String
 Default: Null
 Use: A list of statically configured or DHCP-configured
 scopes.

 net.slp.configuredDAAddresses
 Type: List of Address
 Default: Null
 Use: A list of statically configured or DHCP-configured DA
 IP addresses or DNS-resolvable host names.

 net.slp.enableBroadcast

 Type: Boolean
 Default: FALSE
 Use: If TRUE, enable all SLP agents to use broadcast
 instead of multicast, and disable multicast.

 Kempf and Guttman Informational [Page 6]

 Internet Draft SLP API Revised Feburary, 2002
2.1.3 Tracing and Logging

 The following properties are used to control tracing and logging of
 error and warning messages.

 net.slp.traceDATraffic
 Type: Boolean
 Default: FALSE
 Use: If TRUE, print log messages about traffic to DAs.

 net.slp.traceMsg
 Type: Boolean
 Default: FALSE
 Use: If TRUE, print log messages of all incoming and
 outgoing SLP messages.

 net.slp.traceDrop
 Type: Boolean
 Default: FALSE
 Use: If TRUE, print log messages when a SLP message is
 dropped for any reason.

 net.slp.traceReg
 Type: Boolean
 Default FALSE
 Use: If TRUE, dump all registred services when a
 registration or deregistration occurs.

2.1.4 Serialized Proxy Registrations

 The following property controls processing of serialized
 registrations.

 net.slp.serializedRegURL
 Type: String
 Default: Null
 Use: A URL pointing to a document containing serialized
 registrations that should be processed when the DA or
 SA server starts up.

2.1.5 Network Configuration Properties

 The properties in this section allow various network configuration
 properties to be set.

 net.slp.multicastTTL
 Type: Positive integer less than or equal to 255
 Default: 255
 Use: Multicast TTL.

 net.slp.DAActiveDiscoveryInterval

 Type: Unsigned 16 bit integer
 Default: 900
 Use: The number of seconds between DA active discovery
 queries. The queries may be done periodically or in
 response to a particular SLP operation. This property
 Kempf and Guttman Informational [Page 7]

 Internet Draft SLP API Revised Feburary, 2002
 corresponds to the protocol specification parameter
 CONFIG_DA_FIND [8]. If the property is set to zero,
 active discovery is turned off.

 net.slp.passiveDADetection
 Type: Boolean
 Default: TRUE
 Use: If FALSE, ignore any unsolicited DAAdverts that are
 received.

 net.slp.multicastMaximumWait
 Type: Positive 32 bit integer.
 Default 15000 ms (15 sec.)
 Use: Maximum number of milliseconds to multicast a request
 before giving up. This property corresponds to the
 CONFIG_MC_MAX parameter in the protocol specification
 [8].

 net.slp.multicastTimeouts
 Type: List of positive 32 bit integer
 Default: 3000,3000,3000,3000,3000
 Use: The timeouts, in milliseconds, to use for multiple
 attempts at multicast for UA requests. Each value
 specifies the time to wait before sending the next
 request, or until nothing new has been learned from
 two successive requests. The sum should equal
 net.slp.multicastMaximumWait.

 net.slp.DADiscoveryTimeouts
 Type: List of positive 32 bit integer
 Default: 2000,2000,2000,2000,3000,4000
 Use: The timeouts, in milliseconds, to use for multiple
 attempts at multicast for active DA discovery. Each
 value specifies the time to wait before sending the
 next request, or until nothing new has been learned
 from two successive requests. The sum should equal
 net.slp.multicastMaximumWait.

 net.slp.datagramTimeouts
 Type: List of positive 32 bit integer
 Default: 3000,3000,3000,3000,3000
 Use: The timeouts, in milliseconds, to use for
 retransmitting unicast UDP requests. The nth value
 gives the time to block waiting for a reply on the
 nth try to contact the DA. The sum of these values
 should equal the protocol specification property
 CONFIG_RETRY_MAX [8].

 net.slp.randomWaitBound
 Type: Positive 32 bit integer

 Default: 1000 ms (1 sec.)
 Use: The maximum value in milliseconds for all random wait
 parameters. This value corresponds to the protocol
 specification parameters CONFIG_START_WAIT,
 CONFIG_REG_PASSIVE, and CONFIG_REG_ACTIVE [8].

 Kempf and Guttman Informational [Page 8]

 Internet Draft SLP API Revised Feburary, 2002
 net.slp.MTU
 Type: Positive 16 bit integer
 Default: 1500
 Use: Maximum datagram size for an SLP agent to send, and
 includes IP and UDP or TCP headers.

 net.slp.interfaces
 Type: List of Address
 Default: System Default
 Use: List of IP addresses for interfaces on the host on
 which the DA or SA server should listen on port 427
 for multicast, unicast UDP, and TCP messages.

2.1.6 SA Configuration

 The following properties are used for SA or SA server configuration.

 net.slp.SAAttributes
 Type: List of Attribute
 Default: "(service-type=" <list of service types> ")"
 Use: A list of attribute definitions advertised by the SA
 in an SAAdvert. The list must contain the "service-
 type" attribute with value equal to all service types
 advertised by the SA.

2.1.7 UA Configuration

 The following properties are used by the UA for configuration. They
 can be set dynamically through SLPSetProperty() to alter API library
 execution.

 net.slp.locale
 Type: RFC 1766 Language Tag [7]
 Default: "en"
 Use: The default locale used for language tags in SLP
 messages. This property is also used for SA and DA
 configuration.

 net.slp.maxResults
 Type: Nonnegative 32 bit integer, and -1
 Default: -1
 Use: The maximum number of results to report. A value of
 -1 indicates that all requests should be reported.

 net.slp.typeHint
 Type: List of string
 Default: Null
 Use: A list of service type names that are used when
 performing SA discovery

 net.slp.enableUnicastSARequest

https://datatracker.ietf.org/doc/html/rfc1766

 Type: Boolean
 Default: FALSE
 Use: If TRUE, the UA uses unicast to contact SAs directly
 rather than multicast, and does not use DAs even if
 DAs are available
 Kempf and Guttman Informational [Page 9]

 Internet Draft SLP API Revised Feburary, 2002
2.2 Serialized Registration File

 The serialized registration file contains a group of proxy
 registrations that a DA or SA server performs when it starts up.
 These registrations are primarily for older service programs that do
 not internally support SLP and cannot be converted, and for portably
 exchanging registrations between SLP implementations. The character
 encoding of the registrations is UTF-8.

 The syntax of the serialized registration file, in ABNF format [6],
 is as follows:

 ser-file = reg-list
 reg-list = reg / reg reg-list
 reg = creg / ser-reg
 creg = comment-line ser-reg
 comment-line = ("#" / ";") 1*allchar newline
 ser-reg = url-props [attr-list] newline
 url-props = surl "," lang "," ltime ["," type] newline
 surl = ;The registration's URL. See
 ; [9] for syntax.
 lang = 1*8ALPHA ["-" 1*8ALPHA]
 ;RFC 1766 Language Tag see [7].
 ltime = 1*5DIGIT
 ; A positive 16-bit integer
 ; giving the lifetime
 ; of the registration.
 type = ; The service type name, see [8]
 ; and [9] for syntax.
 attr-list = attr-def / attr-def attr-list
 attr-def = (attr / keyword) newline
 keyword = attr-id
 attr = attr-id "=" attr-val-list
 attr-id = ;Attribute id, see [8] for syntax.
 attr-val-list = attr-val / attr-val "," attr-val-list
 attr-val = ;Attribute value, see [8] for syntax.
 allchar = char / WSP
 char = DIGIT / ALPHA / other
 other = %x21-%x2f / %x3a-%x40 /
 %x5b-%x60 / %7b-%7e
 ; All printable, nonwhitespace US-ASCII
 ; characters.
 newline = CR / (CRLF)

 The syntax for attribute tags and attribute value lists is specified
 in [8]. DAs and SA servers that process serialized registrations
 must handle them exactly as if they were registered by an SA. In the
 url-props production, the type token is optional. If the type token
 is absent, the URL's scheme is used as the type. If the maximum
 lifetime is specified (65535 sec.), the advertisement is taken to be

https://datatracker.ietf.org/doc/html/rfc1766

 permanent, and is continually refreshed by the DA or SA server until
 it exits. The API library should respect any advertised DA minimum
 refresh interval values, and otherwise, should only register after
 half or more of the lifetime has expired. If the lifetime is other
 than the maximum, the advertisement times out after the lifetime

 Kempf and Guttman Informational [Page 10]

 Internet Draft SLP API Revised Feburary, 2002
 expires. Advertisements are registered in the scopes with which the
 DA or SA server is configured.

2.3 Processing Serialized Registration and Configuration Files

 Implementations are encouraged to make processing of configuration
 and serialized registration files as transparent as possible to
 clients of the API. Agents processing the configuration file and the
 serialized registration file must log any errors using the platform
 specific error reporting mechanism. An agent must not fail if a file
 format error occurs.

 For configuration files, errors must be caught at the latest when
 the relevant configuration item is used. Errors may be caught at the
 earliest when the configuration file is loaded into the executing
 agent. The default value must be substituted when an error is
 caught. Configuration file loading must complete prior to the
 initiation of the first networking connection.

 For serialized registration files, errors must be caught and
 reported when the file is loaded, and the offending registration
 must be rejected. Serialized registration must be complete before
 the DA or SA server accepts the first network request.

3.0 The API

 The C language binding presents a minimal overhead implementation
 mapping directly into the protocol. To conform with standard C
 practice, all character strings passed to and returned through the
 API are null terminated, even though the SLP protocol does not use
 null terminated strings. Strings passed as parameters are in the
 multi-byte UTF-8 encoding but they must be passed as a type char*, a
 null terminated array of bytes. In the common case of US-ASCII, the
 usual one byte per character C strings work because the US-ASCII
 encoding is a subset of the UTF-8 encoding.

 Unless otherwise noted, a NULL parameter value can be used to denote
 "no value." Some parameters may have restrictions. If any parameter
 fails to satisfy the restrictions on its value, the operation
 returns a PARAMETER_BAD error.

 An exception is scope lists in the UA API. A NULL or empty string
 for a scope list parameter indicates "default the list". Section 4.3
 describes how to construct the default list.

3.1 Constant Types

3.1.1 URL Lifetimes

Synopsis

 typedef enum {
 SLP_LIFETIME_DEFAULT = 10800,
 SLP_LIFETIME_MAXIMUM = 65535
 } SLPURLLifetime;

 Kempf and Guttman Informational [Page 11]

 Internet Draft SLP API Revised Feburary, 2002
Description

 The SLPURLLifetime enum type contains frequently used URL lifetime
 values, in seconds. SLP_LIFETIME_DEFAULT is 3 hours, while
 SLP_LIFETIME_MAXIMUM is about 18 hours and corresponds to the
 maximum size of the lifetime field in SLP messages. A registration
 made with SLP_LIFETIME_MAXIMUM causes the service advertisement to
 be automatically re-registered.

3.2 Error Codes

Synopsis

 typedef enum {
 SLP_LAST_CALL = 1,
 SLP_OK = 0,
 SLP_LANGUAGE_NOT_SUPPORTED = -1,
 SLP_PARSE_ERROR = -2,
 SLP_INVALID_REGISTRATION = -3,
 SLP_SCOPE_NOT_SUPPORTED = -4,
 SLP_REFRESH_REJECTED = -15,
 SLP_NOT_IMPLEMENTED = -17,
 SLP_BUFFER_OVERFLOW = -18,
 SLP_NETWORK_TIMED_OUT = -19,
 SLP_NETWORK_INIT_FAILED = -20,
 SLP_MEMORY_ALLOC_FAILED = -21,
 SLP_PARAMETER_BAD = -22,
 SLP_NETWORK_ERROR = -23,
 SLP_INTERNAL_SYSTEM_ERROR = -24,
 SLP_HANDLE_IN_USE = -25,
 SLP_TYPE_ERROR = -26
 } SLPError ;

Description

 The SLPError enum contains error codes that are returned from API
 functions or passed as error parameters to callback functions.

 The SLP protocol errors OPTION_NOT_UNDERSTOOD,
 VERSION_NOT_SUPPORTED, INTERNAL_ERROR, MSG_NOT_SUPPORTED,
 AUTHENTICATON_UNKNOWN, and DA_BUSY_NOW should be handled internally
 and not surfaced to clients through the API.

 The error codes SLP_OK, SLP_LANGAUGE_NOT_UNDERSTOOD,
 SLP_PARSE_ERROR, SLP_SCOPE_NOT_SUPPORTED, and SLP_REFRESH_REJECTED
 correspond directly to the protocol error codes as described in [8].
 In addition, SLP_PARSE_ERROR may be returned by the API library if
 the library itself detects any syntactic errors.

 The remaining error codes indicate the following conditions:

 SLP_LAST_CALL

 The SLP_LAST_CALL code is passed to callback functions for
 both synchronous and asynchronous calls when the API library
 has no more data for them and therefore no further calls will
 Kempf and Guttman Informational [Page 12]

 Internet Draft SLP API Revised Feburary, 2002
 be made to the callback on the currently outstanding
 operation. The callback can use this to signal the main body
 of the client code that no more data will be forthcoming on
 the operation, so that the main body of the client code can
 break out of data collection loops. The other callback
 parameters are all NULL. If an SLP request results in no
 return values, then only one call is made, with the error
 parameter set to SLP_LAST_CALL.

 SLP_NETWORK_INIT_FAILED

 The network failed to initialize properly.

 SLP_NETWORK_TIMED_OUT

 No reply can be obtained in the time specified by the
 configured timeout interval for a unicast request.

 SLP_NETWORK_ERROR

 Networking failed during normal operation.

 SLP_BUFFER_OVERFLOW

 An outgoing request overflowed the maximum network MTU size.

 SLP_MEMORY_ALLOC_FAILED

 The API failed to allocate memory.

 SLP_PARAMETER_BAD

 A bad parameter was passed into the API.

 SLP_INTERNAL_SYSTEM_ERROR

 A basic failure of the API, such as the failure of a system
 call, occurred.

 SLP_HANDLE_IN_USE

 An attempt was made to make an API call on an SLPHandle that
 already has an outstanding call on it.

 SLP_TYPE_ERROR

 If the API supports type checking of registrations against
 service type templates, this error is returned if the
 attributes in a registration do not match the service type
 template for the service.

 More information on the causes of these errors may be available
 through the platform specific system error reporting API.

3.3 SLPBoolean

 Kempf and Guttman Informational [Page 13]

 Internet Draft SLP API Revised Feburary, 2002
Synopsis

 typedef enum {
 SLP_FALSE = 0,
 SLP_TRUE = 1
 } SLPBoolean;

Description

 The SLPBoolean enum is used as a Boolean flag.

3.4 Structure Types

3.4.1 SLPSrvURL

Synopsis

 typedef struct srvurl {
 char *s_pcSrvType;
 char *s_pcHost;
 int s_iPort;
 char *s_pcNetFamily;
 char *s_pcSrvPart;
 } SLPSrvURL;

Description

 The SLPSrvURL structure is filled in by the SLPParseSrvURL()
 function when a service URL string is parsed. The fields correspond
 to different parts of the URL. Note that the structure is in
 conformance with the standard Berkeley sockets struct servent, with
 the exception that the pointer to an array of characters for aliases
 (s_aliases field) is replaced by the pointer to host name (s_pcHost
 field).

 s_pcSrvType
 A pointer to a character string containing the service type
 name, including naming authority. The service type name
 includes the "service:" if the URL is of the service: scheme
 [8].

 s_pcHost
 A pointer to a character string containing the host
 identification information.

 s_iPort
 The port number, or zero if none. The port is only available
 if the transport is IP.

 s_pcNetFamily
 A pointer to a character string containing the network address

 family identifier. Possible values are "ipx" for the IPX
 family, "at" for the Appletalk family, and "" (i.e. the empty
 string) for the IP address family.

 s_pcSrvPart
 Kempf and Guttman Informational [Page 14]

 Internet Draft SLP API Revised Feburary, 2002
 The remainder of the URL, after the host identification.

 The host and port should be sufficient to open a socket to the
 machine hosting the service, and the remainder of the URL should
 allow further differentiation of the service.

3.4.2 SLPHandle

Synopsis

 typedef void* SLPHandle;

Description

 The SLPHandle type is returned by SLPOpen() and is a parameter to
 all SLP functions. It serves as a handle for all resources allocated
 on behalf of the process by the SLP library. The type is opaque,
 since the exact nature differs depending on the implementation.

3.5 Callback Types

 The callback functions report the results of an SLP protocol
 operation. In addition to parameters for reporting the results of
 the operation, each callback parameter list contains an error code
 parameter and a cookie parameter. The error code parameter reports
 the error status of the ongoing (for asynchronous) or completed (for
 synchronous) operation. The cookie parameter allows the client code
 starting the operation to pass information down to the callback
 through the API function without using global variables. If the
 cookie is not set when the API function is called, the parameter is
 NULL.

 The callback returns an SLPBoolean to indicate whether the API
 library should continue processing the operation. If the value
 returned from the callback is SLP_TRUE, asynchronous operations are
 terminated, synchronous operations ignore the return, since the
 operation is already complete.

Section 4.1 contains more detail on callback processing.

3.5.1 SLPRegReport

Synopsis

 typedef void SLPRegReport(SLPHandle hSLP,
 SLPError errCode,
 void *pvCookie);

Description

 The SLPRegReport callback type is the type of the callback function

 to the SLPReg() and SLPDereg() functions.

Parameters

 hSLP
 Kempf and Guttman Informational [Page 15]

 Internet Draft SLP API Revised Feburary, 2002
 The SLPHandle used to initiate the operation.

 errCode
 The error code.

 pvCookie
 The cookie.

3.5.2 SLPSrvTypeCallback

Synopsis

 typedef SLPBoolean SLPSrvTypeCallback(SLPHandle hSLP,
 const char* pcSrvTypes,
 SLPError errCode,
 void *pvCookie);

Description

 The SLPSrvTypeCallback callback type is the type of the callback
 function parameter to the SLPFindSrvTypes() function.

Parameters

 hSLP
 The SLPHandle used to initiate the operation.

 pcSrvTypes
 A character buffer containing a comma separated, null
 terminated list of service types.

 errCode
 The error code.

 pvCookie
 The cookie.
Returns

 The client code should return SLP_TRUE if more data is desired,
 otherwise SLP_FALSE.

3.5.3 SLPSrvURLCallback

Synopsis

 typedef SLPBoolean SLPSrvURLCallback(SLPHandle hSLP,
 const char* pcSrvURL,
 unsigned short sLifetime,
 SLPError errCode,
 void *pvCookie);

Description

 The SLPSrvURLCallback callback type is the type of the callback
 function parameter to the SLPFindSrvs() function.

 Kempf and Guttman Informational [Page 16]

 Internet Draft SLP API Revised Feburary, 2002
Parameters

 hSLP
 The SLPHandle used to initiate the operation.

 pcSrvURL
 A character buffer containing the returned service URL.

 sLifetime
 An unsigned short giving the life time of the service
 advertisement, in seconds. The value must be an unsigned
 integer less than or equal to SLP_LIFETIME_MAXIMUM.

 errCode
 The error code.

 pvCookie
 The cookie.

Returns

 The client code should return SLP_TRUE if more data is desired,
 otherwise SLP_FALSE.

3.5.4 SLPAttrCallback

Synopsis

 typedef SLPBoolean SLPAttrCallback(SLPHandle hSLP,
 const char* pcAttrList,
 SLPError errCode,
 void *pvCookie);

Description

 The SLPAttrCallback type is the callback type of the callback
 function parameter to SLPFindAttrs() function.

Parameters

 hSLP
 The SLPHandle used to initiate the operation.

 pcAttrList
 A character buffer containing a comma separated, null
 terminated list of attribute id/value assignments, in SLP wire
 format, see [8] for details.

 errCode
 The error code.

 pvCookie
 The cookie.

Returns
 Kempf and Guttman Informational [Page 17]

 Internet Draft SLP API Revised Feburary, 2002

 The client code should return SLP_TRUE if more data is desired,
 otherwise SLP_FALSE.

3.6 Opening and Closing an SLPHandle

3.6.1 SLPOpen

Synopsis

 SLPError SLPOpen(const char *pcLang,
 SLPBoolean isAsync,
 SLPHandle *phSLP);

Description

 Returns a SLPHandle handle in the phSLP parameter for the language
 locale passed in as the pcLang parameter. If the isAsync parameter
 is TRUE, operations are performed asynchronously. The handle
 encapsulates the language locale for SLP requests issued through the
 handle, and any other resources required by the implementation.
 However, SLP properties are not encapsulated by the handle; they are
 global. The return value of the function is an SLPError code
 indicating the status of the operation.

 An SLPHandle can only be used for one SLP API operation at a time.
 If the original operation was started asynchronously, any attempt to
 start an additional operation on the handle while the original
 operation is pending results in the return of an SLP_HANDLE_IN_USE
 error from the API function. If an implementation is unable to
 support an asynchronous (resp. synchronous) operation, due to memory
 constraints or lack of threading support, the SLP_NOT_IMPLEMENTED
 flag must be returned when the isAsync flag is SLP_TRUE (resp.
 SLP_FALSE).

Parameters

 pcLang
 The RFC 1766 Language Tag [7] for the natural language locale
 of requests and registrations issued on the handle.

 isAsync
 A SLPBoolean indicating whether the SLPHandle should be opened
 for asynchronous operation or not.

 phSLP
 A pointer to an SLPHandle, in which the open SLPHandle is
 returned. If an error occurs, the value upon return is NULL.

3.6.2 SLPClose

https://datatracker.ietf.org/doc/html/rfc1766

Synopsis

 void SLPClose(SLPHandle hSLP);

Description
 Kempf and Guttman Informational [Page 18]

 Internet Draft SLP API Revised Feburary, 2002

 Frees all resources associated with the handle. If the handle was
 invalid, the function returns silently. Any outstanding synchronous
 or asynchronous operations are cancelled immediately, so their
 callback functions will not be called any further.

Parameters

 SLPHandle
 A SLPHandle handle returned from a call to SLPOpen().

3.7 SA API

3.7.1 SLPReg

Synopsis

 SLPError SLPReg(SLPHandle hSLP,
 const char *pcSrvURL,
 const unsigned short usLifetime,
 const char *pcSrvType,
 const char *pcAttrs
 SLPBoolean fresh,
 SLPRegReport callback,
 void *pvCookie);

Description

 Registers the URL in pcSrvURL having the lifetime usLifetime with
 the attribute list in pcAttrs. The pcAttrs list is a comma separated
 list of attribute assignments in the wire format (including escaping
 of reserved characters). The usLifetime parameter must be nonzero
 and less than or equal to SLP_LIFETIME_MAXIMUM. The pcSrvType
 parameter is a service type name and may be NULL or the empty string
 if the URL is a service: URL. The fresh parameter is ignored. The
 format for pcAttrs and pcScopeList can be found in [8].
 Registrations and updates take place in the language locale of the
 hSLP handle.

 The API library is required to perform the operation in all scopes
 obtained through configuration.

Parameters

 hSLP
 The language specific SLPHandle on which to register the
 advertisement.

 pcSrvURL
 The URL to register. May not be NULL or the empty string. This
 parameter must be a properly formatted URL [3]; otherwise, the

 SLP SrvReg returns a parse error and the callback is called
 with the SLP_PARSE_ERROR error code.

 usLifetime

 Kempf and Guttman Informational [Page 19]

 Internet Draft SLP API Revised Feburary, 2002
 An unsigned short giving the life time of the service
 advertisement, in seconds. The value must be an unsigned
 integer less than or equal to SLP_LIFETIME_MAXIMUM and greater
 than zero.

 pcSrvType
 The service type. If a service: URL is present in pcSrvURL and
 this parameter is NULL or an empty string, then the value of
 the the service type field in the SrvReg message is obtained
 from the service: URL's scheme [8].

 pcAttrs
 A comma separated list of attribute assignment expressions for
 the attributes of the advertisement. See [8] for the format.
 Use NULL or the empty string for no attributes.

 fresh
 Ignored.

 callback
 A callback to report the operation completion status.

 pvCookie
 Memory passed to the callback code from the client. May be
 NULL.

Returns

 One of the SLPError codes is returned indicating the status of
 starting the operation.

3.7.2 SLPDereg

Synopsis

 SLPError SLPDereg(SLPHandle hSLP,
 const char *pcURL,
 SLPRegReport callback,
 void *pvCookie);

Description

 Deregisters the advertisement for URL pcURL in all scopes where the
 service is registered and all language locales. The deregistration
 is not just confined to the locale of the SLPHandle, it is in all
 locales. The API library is required to perform the operation in all
 scopes obtained through configuration.

Parameters

 hSLP

 The language specific SLPHandle to use for deregistering.

 pcURL
 The URL to deregister. May not be the empty string. This
 parameter must be a properly formatted URL [3]; otherwise, the
 Kempf and Guttman Informational [Page 20]

 Internet Draft SLP API Revised Feburary, 2002
 SLP SrvDeReg returns a parse error and the callback is called
 with the SLP_PARSE_ERROR error code.

 callback
 A callback to report the operation completion status.

 pvCookie
 Memory passed to the callback code from the client. May be
 NULL.
Returns

 One of the SLPError codes is returned indicating the status of
 starting the operation.

3.7.3 SLPFindSrvTypes

Synopsis

 SLPError SLPFindSrvTypes(SLPHandle hSLP,
 const char *pcNamingAuthority,
 const char *pcScopeList,
 SLPSrvTypeCallback callback,
 void *pvCookie);

Description

 The SLPFindSrvType() function issues an SLP service type request for
 service types in the scopes indicated by the pcScopeList. The
 results are returned through the callback parameter. The service
 types are independent of language locale, but only for services
 registered in one of scopes and for the indicated naming authority.
 If the naming authority is "*", then results are returned for all
 naming authorities. If the naming authority is NULL or the empty
 string, then the default naming authority, IANA, is used. "IANA" is
 not a valid naming authority name, and it is a PARAMETER_BAD error
 to include it explicitly.

 The service type names are returned with the naming authority
 intact. If the naming authority is the default (i.e. empty string)
 then it is omitted, as is the separating ".". Service type names
 from URLs of the service: scheme are returned with the "service:"
 prefix intact [8]. See [9] for more information on the syntax of
 service type names.

Parameters

 hSLP
 The SLPHandle on which to search for types.

 pcNamingAuthority
 The naming authority to search. Use "*" for all naming

 authorities and NULL or the empty string for the default
 naming authority.

 pcScopeList

 Kempf and Guttman Informational [Page 21]

 Internet Draft SLP API Revised Feburary, 2002
 The comma separated list of scope names to search for service
 types. Use NULL or the empty string for the default scope
 list.

 callback
 A callback function through which the results of the operation
 are reported.

 pvCookie
 Memory passed to the callback code from the client. May be
 NULL.

Returns

 One of the SLPError codes is returned indicating the status of
 starting the operation.

3.7.4 SLPFindSrvs

Synopsis

 SLPError SLPFindSrvs(SLPHandle hSLP,
 const char *pcServiceType,
 const char *pcScopeList,
 const char *pcSearchFilter,
 SLPSrvURLCallback callback,
 void *pvCookie);

Description

 Issue the query for services on the locale-specific SLPHandle and
 return the results through the callback. The parameters determine
 the results.

Parameters

 hSLP
 The locale-specific SLPHandle on which to search for services.

 pcServiceType
 The service type name, including naming authority if any, for
 the request, such as can be discovered using SLPSrvTypes().
 May not be NULL or the empty string.

 pcScopeList
 The comma separated list of scope names. Use NULL or the empty
 string for the default scope list.

 pcSearchFilter
 A query formulated of attribute pattern matching expressions
 in the form of an LDAPv3 Search Filter, see [5]. If this

 filter is NULL or the empty string, all services of the
 requested type in the specified scopes are returned. The
 search filter should be a simple search filter as defined in
 [8].

 Kempf and Guttman Informational [Page 22]

 Internet Draft SLP API Revised Feburary, 2002
 callback
 A callback function through which the results of the operation
 are reported.

 pvCookie
 Memory passed to the callback code from the client. May be
 NULL.

Returns

 One of the SLPError codes is returned indicating the status of
 starting the operation.

3.7.5 SLPFindAttrs

Synopsis

 SLPError SLPFindAttrs(SLPHandle hSLP,
 const char *pcURL,
 const char *pcScopeList,
 const char *pcAttrIds,
 SLPAttrCallback callback,
 void *pvCookie);
Description

 This function returns service attributes matching the attribute ids
 for the indicated URL. The attribute information returned is for the
 matching advertisement in the locale of the SLPHandle.
 The result is filtered with an SLP attribute request filter string
 parameter, pcAttrIds, the syntax of which is described in [8]. If
 the filter string is NULL or the empty string, all attributes are
 returned.

Parameters

 hSLP
 The language specific SLPHandle on which to search for
 attributes.

 pcURL
 The URL. May not be NULL or the empty string. This parameter
 must be a properly formatted URL [3]; otherwise, the SLP
 AttrRqst returns a parse error and the callback is called with
 the SLP_PARSE_ERROR error code.

 pcScopeList
 The comma separated list of scope names. Use NULL or the empty
 string for the default scope list.

 pcAttrIds
 The filter string indicating which attribute values to return.

 Use NULL or the empty string to indicate all values. See [8]
 for the exact format of the filter string.

 callback

 Kempf and Guttman Informational [Page 23]

 Internet Draft SLP API Revised Feburary, 2002
 A callback function through which the results of the operation
 are reported.

 pvCookie
 Memory passed to the callback code from the client. May be
 NULL.

Returns

 One of the SLPError codes is returned indicating the status of
 starting the operation.

3.8 Miscellaneous Functions

3.8.1 SLPGetRefreshInterval

Synopsis

 unsigned short SLPGetRefreshInterval();

Description

 Returns the maximum across all DAs of the min-refresh-interval
 attribute. This value satisfies the advertised refresh interval
 bounds for all DAs, and, if used by the SA as the minimum service
 advertisement lifetime, assures that no refresh registration will be
 rejected. If no DA advertises a min-refresh-interval attribute, a
 value of 0 is returned.

Returns

 If no error, the maximum refresh interval value allowed by all DAs
 (a positive integer). If no DA advertises a min-refresh-interval
 attribute, returns 0. If an error occurs, returns an SLP error code.

3.8.2 SLPFindScopes

Synopsis

 SLPError SLPFindScopes(SLPHandle hSLP,
 char **ppcScopeList);

Description

 Sets ppcScopeList parameter to a pointer to a comma separated list
 including all available scope values. See Section 4.3 for a
 description of how the list is determined. If there is any order to
 the scopes, preferred scopes are listed before less desirable
 scopes. There is always at least one name in the list, the default
 scope, "DEFAULT".

Parameters

 hSLP
 The SLPHandle on which to search for scopes.

 Kempf and Guttman Informational [Page 24]

 Internet Draft SLP API Revised Feburary, 2002
 ppcScopeList
 On return, contains a pointer to a null terminated string with
 the comma-separated list of scopes. The memory should be freed
 by calling SLPFree().

Returns

 If no error occurs, returns SLP_OK, otherwise, the appropriate error
 code.

3.8.3 SLPParseSrvURL

Synopsis

 SLPError SLPParseSrvURL(char *pcSrvURL
 SLPSrvURL** ppSrvURL);

Description

 The URL passed in as the argument is parsed into a SLPSrvURL
 structure and is return in the ppSrvURL pointer. If a parse error
 occurs, returns SLP_PARSE_ERROR as the value of the function. The
 input buffer pcSrvURL may be destructively modified during the parse
 and used to fill in the fields of the return structure. The
 structure returned in ppSrvURL should be freed with SLPFree().

 If the URL has no service part, the s_pcSrvPart string is the empty
 string, "", i.e. not NULL. If pcSrvURL is not a service: URL, then
 the s_pcSrvType field in the returned data structure is the URL's
 scheme, which might not be the same as the service type under which
 the URL was registered. If the transport is IP, the s_pcTransport
 field is the empty string. If the transport is not IP or there is no
 port number, the s_iPort field is zero.

Parameters

 pcSrvURL
 The null terminated URL string to parse. It may be
 destructively modified to produce the output structure. This
 parameter must be a properly formatted URL; otherwise,
 function returns the SLP_PARSE_ERROR error code.

 ppSrvURL
 On return, contains a pointer to the SLPSrvURL structure with
 the parsed URL, or NULL if the parse failed. The memory should
 be freed by a call to SLPFree() when no longer needed.

Returns

 If no error occurs, the return value is SLP_OK. Otherwise, the
 appropriate error code is returned.

3.8.4 SLPParseAttrs

Synopsis

 SLPError SLPParseAttrs(const char *pcAttrList,
 const char *pcAttrId,
 Kempf and Guttman Informational [Page 25]

 Internet Draft SLP API Revised Feburary, 2002
 char **ppcAttrVal);
Description

 Parses an attribute list to obtain the attribute value of a specified
 attribute ID. SLP_PARSE_ERROR is returned if a value for pcAttrId can
 not be found. The attribute value string returned in ppcAttrVal must
 be freed with SLPFree().

Parameters

 pcAttrList
 A comma separated list of attribute assignment expressions. See
 [8] for the format.
 pcAttrId
 The string indicating which attribute value to return. May not
 be NULL or the empty string.
 ppcAttrVal
 Upon return, a pointer to the buffer containing the attribute
 value. The returned memory should be freed by a call to
 SLPFree() when no longer needed.

Returns

 If no error occurs, the return value is SLP_OK. Otherwise, the
 appropriate error code is returned. If this function is not
 implemented, the library should return SLP_NOT_IMPLEMENTED. If a
 parse error occurs, the library should return SLP_PARSE_ERROR.

3.8.5 SLPEscape

Synopsis

 SLPError SLPEscape(const char *pcInbuf,
 char **ppcOutBuf,
 SLPBoolean isTag);

Description

 Process the input string in pcInbuf and escape any SLP reserved
 characters. If the isTag parameter is SLPTrue, then look for bad tag
 characters and signal an error if any are found by returning the
 SLP_PARSE_ERROR code. The results are put into a buffer allocated by
 the API library and returned in the ppcOutBuf parameter. This buffer
 should be deallocated using SLPFree() when the memory is no longer
 needed.

Parameters

 pcInbuf
 Pointer to he input buffer to process for escape characters.

 ppcOutBuf
 On output, contains a pointer to a copy of the input buffer
 with the SLP reserved characters escaped. Must be freed using
 SLPFree()when the memory is no longer needed.

 isTag
 When true, the input buffer is checked for bad tag characters.

Returns

 Kempf and Guttman Informational [Page 26]

 Internet Draft SLP API Revised Feburary, 2002
 Return SLP_PARSE_ERROR if any characters are bad tag characters and
 the isTag flag is true, otherwise SLP_OK, or the appropriate error
 code if another error occurs.

3.8.6 SLPUnescape

Synopsis

 SLPError SLPUnescape(const char *pcInbuf,
 char **ppcOutBuf,
 SLPBoolean isTag);

Description

 Process the input string in pcInbuf and unescape any SLP reserved
 characters. If the isTag parameter is SLPTrue, then look for bad tag
 characters and signal an error if any are found with the
 SLP_PARSE_ERROR code. No transformation is performed if the input
 string is an SLP opaque. The results are put into a buffer allocated
 by the API library and returned in the ppcOutBuf parameter. This
 buffer should be deallocated using SLPFree() when the memory is no
 longer needed.

Parameters

 pcInbuf
 Pointer to he input buffer to process for escape characters.

 ppcOutBuf
 On output, contains a pointer to a copy of the input buffer
 with the SLP reserved characters unescaped. Must be freed
 using SLPFree()when the memory is no longer needed.

 isTag
 When true, the input buffer is checked for bad tag characters.

Returns

 Return SLP_PARSE_ERROR if any characters are bad tag characters and
 the isTag flag is true, otherwise SLP_OK, or the appropriate error
 code if another error occurs.

3.8.7 SLPFree

Synopsis

 void SLPFree(void* pvMem);

Description

 Frees memory returned from SLPParseSrvURL(),

 SLPFindScopes(),SLPEscape(), SLPUnescape(), and SLPGetProperty().

Parameters

 pvMem
 Kempf and Guttman Informational [Page 27]

 Internet Draft SLP API Revised Feburary, 2002
 A pointer to the storage allocated by the
 SLPParseSrvURL(),SLPEscape(), SLPUnescape(), or
 SLPFindScopes() function. Ignored if NULL.

3.8.8 SLPGetProperty

Synopsis

 SLPError SLPGetProperty(const char *pcPropertyName,
 char **ppcPropertyValue);

Description

 Upon return, the ppcPropertyValue parameter is set to a pointer to
 the property value string corresponding to pcPropertyName, or NULL
 if the pcPropertyName string does not name a valid SLP property. The
 ppcPropertyValue buffer should be deallocated using SLPFree() when
 the memory is no longer needed.

Parameters

 pcPropertyName
 Null terminated string with the property name, from Section

2.1.

 ppcPropertyValue
 On return, contains a pointer to a string with the property
 value, or NULL if the pcPropertyName parameter does not name a
 property.
Returns

 Returns one of the following status codes: SLP_OK,
 SLP_MEMORY_ALLOC_FAILED, SLP_NOT_IMPLEMENTED, or SLP_PARAMETER_BAD.
 The latter is returned if the pcPropertyName parameter does not name
 a valid SLP property.

3.8.9 SLPSetProperty

Synopsis

 SLPError SLPSetProperty(const char *pcPropertyName,
 const char *pcPropertyValue);

Description

 Sets the value of the SLP property to the new value. The pcValue
 parameter should be the property value as a string.

Parameters

 pcPropertyName

 Null terminated string with the property name, from Section
2.1.

 pcPropertyValue

 Kempf and Guttman Informational [Page 28]

 Internet Draft SLP API Revised Feburary, 2002
 Null terminated string with the property value. Use NULL or
 the empty string to indicate that the property should be
 unset, and thus return to default.

Returns

 Returns one of the following status codes: SLP_OK,
 SLP_MEMORY_ALLOC_FAILED, SLP_NOT_IMPLEMENTED, or
 SLP_PARAMETER_BAD. The latter is returned if the
 pcPropertyName parameter does not name a valid SLP property.

3.8.10 SLPGetExtensionInterface

Synopsis

 SLPError SLPGetExtensionInterface(SLPHandle hSLP,
 const char *pcExtName,
 void **ppExtInterface);

Description

 Called with an initialized SLPHandle and the name of an SLP
 extension. On return, a pointer to the extension interface is in the
 ppExtInterface parameter, or NULL if there is no such extension.
 Exactly how the code for the extension is located, the exact format
 of the interface structure implementing access to the extension, how
 the interface code is made available (i.e.dynamically linked v.s.
 statically linked), and how names of extensions are formatted are
 implementation dependent issues.

 Parameters

 hSLP
 The language specific SLPHandle to use for locating the
 extension interface.

 pcExtName
 The name of the extention to return.

 ppExtInterface
 On return, contains a pointer to a structure implementing the
 interface.

Returns

 If no error occurs, the return value is SLP_OK. Otherwise, the
 appropriate error code is returned. If no extension is available
 corresponding to pcExtName, the return value is SLP_NOT_IMPLEMENTED
 and the ppExtInterface parameter is NULL.

3.8.11 SLPFreeExtensionInterface

Synopsis

 SLPError SLPFreeExtensionInterface(void **ppExtInterface);

 Kempf and Guttman Informational [Page 29]

 Internet Draft SLP API Revised Feburary, 2002
Description

 Free up memory and code associated with the interface accessed
 through ppExtInterface. Upon return, ppExtInterface is NULL and
 the memory for the interface is freed.

Parameters

 ppExtInterface
 A valid interface implementation obtained through
 SLPGetExtInterface()

Return

 If no error occurs, the return value is SLP_OK. Otherwise, the
 appropriate error code is returned.

4.0 Implementation Considerations

 This section discusses a number of implementation considerations.

4.1 Callback Semantics

 There will always be at least one callback for every API operation:
 a callback with the error code set to SLP_LAST_CALL indicating that
 the request has completed. There may be more callbacks in certain if
 a result is returned. Any callback in which the error code is not
 set to SLP_LAST_CALL is a return report. If there are no results to
 report, the callback with SLP_LAST_CALL set is the only callback.

 For the SA API, SLPSrvReg() and SLPSrvDereg() callbacks are only
 ever called once with a return report. If the SA API implementation
 performs DA forwarding directly, then it must wait until all DA
 replies are back before calling the callback. If the SA API
 implementation registers with an SA server, the SA server replies
 with a single SrvAck, the contents of which are reported through the
 callback.

 For the UA API, only one callback containing a return report is ever
 made if a DA is in use for SLPFindSrvTypes(). If the UA multicasts a
 request or unicasts to multiple SAs, multiple calls to a callback
 with return reports may result for SLPFindSrvTypes() if multiple
 replies are received. The UA may also collate replies from multiple
 SAs and present them through a single callback. Only one return
 report callback invocation ever occurs for SLPFindAttrs(), and
 multiple callback reports are possible for SLPFindSrvs() regardless
 of how the request was transmitted if multiple URLs are received in
 the reply.

 The callback function is called whenever the API library has results
 to report. The callback code is required to check the error code

 parameter before looking at the other parameters. If the error code
 is not SLP_OK, the other parameters may be invalid. The API library
 may terminate any outstanding operation on which an error occurs.
 The callback code can similarly indicate that the operation should
 be terminated by passing back SLP_FALSE.
 Kempf and Guttman Informational [Page 30]

 Internet Draft SLP API Revised Feburary, 2002

 Callback functions are not permitted to recursively call into the
 API on the same SLPHandle. If an attempt is made to recursively call
 into the API, the API function returns SLP_HANDLE_IN_USE.
 Prohibiting recursive callbacks on the same handle simplifies
 implementation of thread safe code, since locks held on the handle
 will not be in place during a second outcall on the handle. Handle
 creation should be fairly lightweight so a client program can easily
 support multiple outstanding calls.

 The total number of results received can be controlled by setting
 the net.slp.maxResults parameter. Note that this parameter controls
 the number of results received, not the number of return messages.
 In the case of a multicast SrvRqst, for example, the number of
 return messages may be less than the number of results, since one
 message may contain multiple results.

 There are five reasons why a call can terminate:

 DA reply received

 A reply from a DA has been received and therefore nothing more
 is expected, or the request timed out.

 Unicast SA messages received

 All messages were received in reply to a unicast request to
 one or several SAs, or one or more of the requests timed out.

 Multicast terminated

 The multicast convergence time has elapsed and the API library
 multicast code is giving up.

 Multicast null results

 Nothing new has been received during multicast for a while and
 the API library multicast code is returning the existing
 replies, if any.

 Maximum results

 The user has set the net.slp.maxResults property and that
 number of results has been collected and returned

4.2 Asynchronous Semantics

 If a handle parameter to an API function is opened asynchronously,
 API function calls on the handle check the other parameters, open
 the appropriate operation and return immediately. If the handle
 parameter was opened synchronously, the API function call blocks

 until all results are processed, and returns only after the callback
 function has been called with the callback error code set to
 SLP_LAST_CALL. If an error occurs in the process of starting the SLP
 operation, an error code is returned from the API function. Errors

 Kempf and Guttman Informational [Page 31]

 Internet Draft SLP API Revised Feburary, 2002
 that occur as a result of the SLP operation are reported to the
 callback, and are not returned from the API function.

 If asynchronous semantics are supported, the API library is required
 to be thread-safe. The API must be re-entrant in order to avoid
 interference between callbacks.

4.3 Scope and DA Configuration and Discovery

 The API must conform to the scope and DA configuration rules
 described in Section 8 of [8]. Preconfigured scopes and DAs, whether
 through static configuration or DHCP configuration, must be
 available via the configuration properties net.slp.configuredScopes
 and net.slp.configuredDAAddresses.

 Functions in the UA API have a scope parameter that determines the
 scopes used in UA requests. If that parameter is not NULL or the
 empty string, then the scopes in that parameter are used for the
 request. If that parameter is NULL or the empty string, the UA API
 library determines the scopes to use in the following fashion. If
 net.slp.configuredScopes is set, the listed scopes on
 net.slp.configuredScopes are used. If net.slp.configuredScopes is
 not set, the UA must use scopes obtained from any configured or
 discovered DAs, or scopes discovered through dynamic SA discovery,
 exactly as would be the case if the SLPFindScopes() function were
 called.

 Dynamic scope and DA information is available at any time through
 the API functions. Calling SLPSrvRqst() with the service type
 parameter set to "service:directory-agent" returns all discoverable
 DAs, including any that were configured. Calling SLPFindScopes()
 returns all discoverable scopes including any that were configured.
 SLPFindScopes() uses the rules outlined in [8] to determine what
 sources to consult for scope information.

4.4 Multithreading

 Implementations of the API are required to make API calls thread-
 safe. Access to data structures shared between threads must be
 coordinated to avoid corruption or invalid access. Implementations
 should also attempt to maximize the amount of concurrent thread
 access to the API library.

4.5 Type Checking for Registrations

 Service templates [9] allow SLP registrations to be type checked for
 correctness. Implementations of the API may use service type
 information for type checking. If a type error occurs, the
 registration should terminate with SLP_TYPE_ERROR.

 String encoded attribute values do not include explicit type
 information. All UA implementations and those SA and DA
 implementations that choose to support type checking should use the
 type rules described in [9] in order to convert from the string
 representation on the wire to an object typed appropriately.
 Kempf and Guttman Informational [Page 32]

 Internet Draft SLP API Revised Feburary, 2002
4.6 Refreshing Registrations

 SLP advertisements carry an explicit lifetime. After the lifetime
 expires, the DA flushes the registration from its cache. In some
 cases, an application may want to have the URL continue being
 registered for the entire time during which the application is
 executing. The API includes provision for clients to indicate
 whether they want URLs to be automatically refreshed: SLPReg() is
 called with the pLifetime parameter equivalent to
 SLP_LIFETIME_MAXIMUM (65535 seconds). Implementations of the SA API
 must provide automatic re-registration if a registration is made
 with the maximum lifetime. A client using this facility should
 explicitly deregister the service URL before exiting, since the API
 implementation may not be able to assure that the URL is
 deregistered when the application exits, although it times out in
 the DA eventually.

4.7 Character Set Encoding

 Characters buffer parameters are represented in UTF-8 despite the
 defined type of char* or const char*. API functions are required to
 handle the full range of multi-byte UTF-8 characters because the SLP
 protocol requires it, but the API implementation can represent the
 characters internally in any convenient way. On the wire, all
 characters are converted to UTF-8 anyway.

 Inside URLs, characters that are not allowed by URL syntax [3] must
 be escaped according to the URL escape character convention. Strings
 that are included in SLP messages may include SLP reserved
 characters and can be escaped by clients through convenience
 functions provided by the API. The character encoding used in
 escapes is UTF-8.

 Due to constraints in SLP, no string parameter passed to the API may
 exceed 64K bytes in length. An API function that encounters a string
 longer than 64K should return SLP_PARSE_ERROR.

4.8 Error Handling

 All errors encountered processing SLP messages should be logged,
 especially for the SA server and DA.

 For the UA API, since no errors are returned for multicast requests,
 and only a single DA is ever used at a time, there is only one case
 where multiple invocations of a callback could result in one or more
 calls to callbacks with the error code set to something other than
 SLP_OK: a unicast request to multiple SAs. In all other cases, there
 is a single callback invocation in which the error code is set if an
 error occurs, in addition to the last call callback.

 For the SA client API, a registration or deregistration to one DA
 among several may result in an error, but since only a single
 callback is ever made reporting return status for the SA API, the
 error code is only reported if no SrvAck indicating success was
 received.

 Kempf and Guttman Informational [Page 33]

 Internet Draft SLP API Revised Feburary, 2002
 Since registration with an SA server results in the same error
 conditions as with a DA, the SA server is not required to forward a
 SrvReg to any DAs if the registration fails. The SA server must
 return a SrvAck to the client with the error code properly set. The
 SA server is also not required to wait to return the SrvAck to the
 SA client until registration with DAs has completed, since any
 errors occurring with DAs are likely to be unrelated to the content
 of the registration if the registration succeeded with the SA
 server.

4.9 Modular Implementations

 Subset implementations that do not support the full range of
 functionality must support every interface in order to maintain link
 compatibility between compliant API implementations and
 applications. If a particular operation is not supported, a
 NOT_IMPLEMENTED error must be returned. Applications that are
 expected to run on a wide variety of platforms should be prepared
 for subset API implementations by checking returned error codes.

4.10 Handling Special Service Types

 The DA service type, "service:directory-agent", and SA service type,
 "service:service-agent", are used internally in the SLP framework to
 discover DAs and SAs. The mechanism of DA and SA discovery is not
 normally exposed to the API client; however, the client may have
 interest in discovering DAs and SAs independently of their role in
 discovering other services. For example, a network management
 application may want to determine which machines are running SLP
 DAs. To facilitate that, API implementations must handle requests to
 find services and attributes for these two service types so that API
 clients obtain the information they expect.

 In particular, if the UA is using a DA, SrvRqst and AttrRqst for
 these service types must be multicast and not unicast to the DA, as
 is the case for other service types. If the requests are not
 multicast, the DA will respond with an empty reply to a request for
 the SA service type and with its URL only to a request for the DA
 service type. The UA would therefore not obtain a complete picture
 of the available DAs and SAs.

4.11 Syntax for String Parameters

 Query strings, attribute registration lists, attribute
 deregistration lists, scope lists, and attribute selection lists
 follow the syntax described in [8] for the appropriate requests. The
 API directly reflects the strings passed in from clients into
 protocol requests, and directly reflects out strings returned from
 protocol replies to clients. As a consequence, clients are
 responsible for formatting request strings, including escaping and

 converting opaque values to escaped byte encoded strings. Similarly,
 on output, clients are required to unescape strings and convert
 escaped string encoded opaques to binary. The functions SLPEscape()
 and SLPUnescape() can be used for escaping SLP reserved characters,
 but perform no opaque processing.

 Kempf and Guttman Informational [Page 34]

 Internet Draft SLP API Revised Feburary, 2002
 Opaque values consist of a character buffer containing a UTF-8
 encoded string, the first characters of which are the nonUTF-8
 encoding "\ff". Subsequent characters are the escaped values for the
 original bytes in the opaque. The escape convention is relatively
 simple. An escape consists of a backslash followed by the two
 hexadecimal digits encoding the byte. An example is "\2c" for the
 byte 0x2c. Clients handle opaque processing themselves, since the
 algorithm is relatively simple and uniform.

4.12 Client Side Syntax Checking

 Client side API implementations may do syntax checking of scope
 names, naming authority names, and service type names. Since the C
 API is designed to be a thin layer over the protocol, some low
 memory SA implementations may find extensive syntax checking on the
 client side to be burdensome. If syntax checking uncovers an error
 in a parameter, the SLP_PARAMETER_BAD error must be returned. If any
 parameter is NULL and is required to be nonNULL, SLP_PARAMETER_BAD
 is returned.

4.13 SLP Configuration Properties

 The SLP configuration properties properties established in the
 configuration file are accessible through the SLPGetProperty() and
 SLPSetProperty()functions. The SLPSetProperty() function only
 modifies properties in the running process, not in the configuration
 file. Properties are global to the process, affecting all threads
 and all handles created with SLPOpen. Errors are checked when the
 property is used and, as with parsing the configuration file, are
 logged. Program execution continues without interruption by
 substituting the default for the erroneous parameter. With the
 exception of net.slp.locale, net.slp.typeHint, and
 net.slp.maxResults, clients of the API should rarely be required to
 override these properties, since they reflect properties of the SLP
 network that are not of concern to individual agents. If changes are
 required, system administrators should modify the configuration
 file.

4.14 Memory Management

 The only API functions returning memory specifically requiring
 deallocation on the part of the client are SLPParseSrvURL(),
 SLPFindScopes(), SLPEscape(), and SLPUnescape(), and
 SLPGetProperty(). This memory should be freed using SLPFree() when
 no longer needed.

 Memory passed to callbacks from the API library belongs to the
 library and MUST NOT be retained or freed by the client code.
 Otherwise, crashes are possible. Clients are required to copy data
 out of the callback parameters. No other use of the parameter memory

 in callback parameters is allowed.

4.15 Multi-homed Hosts

 On a multi-homed host, routing may be disabled between interfaces.
 The net.slp.interfaces property must only be set if there is no
 Kempf and Guttman Informational [Page 35]

 Internet Draft SLP API Revised Feburary, 2002
 routing between any of the interfaces or if broadcast is used
 instead of multicast. If the net.slp.interfaces is set, the DA (if
 any) and SAs on the host should respond to a DA or SA advertisement
 request with an IP address or host name on the list. Replies to
 requests should be made with service advertisements that are
 reachable through the interface on which the request arrived. If
 packets are routed between the interfaces, then the DA and SAs must
 only advertise on the default interface.

 Note that even if unicast packets are not routed between the
 interfaces, multicast may be routed through another router. The
 danger in listening for multicast on multiple interfaces is that the
 DA or SA may receive the same multicast request via more than one
 interface. Since the IP address is different on each interface, the
 DA or SA cannot identify the request as having already being
 answered via the previous responder's list. The requesting agent
 will end up getting URLs that refer to the same DA or service but
 have different addresses or host names.

4.16 Unicast UA Requests

 If the net.slp.enableUnicastSARequest property is TRUE, UAs are
 required to use unicast directly to discovered SAs rather than use
 multicast or DAs for the request. This allows the UA to receive
 errors directly from SAs that it otherwise wouldn't, for example, if
 the SA supports simple queries only but the UA issues a complex
 query. For SrvRqst and AttrRqst, prior to sending a request, the UA
 performs a multicast service request for SAs that advertise the
 service type of interest. The request is then unicast to the
 returned SAs. For SrvTypeRqst, the UA performs a service requests
 for all SAs, and either constructs the returned list of service
 types based on the "service-type" attribute definition in the SAs'
 attribute lists, or sends a SrvTypeRqst to each SA individually. The
 UA may cache the results of returned SAAdverts for some period of
 time to avoid having to perform the repeat multicast for SAAdverts.
 Unicasting of UA requests should be used with caution, in
 particular, it should not be used as a substitute for DAs. Deploying
 DAs is likely to result in better network performance and
 scalability.

4.17 UA Caching

 In general, clients of the UA API should limit repeat queries until
 the lifetime of the service advertisement is about to expire.
 Because the base protocol and API lack any support for notification
 when a new service comes up, however, some applications may want to
 poll periodically for new services. Such polling could completely
 overwhelm the network with requests, especially if multicast is in
 use.

 In order to regulate polling, the UA API library should cache the
 results of queries and return them when a repeat query arrives
 within some short time, say 10 seconds. The lifetime of the cache
 entries should be kept short in order to avoid stale information.

 Kempf and Guttman Informational [Page 36]

 Internet Draft SLP API Revised Feburary, 2002
5.0 Deprecated Features

 The following features were defined in RFC 2614 and have been
 deprecated in this update due to changes in the SLP protocol:

 1) The property net.slp.securityEnabled is no longer supported.
 Security in SLP is now handled through IPSEC. Implementations
 should ignore this property if it is in the configuration file.
 2) Scope lists have been dropped from the serialized registration
 file. Serialized registrations must be made in the configured
 scopes for the DA or SA server. Existing files must be edited
 to remove the scopes attribute definition, because it will
 otherwise be treated as a normal SLP attribute definition
 3) The SLPDelAttrs() function is no longer supported. SLP no
 longer allows incremental update of service advertisements.
 Existing implementations of SLP should return the
 SLP_NOT_IMPLEMENTED error code from this function.
 4) The SLPFindAttrs() function no longer takes a service type
 name. Attribute Request by Service Type has been dropped from
 SLP.
 5) The error codes SLP_AUTHENTICATION_ABSENT,
 SLP_AUTHENTICATION_FAILED, and SLP_INVALID_UPDATE are no longer
 supported because these errors no longer occur in the protocol.

6.0 Example

 This example illustrates how to discover a mailbox.
 A POP3 server registers itself with the SLP framework. The
 attributes it registers are "USER", a list of all users whose mail
 is available through the POP3 server.
 The POP3 server code is the following:

 SLPHandle slph;
 SLPRegReport errCallback = POPRegErrCallback;
 /* Create an English SLPHandle, asynchronous processing. */
 SLPError err = SLPOpen("en", SLP_TRUE, &slph);
 if(err != SLP_OK) {
 /* Deal with error. */
 }

 /* Create the service: URL and attribute parameters. */
 const char* surl = "service:pop3://mail.netsurf.de"; /* the URL
 */
 const char *pcAttrs = "(user=zaphod,trillian,roger,marvin)"
 /* Perform the registration. */
 err = SLPReg(slph,
 surl,
 SLP_LIFETIME_DEFAULT,
 ppcAttrs,
 errCallback,

https://datatracker.ietf.org/doc/html/rfc2614

 NULL);

 if (err != SLP_OK) {
 /*Deal with error.*/
 }

 Kempf and Guttman Informational [Page 37]

 Internet Draft SLP API Revised Feburary, 2002
 The errCallback reports any errors:
 void
 POPRegErrCallback(SLPHandle hSLP,
 SLPError errCode,
 unsigned short usLifetime,
 void* pvCookie) {
 if(errCode != SLP_OK) {
 /* Report error through a dialog, message, etc. */
 }

 /*Use lifetime interval to update periodically. */
 }

 The POP3 client locates the server for the user with the following
 code:

 /*
 * The client calls SLPOpen(), exactly as above.
 */

 const char *pcSrvType = "service:pop3"; /* the service type */
 const char *pcScopeList = "default"; /* the scope */
 const char *pcFilter = "(user=roger)"; /* the search filter */
 SLPSrvURLCallback srvCallback = /* the callback */
 POPSrvURLCallback;
 err = SLPFindSrvs(slph,
 pcSrvType, pcScopeList, pcFilter,
 srvCallback, NULL);
 if(err != SLP_OK) {
 /* Deal with error. */
 }

 Within the callback, the client code can use the returned POP
 service:

 SLPBoolean
 POPSrvURLCallback(SLPHandle hSLP,
 const char* pcSrvURL,
 unsigned short sLifetime,
 SLPError errCode,
 void* pvCookie) {

 if(errCode != SLP_OK) {
 /* Deal with error. */
 }

 SLPSrvURL* pSrvURL;
 errCode = SLPParseSrvURL(pcSrvURL, &pSrvURL);
 if (err != SLP_OK) {
 /* Deal with error. */

 } else {
 /* get the server's address */
 struct hostent *phe = gethostbyname(pSrvURL.s_pcHost);
 /* use hostname in pSrvURL to connect to the POP3 server
 * . . .
 */
 Kempf and Guttman Informational [Page 38]

 Internet Draft SLP API Revised Feburary, 2002

 SLPFreeSrvURL((void*)pSrvURL); /* Free the pSrvURL storage*/
 }

 return SLP_FALSE; /* Done! */
 }

 A client that wanted to discover all the users receiving mail at the
 server uses with the following query:

 /*
 * The client calls SLPOpen(), exactly as above. We assume the
 * service: URL was retrieved into surl.
 */

 const char *pcScopeList = "default"; /* the scope */
 const char *pcAttrFilter = "use"; /* the attribute filter */
 SLPAttrCallback attrCallBack = /* the callback */
 POPUsersCallback

 err =
 SLPFindAttrs(slph,
 surl,
 pcScopeList, pcAttrFilter,
 attrCallBack, NULL);
 if(err != SLP_OK) {
 /* Deal with error. */
 }

 The callback processes the attributes:

 SLPBoolean
 POPUsersCallback(const char* pcAttrList,
 SLPError errCode,
 void* pvCookie) {

 if(errCode != SLP_OK) {
 /* Deal with error. */
 } else {
 /* Parse attributes. */
 }

 return SLP_FALSE; /* Done! */
 }

7.0 Security Considerations

 Security is handled by IPSEC and is not exposed to API clients. An
 adversary could delete valid service advertisements, provide false
 service information and deny UAs knowledge of existing services
 unless IPSEC is used to secure IP traffic between SLP agents, as

 described in [8].

8.0 Acknowledgements

 Kempf and Guttman Informational [Page 39]

 Internet Draft SLP API Revised Feburary, 2002
 The authors would like to thank Don Provan for his pioneering work
 during the initial stages of the RFC 2614 API definition. The
 contributions of Matt Peterson, Ira McDonald, and Jim Mayer were
 invaluable in preparing the current document.

9.0 References

 [1] Kempf, J. and Guttman, E., "An API for Service Location," RFC
2614, June, 1999.

 [2] Bradner, S., "Key Words for Use in RFCs to Indicate Requirement
 Levels," BCP 14, RFC 2119, March 1997.
 [3] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax," RFC 2396, August
 1998.
 [4] Yergeau, F., "UTF-8, a transformation format of ISO 10646," RFC

2279, January 1998.
 [5] Howes, T., "The String Representation of LDAP Search Filters,"

RFC 2254 December 1997.
 [6] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF," RFC 2234, November 1997.
 [7] Alvestrand, H., "Tags for the Identification of Languages," RFC

1766, March 1995.
 [8] Guttman, E., and J. Kempf, "Service Location Protocol, Version
 2," draft-guttman-rfc2608bis-01.txt, a work in progress.
 [9] Guttman, E., Perkins, C. and J. Kempf, "Service Templates and
 Service: Schemes," RFC 2609, June 1999.

10.0 Editors' Addresses

 Erik Guttman James Kempf
 Sun Microsystems, Inc. DoCoMo Labs, USA
 Eichhoelzelstr. 7 180 Metro Drive, Suite 300
 74915 Waibstadt San Jose, CA, 95430
 GERMANY USA
 Phone: +49 172 865 5497 Phone: +1 408 451 4711
 Email: Erik.Guttman@Sun.Com Email: kempf@docomolabs-usa.com

11.0 Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.
 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph
 are included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of

https://datatracker.ietf.org/doc/html/rfc2614
https://datatracker.ietf.org/doc/html/rfc2614
https://datatracker.ietf.org/doc/html/rfc2614
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc2254
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc1766
https://datatracker.ietf.org/doc/html/rfc1766
https://datatracker.ietf.org/doc/html/draft-guttman-rfc2608bis-01.txt
https://datatracker.ietf.org/doc/html/rfc2609

 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.
 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.
 Kempf and Guttman Informational [Page 40]

 Internet Draft SLP API Revised Feburary, 2002
 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."
 Funding for the RFC Editor function is currently provided by the
 Internet Society.

 Kempf and Guttman Informational [Page 41]

