
Public Notary Transparency S. Kent
Internet Draft D. Mandelberg
Intended status: Standards Track K. Seo
Expires: April 2016 BBN Technologies
 October 2, 2015

Certificate Transparency (CT) System Architecture
draft-kent-trans-architecture-00.txt

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on April 2, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Abstract

Kent, et al. Expires April 2, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft CT System Architecture October 2015

 This document describes the architecture for Certificate Transparency
 (CT) focusing on the Web PKI context. It defines the goals of CT and
 the elements that comprise CT. It also describes the critical
 features of these elements. Other documents describe in detail the
 operation of these elements.

Table of Contents

1. Introduction...2
1.1. Requirements Language.....................................5

2. Beneficiaries of CT..6
3. The Elements of the CT Architecture............................7

3.1. Logs...10
3.2. Certification Authorities (CAs)..........................11
3.3. Monitors...12
3.4. Subjects (TLS web servers)...............................14
3.5. TLS clients (web browsers)...............................15
3.6. Auditors...16

 3.6.1. Checking MMD, STH Frequency Count and Append-only
 property...16

3.6.2. Checking for Consistency of Log Views...............17
4. Security Considerations.......................................18
5. IANA Considerations...18
6. References..18

6.1. Normative References.....................................18
6.2. Informative References...................................19

7. Acknowledgments...19
Appendix A. Log Checking Algorithms (Normative)..................20

A.1. Append-only Check..20
A.2. Inclusion Proof Verification.............................21
A.3. Verifying consistency between two STHs...................21
A.4. Verifying log root hash using log entries................22

Appendix B. SCT Transmission (Normative).........................24
Appendix C. Matching an SCT to a Certificate.....................26

1. Introduction

 Certificate transparency (CT) is a set of mechanisms designed to
 deter, detect, and facilitate remediation of certificate mis-
 issuance. CT deters mis-issuance by encouraging CAs to publish the
 certificates that they issue in a publically-accessible log. The log
 uses a Merkle tree design to ensure that it is an append-only
 database, and the log entries are digitally signed by the log
 operator. Monitoring of logs detects mis-issuance. Remediation of
 mis-issuance is effected via certificate revocation.

Kent, et al. Expires April 2, 2016 [Page 2]

Internet-Draft CT System Architecture October 2015

 The term mis-issuance refers to violations of either semantic or
 syntactic constraints associated with certificates. The fundamental
 semantic constraint for a (Web PKI) certificate is that it was issued
 to an entity that is authorized to represent the Subject name in the
 certificate, in addition to all Subject Alternative names (SANs), if
 any are present. (It is also assumed that the entity requested the
 certificate from the CA that issued it.) Throughout the remainder of
 this document we refer to a semantically mis-issued certificate as
 "bogus."

 A certificate is characterized as syntactically mis-issued if it
 violates syntax constraints associated with the class of certificates
 that it purports to represent. Syntax constraints for certificates
 are established by certificate profiles, and typically are
 application-specific. For example, certificates used in the Web PKI
 environment might be characterized as domain validation (DV) or
 extended validation (EV) certificates. Certificates issued for use
 by applications such as IPsec or S/MIME have different syntactic
 constraints from those issued in the Web PKI context. Throughout the
 remainder of this document we refer to a syntactically mis-issued
 certificate as "erroneous."

 As noted above, CT deters mis-issuance by encouraging CAs to log the
 certificates that they issue. A CT log is a publicly auditable,
 append-only, database of issued certificates [cite 6962-bis] based on
 a binary Merkle hash tree [Merkle]. Each CT log operates in a fashion
 that enables anyone to detect inconsistent behavior, thus logs need
 not be operated by trusted (third) parties. (Detection of
 inconsistent behavior by a log is the function of a CT Auditor. Some
 forms of log misbehavior require comparing information gleaned from
 multiple sources, e.g., using mechanisms such as the ones described
 in [Gossip]. If an Auditor detects misbehavior by the log, it will
 notify Monitors and Subjects that have registered with it.) A
 (semantically) mis-issued certificate that has been logged can be
 detected by any entity that monitors the log and that has knowledge
 of all legitimate certificates issued to the named certificate
 Subject. Thus CAs are deterred from logging mis-issued certificates,
 because of the implied reputational consequences. (The assumption is
 that a CA that is detected repeatedly mis-issuing certificates may be
 shunned by the community.)

 CT enables detection of mis-issuance via the Monitor function [cite
 Monitor]. A CT Monitor examines all entries from a set of logs and
 compares these entries to reference data for a set of one or more
 Subjects. The reference data consists, at a minimum, of a list of
 Subject and Subject Alternative Names and the pubic key information
 associated with each, supplied by the Subject. If a Monitor detects a

Kent, et al. Expires April 2, 2016 [Page 3]

Internet-Draft CT System Architecture October 2015

 log entry for a certificate that is inconsistent with the reference
 data for a Subject, the Monitor notifies the Subject. A Subject may
 perform self-monitoring. In the Web PKI context, a Subject is a web
 site. Monitors implement the mis-issuance detection aspect of CT.

 Revocation of a bogus/erroneous certificate is the primary means of
 remedying mis-issuance. A browser vendor may distribute a "blacklist"
 of mis-issued certificates or a bad-CA-list of certificates of CAs
 that have mis-issued certificates. Browsers may then use such lists
 to reject certificates on the blacklist, or certificates for which
 the issuing CA is on the bad-CA-list. This form of revocation,
 although not codified in IETF standards, is also a means of
 remediation for mis-issuance. Throughout the remainder of this
 document, references to certificate revocation as a remedy encompass
 these and analogous forms of revocation.

 Figure 1 provides a top-level view of these elements of CT.

Kent, et al. Expires April 2, 2016 [Page 4]

Internet-Draft CT System Architecture October 2015

 +-----+ +----+
 | Log |<--->| CA |<*********************
 | | +----+ *
 | | ^ *
 | | * *
 | | v *
 | | +---------+ *
 | |<--->| Subject |<************* *
 | | +---------+ * *
 | | ^ ^ * *
 | | * ******* * *
 | | v * * *
 | | +---------+ * * *
 | |<--->| Browser | * * *
 | | +---------+ * * *
 | | ^ * * *
 | | * * * *
 | | v v * *
 | | +----------------+ * *
 | |<***>| Browser Vendor |<*** * *
 | | +----------------+ * * *
 | | v v v
 | | +---------+
 | |<---------------------->| Monitor |
 | | +---------+
 | | ^
 | | *
 | | v
 | | +---------+
 | |<---------------------->| Auditor |
 +-----+ +---------+

 Legend:
 <---> Interface defined by CT
 <***> Interface out of scope for CT

 Figure 1 Elements of the CT Architecture

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Kent, et al. Expires April 2, 2016 [Page 5]

Internet-Draft CT System Architecture October 2015

2. Beneficiaries of CT

 There are three classes of beneficiaries of CT: certificate Subjects,
 relying parties (RPs), and Certification Authorities (CAs). In the
 initial context of CT, the Web PKI, Subjects are web sites and RPs
 are browsers employing HTTPS to access these web sites. CAs are
 issuers of certificates used in the Web PKI context.

 A certificate Subject benefits from CT because CT helps (Monitors)
 detect certificates that have been mis-issued in the name of that
 Subject. A Subject learns of a bogus/erroneous certificate (issued in
 its name), via a CT Monitor, as noted above. (The Monitor function
 may be provided by the Subject itself, i.e., self-monitoring, or by a
 third party trusted by the Subject.) When a Subject is informed of
 certificate mis-issuance by a Monitor, the Subject is expected to
 request/demand revocation of the bogus/erroneous certificate by the
 issuing CA and/or by the browser vendors.

 A Subject also may benefit from the Monitor function of CT even if
 the Subject's legitimate certificate(s) has(have) not been logged.
 Monitoring of logs for certificates issued in the Subject's name
 suffices to detect an instance of mis-issuance targeting the Subject,
 if the bogus/erroneous certificate is logged.

 A TLS client (e.g., a browser) benefits from CT if the TLS client
 rejects a mis-issued certificate, i.e., treats the certificate as
 invalid. A TLS client is protected from accepting a mis-issued
 certificate if that certificate is revoked, and if the TLS client
 checks the revocation status of the certificate. (A TLS client also
 is protected if a browser vendor "blacklists" a certificate or a CA
 as noted above.) A TLS client also may benefit from CT if the client
 validates a Signed Certificate Timestamp (SCT) [6962-bis] associated
 with a certificate, and rejects the certificate if the SCT is
 invalid.

 CAs are also CT beneficiaries. If one CA issues a legitimate
 certificate to a Subject, and another CA issues a bogus certificate,
 the second certificate can be detected by CT Monitoring (if the bogus
 certificate has been logged). In this fashion the CA that issued the
 legitimate certificate benefits, since the bogus certificate is
 detected and, presumably revoked. Even the CA that issued the bogus
 certificate is a potential beneficiary. If the bogus certificate was
 issued as a result of an error or an (undetected) attack, CT can help
 the CA become aware of the error or attack and act accordingly. This
 is presumed to be beneficial to the reputation of this CA.

Kent, et al. Expires April 2, 2016 [Page 6]

Internet-Draft CT System Architecture October 2015

3. The Elements of the CT Architecture

 There are six elements of the CT architecture: logs, CAs, Monitors,
 Subjects, TLS clients (and vendors of the client's software), and
 Auditors. (CAs, Subjects, and TLS clients are pre-existing elements
 affected by CT; logs, Monitors, and Auditors are new elements
 introduced by CT.) Figure 2 shows how all of these elements interact
 with the central element, the log. Figure 3 shows how the pre-
 existing elements interact with one another under CT. Figure 4 shows
 the interactions of monitors and auditors that are not covered by
 Figure 2.

Kent, et al. Expires April 2, 2016 [Page 7]

Internet-Draft CT System Architecture October 2015

 +-----+ +---------------+
Log	<- add-chain or add-pre-chain -----	CA or Subject
	-- SCT for the new entry --------->	
	<- get-proof-by-hash --------------	
	-- inclusion proof for the entry ->	
	+---------------+	
	+---------+	
	<- get-sth [1] ------	Monitor
	-- current STH ----->	
	<- get-entries [1] --	
	-- log entries ----->	
	+---------+	
	+---------+	
	<- get-proof-by-hash [2] --	Browser
	-- inclusion proof [2] --->	
	+---------+	
	+----------------+	
	<- get log metadata --	Browser Vendor
	-- log metadata ----->	
	+----------------+	
	+-----------------+	
		Auditor
		+---------------+
	<- get-sth [1] --------------	
	-- current STH ------------->	
	<- get-entries [1] ----------	
	-- log entries ------------->	
		+---------------+
	<- get-sth ------------------	
	-- current STH ------------->	
		+---------------+
	<- get-sth [1] --------------	
	-- current STH ------------->	
	<- get-entries [1] ----------	
	-- log entries ------------->	
	<- get-sth-consistency [3] --	
	-- consistency proof ------->	
 +-----+ |+---------------+|
 +-----------------+

 [1] The get-sth operation is performed periodically, and get-entries
 is performed each time a new STH is available.
 [2] See Section 3.5 for privacy and performance caveats.
 [3] If the Auditor stores copies of all Log entries, then this
 operation is not needed.

 Figure 2 Interactions with a Log

Kent, et al. Expires April 2, 2016 [Page 8]

Internet-Draft CT System Architecture October 2015

 +----------------+ +---------+
 | Browser Vendor |-- log metadata[1] ------------------>| Browser |
 | |-- revocation information[1] -------->| |
 +----------------+ | |
 | |
 +----+ +---------+ | |
CA	/ certificate \-----	Subject		
	<-\ request /			
	-- certificate[2] ->			
 +----+ | | | |
 | | | |
 | | / TLS \---| |
 | |<-\ connection / | |
 | |-- certificate ->| |
 | |-- SCT[3] ------>| |
 | |<- HTTPS ------->| |
 +---------+ +---------+

 [1] Not subject to standardization.
 [2] Optionally including SCTs in an extension.
 [3] Optional, via an OCSP response or in a TLS extension.

 Figure 3 Interfaces of Pre-existing Elements

Kent, et al. Expires April 2, 2016 [Page 9]

Internet-Draft CT System Architecture October 2015

 +---------+ +---------+
Monitor	<- establish a business relationship [1] ->	Subject
	<- list of protected subject names --------	
	/ per protected subject name, a \---------	
	<-\ list of acceptable public keys /	
	+---------+	
	+----+	
	-- notification of mis-issuance --+-->	CA
		+----+
		+----------------+
	+-->	Browser Vendor
	+----------------+	
	+---------+	
	<- notification of log mis-behavior [2] --	Auditor
 +---------+ +---------+

 [1] In the case of a self-monitor, the business relationship is
 trivial - the Subject and Monitor are the same organization.
 [2] An entity performing the Monitor function MAY also choose to
 implement some of the Auditor functions. In that case the
 Monitor/Auditor interface is trivial. If the Auditor is separate, we
 note that there is no interface defined at the time of this writing.

 Figure 4 Monitor and Auditor Interfaces

3.1. Logs

 Logs are the central elements of the CT architecture. Logging of
 certificates enables Monitors to detect mis-issuance and,
 subsequently, to trigger revocation requests to CAs and/or browser
 vendors. Logging also deters mis-issuance, as noted above. The
 interfaces to a log are defined in [6962-bis], as are the details of
 how a log operates.

 Briefly, a certificate chain (that must be verifiable under a trust
 anchor acceptable to the log) is submitted to a log by a CA, Subject
 or other interested party. The log creates an entry for the chain,
 hashing it with information from other log submissions. The log
 returns a Signed Certificate Timestamp (SCT) to the submitter. The
 SCT can be conveyed to RPs in one of three ways: it can be
 incorporated into a certificate by the CA that issues it; it can be
 conveyed via the TLS handshake between an RP and a web site; or it
 can be embedded into an OCSP response sent to an RP. (Only the issuer
 of a certificate can submit a so-called "pre-certificate" to a log,

Kent, et al. Expires April 2, 2016 [Page 10]

Internet-Draft CT System Architecture October 2015

 to acquire an SCT for inclusion into the certificate, prior to
 signing the certificate.) The SCT is a token that can be verified by
 RPs (and Monitors) to establish, to first order, that a certificate
 has been logged. See [6962-bis] for additional details.

 All clients that interact with a log require access to metadata
 associated with each log upon which they rely. This metadata includes
 the URL and public key for the log, the list of trust anchors
 accepted by the log, the hash and signature algorithms employed, etc.
 Log metadata is made available to RPs via out of band means that are
 outside the scope of the CT specifications. In the Web PKI context,
 CT assumes that browser vendors will make log metadata available to
 browsers via the same mechanisms used to convey trust anchor (and
 vendor-managed revocation data). Thus log metadata is not mutable by
 log operators (since it is part of browser configuration data), with
 one exception. When a log ceases operation it publishes its final
 STH, enabling clients to verify previous log entries and to detect
 any (unauthorized) additions to the log. See [6962-bis] for
 additional details.

3.2. Certification Authorities (CAs)

 A CA interacts with a log to submit a certificate (or a pre-
 certificate) to create a log entry. (Most logged certificates are
 expected to be end-entity certificates, each associated with the web
 site that it represents. However, it also is possible to log a CA
 certificate under certain circumstances. See Section 3.2.3 of [6962-
 bis].) The pre-certificate capability is offered to facilitate rapid
 deployment of CT. It has the advantage that web sites need not make
 any software changes to acquire one or more SCTs, because the SCTs
 are embedded in the certificate itself. There is, however, a downside
 of embedding SCTs in certificates. If a log that provided an SCT is
 compromised or otherwise becomes not acceptable to RPs and Monitors,
 the certificate associated with that SCT may have to be re-issued
 with a replacement SCT. Thus, in the long term, the options of
 conveying an SCT via the TLS handshake or in an OCSP response
 (perhaps "stapled" into the handshake [RFC6961], are preferred.
 However, transmission of an SCT via the TLS handshake requires
 changes to web site software to acquire and insert SCTs. Transmission
 via an OCSP response requires that either RPs fetch such responses
 (which appears not to be the norm), or that a web site passes the
 OCSP data via the TLS handshake (and that the OCSP signer be prepared
 to generate this modified form of response).

 A CA may submit a "name-redacted" pre-certificate to a log. A name-
 redacted pre-certificate includes one or more "?" labels in lieu of
 DNS name components. Name-redaction is a feature of CT designed to

https://datatracker.ietf.org/doc/html/rfc6961

Kent, et al. Expires April 2, 2016 [Page 11]

Internet-Draft CT System Architecture October 2015

 enable an organization to log certificates without revealing all of
 the DNS name components in the certificate that will be matched to
 the log entry. This is an attractive feature for organizations that
 want to benefit from CT without revealing internal server names as a
 side effect of logging. An end-entity certificate that is to be
 treated as logged via this mechanism MUST contain a critical
 (X.509v3) extension that indicates which labels have been redacted in
 the log entry. This extension is needed to enable TLS clients and
 Monitors to match a received certificate against the corresponding
 log entry in an unambiguous fashion. See Section 3.2.2 of [6962-bis]
 for more details.

 The CT architecture does not mandate a specific number of SCTs that
 should be associated with a certificate. TLS clients and Monitors
 might establish requirements for the minimum number of associated
 SCTs in different contexts, but such requirements are outside the
 scope of the CT architecture.

 After an SCT has been returned, it is RECOMMENDED that a CA verify
 that a certificate (or pre-certificate) that it has submitted has in
 fact been logged. To perform this verification, the CA waits for an
 interval dictated by the Maximum Merge Delay (MMD) associated with
 the log, and then requests both a Signed Tree Head (STH) and an
 inclusion proof. The CA SHOULD then verify the data returned by the
 log, as described in Sections 3.6, 4.3 and 4.5 of [6962-bis].

 <we plan to insert much of Rob's text on redacted certificates here,
 since that text specifies CA behavior for CT.>

3.3. Monitors

 The primary role of a Monitor is to watch a set of logs, looking for
 log entries of interest. A Subject may act as a self-monitor, or may
 make use of the services of a third-party Monitor.

 In the self-monitoring context, log entries of interest are ones that
 contain a Subject or Subject Alternative Name (SAN) associated with
 the Subject's web site(s). (Name-constrained CA certificates and
 wildcard certificates also have to be examined to detect certificates
 that would match the end-entity certificates associated with a
 Subject's web sites.) Whenever a certificate of interest is detected,
 the Subject compares it with the public key information associated
 with the Subject's certificate(s). If there is a mismatch, this
 indicates that this logged certificate was mis-issued. The Subject
 contacts the CA that issued the certificate (using the Issuer name in
 the certificate), and requests revocation of the mis-issued
 certificate, to resolve the problem. (The means by which a Subject

Kent, et al. Expires April 2, 2016 [Page 12]

Internet-Draft CT System Architecture October 2015

 determines how to contact a CA based on the issuer name is outside
 the scope of this specification.) The means by which a Subject
 determines which set of logs to watch is outside the scope of the CT
 specifications. It is anticipated that there will be a small number
 of logs that are widely used, and that the metadata for these logs
 will be available from browser vendors (see Section 3.5 below).

 A third-party Monitor watches for certificates of interest to its
 clients. Each client of a third party Monitor supplies the Monitor
 with a list of Subject names and SANs associated with the client's
 web site(s), and public key information associated with each name.
 The Monitor watches a set of logs looking for entries that match the
 client certificates of interest. If it detects an apparent mis-issued
 certificate, the Monitor contacts the client and forwards the log
 entry, along with log metadata. The client (Subject) then follows the
 procedure noted above to request revocation of the mis-issued
 certificate. It is RECOMMENDED that third-party Monitors make public
 the set of logs that they watch, and the set of third-party Auditors
 they rely upon, to help clients decide when choosing a third-party
 Monitor.

 A Monitor (self or third-party) that is "watching" a log periodically
 queries the log to determine if there is a new STH, using the get-sth
 interface (see Section 4.3 of [6962-bis]). When a new STH is
 detected, the Monitor then uses the get-entries interface to the log
 (see Section 4.7 of [6962-bis] to retrieve all new log entries
 (relative to the previous STH acquired by the Monitor). (This command
 requires the Monitor to indicate the start and end entries, by index,
 data that is provided by get-STH.) The Monitor examines each log
 entry to determine if it is of interest, as per the definition above.
 (This procedure applies to wildcard certificate log entries as well
 as to certificates with fully-specified DNS names.)

 If a Monitor encounters a log entry for a name-redacted certificate
 (Section 3.2.2 in [6962-bis]) it MUST evaluate whether that
 certificate is of interest. To do so, the Monitor compares the non-
 redacted part of the name in the log entry against the list of names
 of interest to this Monitor. The redacted name, is transformed into a
 wildcard name by substituting "*" for "?" name components. The
 resulting name is then compared to the list of names of interest to
 the Monitor. If a match is found, the Monitor then compares the list
 of public keys for the name. If the public key in the log entry does
 not match any in this list, the Subject associated with the specified
 name is notified.

 A Monitor MAY retain its own copies of log entries, but it is not
 required to do so. Local caching of log entries would be useful for a

Kent, et al. Expires April 2, 2016 [Page 13]

Internet-Draft CT System Architecture October 2015

 third party log that acquires a new client, since the Monitor could
 examine the older entries for certificates that are now of interest.
 For a self-Monitor, maintaining a cache of old log entries may not be
 useful and may represent a storage burden.

 Note that the Monitor function, as described above, does not try to
 detect mis-behavior by a log. That is an Auditor function, which is
 described below. A Monitor MAY incorporate some or all of the Auditor
 functions; it MAY make use of third-party Auditors, or it may eschew
 responsibility for auditing. A third-party Monitor SHOULD make known
 to its clients which, if any, Auditor functions it offers to its
 clients. The means by which Subjects determine the set of functions
 provided by a third-party Monitor is not defined by this document; it
 will be described in a Monitor API specification [cite Monitor].

 CT does not include any mechanisms designed to detect misbehavior by
 a Monitor. A self-Monitor does not require such mechanisms; Subjects
 who elect to rely upon third-party Monitors would benefit from such
 mechanisms.

3.4. Subjects (TLS web servers)

 A Subject (e.g., a web site operator) MAY submit its certificate(s)
 to a log, and acquire an SCT for each certificate it submits, using
 the add-chain log interface (see Section 4.1 of [6962-bis]). There
 are three reasons for a Subject to log its own certificate(s): (1)
 its CA did not embed an SCT in the certificate(s) it issued to the
 Subject, (2) the Subject wants to acquire SCTs from additional logs,
 or (3) the Subject wants the flexibility offered by conveying SCTs
 (from logs of its choosing) in the TLS handshake (including via
 OCSP). Appendix B describes the requirements imposed on Subjects for
 delivery of SCTs to CT-enabled TLS clients.

 When a Subject has acquired an SCT, it SHOULD perform the same checks
 described for a CA (see Section 3.2 above), to verify that the log
 has created an entry for each submitted certificate.

 It is RECOMMENDED that every Subject either perform self-monitoring,
 or become a client of a third-party Monitor (see Section 3.3 above).
 When a Subject becomes aware of a mis-issued certificate (based on
 the Monitor function), the Subject confirms that the log entry
 conflicts with one of its certificates. (In this context, a conflict
 arises if the name in a Subject's certificate matches or is
 encompassed by the name in the log entry, and the certificate was not
 issued to the Subject.) If a conflict is detected, the Subject
 contacts the CA that issued the certificate and requests that it be
 revoked, using whatever mechanisms the CA provides for such requests.

Kent, et al. Expires April 2, 2016 [Page 14]

Internet-Draft CT System Architecture October 2015

 The Subject may also contact browser vendors and ask that they put
 the certificate on a blacklist of mis-issued certificates or put the
 CA's certificate on a bad-CA-list.

3.5. TLS clients (web browsers)

 As noted in Section 2, a TLS client can benefit from CT even without
 actively participating. A Monitor will detect a mis-issued, logged
 certificate and notify the affected Subject. The Subject will, in
 turn attempt to trigger revocation by the CA that mis-issued the
 certificate in question. If the CA refuses to revoke the certificate,
 and it is acting "improperly", then the Subject could notify browser
 vendors who could blacklist the CA or the certificate in question,
 effecting revocation via other means. Thus a TLS client that
 processes certificate revocation status data, e.g., CRLs, OCSP
 responses, can be protected from bogus certificates that have been
 logged, detected, and revoked. Appendix B describes the requirements
 imposed on a CT-enabled browser to signal its capability and to
 accept SCTs conveyed via any of the three methods defined there.

Appendix C describes the process a CT-enabled browser uses to match
 an SCT to a certificate if the SCT is not embedded in the
 certificate.

 If a TLS client required that a certificate it accepted was
 accompanied by an SCT, the client could have some confidence that the
 certificate had been logged. This would increase confidence that the
 certificate, if it were mis-issued, will have been revoked. However,
 there are two problems with mandating that every TLS client reject
 (treat as invalid) any certificate that is not accompanied by an SCT.
 First, such behavior does not accommodate incremental deployment of
 CT. Second, the mere presence of an SCT is not a guarantee that the
 certificate has been logged.

 To have high confidence that a certificate has been logged, a TLS
 client would have to verify that a log entry exists for the
 certificate. (A typical TLS client, i.e., a browser, would use the
 log metadata provided by the browser vendor to contact one of more
 logs, and to verify signed data from each log.) This requires
 acquisition of additional data from each log, i.e., an inclusion
 proof (see Section 4.5 of [6962-bis]). Requesting an inclusion proof
 for a certificate discloses to a log that the RP is interested in the
 certificate in question. For a browser, this would disclose which web
 sites a user was visiting (if the web sites provided SCTs), a
 potential privacy concern for many users. Also, the data acquisition
 and processing may pose an unacceptable burden for some TLS clients,
 (e.g., browsers), and thus may not be performed in realtime anyway.
 Thus a TLS client is NOT REQUIRED to reject a certificate when no

Kent, et al. Expires April 2, 2016 [Page 15]

Internet-Draft CT System Architecture October 2015

 associated SCT is available. Nonetheless, if an SCT is provided with
 a certificate, its signature SHOULD be verified and the SCT data
 compared to the certificate in question, if doing so would not impose
 an undue burden on the TLS client. (Such checks MAY be performed in
 realtime, or may be deferred. If the checks are deferred and they
 fail, the client will know that the supplied SCT was bogus. The
 client SHOULD retain this knowledge and reject a certificate
 associated with a bogus SCT.) If the signature check fails or the SCT
 does not correspond to the certificate in question, the certificate
 is suspect and SHOULD be treated as invalid by the TLS client.

 A TLS client that is a browser MAY discriminate against a certificate
 presented for a web site if the certificate is not accompanied by an
 SCT, e.g., providing an indication of this via the user interface.
 The details of such discrimination are outside the scope of this
 specification. However, such discrimination MUST NOT cause the
 certificate to be treated as revoked/invalid, until such time as an
 incremental deployment strategy (that is backwards compatible) is
 defined and approved by the IETF.

3.6. Auditors

 Auditors perform checks intended to detect mis-behavior by logs.
 There are four log behavior properties that Auditors check:

 1. The Maximum Merge delay (MMD)

 2. The STH Frequency Count

 3. The append-only property

 4. The consistency of the log view presented to all query sources

 The first three of these checks are easily performed using existing
 log interfaces and log metadata. The last check is more difficult to
 perform because it requires a way to share log responses among a set
 of CT elements, perhaps including browsers, web sites, Monitors, and
 Auditors, e.g., so-called gossiping [Gossip]. There is as yet no
 standard for gossiping and thus the last check is NOT required of
 Auditors at this time.

3.6.1. Checking MMD, STH Frequency Count and Append-only property

 Checking that a log is behaving correctly with regard to MMD, STH
 Frequency Count and Append-only property SHOULD be performed using
 the algorithm described in Appendix A:

Kent, et al. Expires April 2, 2016 [Page 16]

Internet-Draft CT System Architecture October 2015

 1. The MMD for a log is the maximum time that may elapse between the
 time that an SCT is issued and a log entry is created. When an
 Auditor executes the algorithm in Appendix A, Step 7 enables it to
 detect when the MMD has been exceeded for the certificate append
 that triggered the new STH. The Auditor's polling period SHOULD be
 chosen to be small relative to the MMD in order to maximize the
 chance of successful detection of an MMD violation.

 2. To prevent the use of an STH to identify an individual log client,
 a log MUST NOT generate an STH more frequently than is declared in
 the log metadata. To verify that a log is not violating this
 guarantee, when an Auditor executes the algorithm in Appendix A,
 Step 5 enables it to determine how long it has been since the STH
 changed and to detect if this period is shorter than the minimum
 required. The Auditor's polling period SHOULD be chosen to be more
 frequent than the minimum frequency in order to maximize the
 chance of successful detection of too frequent generation of STHs.

 3. In order to verify the append-only property, an Auditor executes
 the algorithm as described in Appendix A.1.

3.6.2. Checking for Consistency of Log Views

 In order for an Auditor to verify that a log provides a consistent
 view to all query sources, the Auditor needs to see the results of
 queries to the log from a broad range of requesters. In principle
 this could be accomplished using a gossip protocol that has the
 following constraints:

 1. TLS clients are not expected to interact directly with a Log for
 performance and privacy reasons (see Section 3.5).

 2. TLS clients generally do not communicate directly with one another
 (with a few exceptions). As such, a gossip protocol would be
 easier to deploy if it does not rely on direct communication among
 TLS clients.

 3. If TLS clients have to acquire and distribute CT information about
 the web sites they visit, this should not overburden the browsers,
 Subject web sites, or Logs.

 4. There needs to be a mechanism for Auditor(s) to inform Monitors
 (and maybe browser vendors) about mis-behaving logs. The Auditors
 could be standalone entities selected by Monitors and browsers,
 (more properly, browser vendors), as a way to obtain information
 about misbehaving logs. Alternatively, these parties could operate
 their own Auditors.

Kent, et al. Expires April 2, 2016 [Page 17]

Internet-Draft CT System Architecture October 2015

 5. Browser vendors need to be able to update the blacklists of mis-
 issued certificates and the bad-log-lists used by their browsers.

4. Security Considerations

 CT is a system created to improve security for X.509 public key
 certificates, especially in the Web PKI context. An attack analysis
 [draft-trans-threat-analysis] examines the types of attacks that can
 be mounted against CT, to effect mis-issuance, and how CT addresses
 (or fails to address) each type of attack. That analysis is based on
 the architecture described in this document, and thus readers of this
 document are referred to that one for a thorough discussion of the
 security aspects of CT. Briefly, CT logs represent a viable means of
 deterring semantic mis-issuance of certificates. Monitors are an
 effective way to detect semantic mis-issuance of logged certificates.
 The CT architecture enables certificate Subjects to request
 revocation of mis-issued certificates, thus remedying such mis-
 issuance. Residual vulnerabilities exist with regard to some forms of
 log and Monitor misbehavior, because the architecture does not
 include normative means of detecting such behavior. The current
 design also does not ensure the ability of Monitors to detect
 syntactic mis-issuance of certificates. This is because provisions
 for asserting the type of certificate being issued, for inclusion in
 an SCT, have not been standardized.

5. IANA Considerations

 <TBD>

6. References

6.1. Normative References

 [Merkle] Merkle, R. C. (1988). "A Digital Signature Based on a
 Conventional Encryption Function." Advances in Cryptology -
 CRYPTO '87. Lecture Notes in Computer Science 293. p. 369

 [6962-bis] Laurie, B., Langley, A., Kasper, E., Messeri, E., and R.
 Stradling, "Certificate Transparency," draft-ietf-trans-

rfc6962-bis-08 (work in progress), July 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

https://datatracker.ietf.org/doc/html/draft-trans-threat-analysis
https://datatracker.ietf.org/doc/html/draft-ietf-trans-rfc6962-bis-08
https://datatracker.ietf.org/doc/html/draft-ietf-trans-rfc6962-bis-08
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246

Kent, et al. Expires April 2, 2016 [Page 18]

Internet-Draft CT System Architecture October 2015

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066, January 2011.

 [RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",

RFC 6960, June 2013.

 [RFC6961] Pettersen, Y., "The Transport Layer Security (TLS) Multiple
 Certificate Status Request Extension," RFC 6961, June 2013.

6.2. Informative References

 [draft-trans-threat-analysis] Kent, S., "Attack Model for Certificate
 Transparency," draft-ietf-trans-threat-analysis-01 (work in
 progress), June 2015.

 [Gossip] Nordberg, L., Gillmore, and Ritter, T., "Gossiping in CT,"
draft-ietf-trans-gossip-00 (work in progress), August 2015.

 [Auditor] ?? work in progress.

 [Monitor] ?? work in progress.

7. Acknowledgments

 Some of the text included in this document (including the algorithms
 described in Appendices A and B), was produced by B. Laurie, A.
 Langley, E. Messeri, and R. Stradling in earlier versions of [6962-
 bis]. It has been extracted and edited for use here.

Kent, et al. Expires April 2, 2016 [Page 19]

https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc6960
https://datatracker.ietf.org/doc/html/rfc6961
https://datatracker.ietf.org/doc/html/draft-trans-threat-analysis
https://datatracker.ietf.org/doc/html/draft-ietf-trans-threat-analysis-01
https://datatracker.ietf.org/doc/html/draft-ietf-trans-gossip-00

Internet-Draft CT System Architecture October 2015

Appendix A. Log Checking Algorithms (Normative)

 This appendix specifies nominal algorithms for use in performing
 various checks based on log data. An Auditor, Monitor, or TLS client,
 performing a specified check MUST implement an algorithm equivalent
 to the one described here, i.e., an algorithm that yields the same
 results when supplied with the same inputs. These algorithms were
 developed by Ben Laurie, et al., and initially included in the
 document that has now become the log specification [6962-bis].

A.1. Append-only Check

 This is a check performed by an Auditor to verify that a log is
 operating in a fashion consistent with the "append-only" requirement
 (see Section 3.6 above).

 1. Fetch the current STH (see Section 4.3 of [6962-bis]).

 2. Verify the STH signature.

 3. Fetch all the entries in the tree corresponding to the STH (see
 Section 4.7 of [6962-bis]).

 4. Confirm that the tree constructed from the fetched entries
 produces the same hash as that in the STH.

 5. Fetch the current STH again; repeat until the STH changes.

 6. Verify the STH signature.

 7. Fetch all the new entries in the tree corresponding to the STH. If
 they remain unavailable for a period beyond the MMD for this log
 then this should be viewed as misbehavior on the part of the log.

 8. Either:

 1. Verify that the updated list of all entries generates a tree
 with the same hash as the new STH.

 Or, if the Auditor is not keeping a local cache of all entries
 from this log:

 1. Fetch a consistency proof for the new STH with the previous
 STH (see Section 4.4 of [6962-bis]).

 2. Verify the consistency proof.

Kent, et al. Expires April 2, 2016 [Page 20]

Internet-Draft CT System Architecture October 2015

 3. Verify that the new entries generate the corresponding
 elements in the consistency proof.

 9. Go to Step 5.

A.2. Inclusion Proof Verification

 This algorithm is performed by a log client that has received an
 "audit_path" and "leaf_index" and wishes to verify inclusion of an
 input "hash" for an STH with a given "tree_size" and "root_hash". It
 demonstrates that the "hash" was included in the "root_hash".

 1. Set "fn" to "leaf_index" and "sn" to "tree_size - 1".

 2. Set "r" to "hash".

 3. For each value "p" in the "audit_path" array:

 If "LSB(fn)" is set, or if "fn" is equal to "sn", then:

 1. Set "r" to "HASH(0x01 || p || r)"

 2. If "LSB(fn)" is not set, then right-shift both "fn" and "sn"
 equally until either "LSB(fn)" is set or "fn" is "0".

 Otherwise:

 Set "r" to "HASH(0x01 || r || p)"

 Finally, right-shift both "fn" and "sn" one time.

 4. Compare "r" against the "root_hash". If they are equal, then the
 log has proven the inclusion of "hash".

A.3. Verifying consistency between two STHs

 This algorithm is used by an Auditor to establish that two STHs
 represent valid states for a log, consistent with the tree sizes
 indicated. The algorithm assumes that the Auditor has acquired an STH
 "first_hash" for tree size "first", an STH "second_hash" for tree
 size "second" where "0 < first < second", and has received a
 "consistency" array that they wish to use to verify both hashes.

 1. If "first" is an exact power of 2, then prepend "first_hash" to
 the "consistency" array.

 2. Set "fn" to "first - 1" and "sn" to "second - 1".

Kent, et al. Expires April 2, 2016 [Page 21]

Internet-Draft CT System Architecture October 2015

 3. If "LSB(fn)" is set, then right-shift both "fn" and "sn" equally
 until "LSB(fn)" is not set.

 4. Set both "fr" and "sr" to the first value in the "consistency"
 array.

 5. For each subsequent value "c" in the "consistency" array:

 If "LSB(fn)" is set, or if "fn" is equal to "sn", then:

 1. Set "fr" to "HASH(0x01 || c || fr)"

 Set "sr" to "HASH(0x01 || c || sr)"

 2. If "LSB(fn)" is not set, then right-shift both "fn" and "sn"
 equally until either "LSB(fn)" is set or "fn" is "0".

 Otherwise:

 Set "sr" to "HASH(0x01 || sr || c)"

 Finally, right-shift both "fn" and "sn" one time.

 6. After completing iterating through the "consistency" array as
 described above, verify that the "fr" calculated is equal to the
 "first_hash" supplied and that the "sr" calculated is equal to the
 "second_hash" supplied.

A.4. Verifying log root hash using log entries

 This algorithm is used by any log client to verify that an STH (of
 "tree_size") for a log is consistent with a complete list of leaf
 input "entries" from "0" up to "tree_size - 1".

 1. Set "stack" to an empty stack.

 2. For each "i" from "0" up to "tree_size - 1":

 1. Push "HASH(0x00 || entries[i])" to "stack".

 2. Set "merge_count" to the lowest value ("0" included) such
 "LSB(i >> merge_count)" is not set. In other words, set
 "merge_count" to the number of consecutive "1"s found starting
 at the least significant bit of "i".

 3. Repeat "merge_count" times:

Kent, et al. Expires April 2, 2016 [Page 22]

Internet-Draft CT System Architecture October 2015

 1. Pop "right" from "stack".

 2. Pop "left" from "stack".

 3. Push "HASH(0x01 || left || right)" to "stack".

 3. If there is more than one element in the "stack", repeat the same
 merge procedure (Step 2.3 above) until only a single element
 remains.

 4. The remaining element in "stack" is the Merkle Tree hash for the
 given "tree_size" and should be compared by equality against the
 supplied "root_hash".

Kent, et al. Expires April 2, 2016 [Page 23]

Internet-Draft CT System Architecture October 2015

Appendix B. SCT Transmission (Normative)

 A TLS-enabled web server that supports CT MUST convey SCT data
 corresponding to at least one certificate in the chain via the TLS
 handshake. Three mechanisms are defined for conveying the required
 SCT data and Compliant TLS clients MUST implement all three
 mechanisms.

 1. A TLS extension (Section 7.4.1.4 of [RFC5246]) with type
 "signed_certificate_timestamp" may be used. This mechanism allows
 TLS servers to participate in CT without the cooperation of CAs,
 unlike the other two mechanisms. It also allows SCTs to be
 updated by the server as needed.

 2. An Online Certificate Status Protocol (OCSP) [RFC6960] response
 extension may be employed, where the OCSP response is provided in
 the "certificate_status" TLS extension (Section 8 of [RFC6066]),
 also known as OCSP stapling. This mechanism is already widely
 (but not universally) implemented. It also allows SCTs to be
 updated by the sever as needed.

 3. An X509v3 certificate extension may be employed. This mechanism
 allows the use of unmodified TLS servers. However, the included
 SCTs cannot be changed without re-issuing the certificate. Thus a
 web cannot readily update the SCT data, e.g., to add SCTs from
 additional logs. If the SCT embedded in the certificate was issued
 by a log that is no longer trusted by TLS clients, the server will
 have to acquire a new certificate.

 It is RECOMMENDED that TLS servers send SCTs from multiple logs, in
 case one or more logs are not acceptable to the TLS clients that
 visit the server. (A log might become unacceptable if, for example,
 it has been identified as misbehaving by Auditors, or as the result
 of a compromise of the log.) Multiple SCTs are represented in an SCT
 list as follows:

 opaque SerializedSCT<1..2^16-1>;

 struct {
 SerializedSCT sct_list <1..2^16-1>;
 } SignedCertificateTimestampList;

 Here, "SerializedSCT" is an opaque byte string that contains the
 serialized SCT structure. This encoding ensures that TLS clients can
 decode each SCT individually (i.e., if there is a version upgrade,

Kent, et al. Expires April 2, 2016 [Page 24]

https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.1.4
https://datatracker.ietf.org/doc/html/rfc6960
https://datatracker.ietf.org/doc/html/rfc6066#section-8

Internet-Draft CT System Architecture October 2015

 out-of-date clients can still parse old SCTs while skipping over new
 SCTs whose versions they don't understand).

 As noted in (1) above, one or more SCTs can be sent during the TLS
 handshake using a TLS extension with type
 "signed_certificate_timestamp".

 TLS clients that support this extension SHOULD send a ClientHello
 extension with the appropriate type and empty "extension_data".

 TLS servers MUST send SCTs in this TLS extension only to a TLS client
 that has indicated support for the extension in the ClientHello. The
 SCTs are sent by setting the "extension_data" to a
 "SignedCertificateTimestampList".

 Session resumption uses the original session information: TLS clients
 SHOULD include the extension type in the ClientHello, but if the
 session is resumed, the TLS server is not required to process it or
 include the extension in the ServerHello.

Kent, et al. Expires April 2, 2016 [Page 25]

Internet-Draft CT System Architecture October 2015

Appendix C. Matching an SCT to a Certificate

 When a TLS client receives an SCT via one of the mechanisms described
 in Appendix B above, the client needs to match the SCT to a
 certificate in the certificate chain. For an SCT embedded in a
 certificate, the matching is trivial: the SCT belongs to the
 certificate in which it is embedded. In either of the other cases,
 the client uses the following algorithm (or an equivalent algorithm
 that produces the same results in all cases).

 For each certificate in the certificate chain, starting with the
 trust anchor and proceeding down to the TLS server's end entity
 certificate:

 1. Copy the certificate's tbsCertificate field.

 2. If the tbsCertificate copy contains a redacted labels extension:

 1. For each DNS-ID in the tbsCertificate copy:

 1. Determine the number of labels to redact, X. For the
 Nth DNS-ID, the number of labels to redact is either the
 Nth INTEGER in the redacted labels extension (if that
 extension has N or more INTEGERS) or the last INTEGER in
 the extension (if the extension has fewer than N
 INTEGERS).

 2. For each of the leftmost X labels in the DNS-ID: if
 the label is not the wildcard label ("*"), replace the
 label with "?".

 2. If the tbsCertificate copy contains a CN-ID (which MUST match
 the first DNS-ID), change this CN-ID to be equal to the first
 DNS-ID as (potentially) modified above.

 3. In the tbsCertificate copy, remove the SCT list extension (if it
 is present).

 4. Compare the (potentially) modified tbsCertificate copy against the
 tbs_certificate field in the SCT's signed_entry. If they are
 bytewise equal, then this is the certificate that the SCT matches,
 and this algorithm is finished.

Kent, et al. Expires April 2, 2016 [Page 26]

Internet-Draft CT System Architecture October 2015

 Authors' Addresses

 Stephen Kent
 BBN Technologies
 10 Moulton St.
 Cambridge, MA 02138
 US

 Email: kent@bbn.com

 David Mandelberg
 BBN Technologies
 10 Moulton St.
 Cambridge, MA 02138
 US

 Email: david@mandelberg.org

 Karen Seo
 BBN Technologies
 10 Moulton St.
 Cambridge, MA 02138
 US

 Email: kseo@bbn.com

Kent, et al. Expires April 2, 2016 [Page 27]

