
Public Notary Transparency S. Kent
Internet Draft D. Mandelberg
Intended status: Standards Track K. Seo
Expires: July 2016 BBN Technologies
 August 5, 2016

Certificate Transparency (CT) System Architecture
draft-kent-trans-architecture-04.txt

Abstract

 This document describes the architecture for Certificate Transparency
 (CT) focusing on the Web PKI context. It defines the goals of CT and
 the elements that comprise the CT system. It also describes the major
 features of these elements. Other documents, cited in the References,
 establish requirements for these CT system elements and describe
 their operation in greater detail.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on July 30, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Kent, et al. Expires February 5, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft CT System Architecture August 2016

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

1. Introduction...2
1.1. Requirements Language.....................................5

2. Beneficiaries of CT..6
3. The Elements of the CT Architecture............................7

3.1. Logs...10
3.2. CT-aware Certification Authorities (CAs).................11
3.3. Monitors...12
3.4. CT-aware Subjects (TLS web servers)......................13
3.5. CT-aware TLS clients (web browsers)......................14
3.6. Auditors...15

4. Security Considerations.......................................15
5. IANA Considerations...16
6. References..16

6.1. Normative References.....................................16
6.2. Informative References...................................17

7. Acknowledgments...17

1. Introduction

 Certificate transparency (CT) is a set of mechanisms designed to
 deter, detect, and facilitate remediation of certificate mis-issuance
 (as defined below). CT deters mis-issuance by encouraging CAs to
 publish the certificates that they issue in a set of publically-
 accessible logs. Each log uses a Merkle tree design to ensure that it
 is an append-only database, and the log entries are digitally signed
 by the log operator. Monitoring of logs detects mis-issuance.
 Remediation of mis-issuance is effected via certificate revocation.

 In the context of CT, the term mis-issuance refers to violations of
 either semantic or syntactic constraints associated with certificates
 [draft-trans-threat-analysis]. The fundamental semantic constraint
 for a (Web PKI) certificate is that it was issued to an entity that
 is authorized to represent the Subject name in the certificate. If
 any Subject Alternative Names (SANs) are present in the certificate,
 the entity also must be authorized to represent them. (It is also
 assumed that the entity requested the certificate from the CA that

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/draft-trans-threat-analysis

Kent, et al. Expires February 5, 2017 [Page 2]

Internet-Draft CT System Architecture August 2016

 issued it.) Throughout the remainder of this document we refer to a
 semantically mis-issued certificate as "bogus."

 A certificate is characterized as syntactically mis-issued if it
 violates syntax constraints associated with the class of certificates
 that it purports to represent. Syntax constraints for certificates
 are established by certificate profiles, and typically are
 application-specific. For example, certificates used in the Web PKI
 environment might be characterized as domain validation (DV) or
 extended validation (EV) certificates. Certificates issued for use
 by applications such as IPsec or S/MIME have different syntactic
 constraints from those issued in the Web PKI context. Throughout the
 remainder of this document we refer to a syntactically mis-issued
 certificate as "erroneous." From a security perspective, erroneous
 certificates are not perceived as being as significant a concern as
 bogus certificates.

 As noted above, CT deters mis-issuance by encouraging CAs to log the
 certificates that they issue. A CT log is a publicly auditable,
 append-only, database of issued certificates [6962-bis] based on a
 binary Merkle hash tree [Merkle]. Each CT log operates in a fashion
 that enables external entities (Auditors) to detect inconsistent
 behavior. As a result, logs need not be operated by trusted (third)
 parties. Some forms of log misbehavior require comparing information
 gleaned from multiple sources, e.g., using mechanisms such as the
 ones described in [Gossip]. If an Auditor detects misbehavior by the
 log, it will notify Monitors (described below) and Browser Vendors
 that it serves. In turn, the Monitors and Browser Vendors are
 expected to cease relying onlogs that repeatedlymisbehave in a
 fashion indicative of malice. (Ultimately, what constitutes malicious
 misbehavior will be determined by Monitors and Browser Vendors, and
 thus is outside the scope of this document.)

 A bogus certificate that has been logged will be detected by an
 entity (a Monitor) that observes the log and that has knowledge of
 all legitimate certificates issued to the set of certificate Subjects
 that it serves. If a Monitor detects a log entry for a certificate
 that is inconsistent with the reference data for a Subject, the
 Monitor notifies the Subject. (A Subject may perform self-
 monitoring.) Thus Monitors implement the mis-issuance detection
 aspect of CT.

 CAs are presumed to be deterred from logging mis-issued certificates,
 because of the implied reputational consequences. (The assumption is
 that a CA that is detected repeatedly mis-issuing certificates will,
 in time, be blacklisted by the Browser Vendors (who control the set
 of CAs that are accepted by Browsers).

Kent, et al. Expires February 5, 2017 [Page 3]

Internet-Draft CT System Architecture August 2016

 Revocation of a bogus/erroneous certificate is the primary means of
 remedying mis-issuance. A browser vendor may distribute a "blacklist"
 of mis-issued certificates or a bad-CA-list of certificates of CAs
 that have mis-issued certificates. Browsers may then use such lists
 to reject certificates on the blacklist, or certificates issued by
 CAs whose certificates are on the bad-CA-list. This form of
 revocation, although not codified in IETF standards, is also a means
 of remediation for mis-issuance. Throughout the remainder of this
 document, references to certificate revocation as a remedy encompass
 these and analogous forms of revocation.

 Figure 1 provides a top-level view of these elements of CT and their
 interactions.

Kent, et al. Expires February 5, 2017 [Page 4]

Internet-Draft CT System Architecture August 2016

 +-----+ +----+
 | Log |<--->| CA |<**********************
 | | +----+ *
 | | ^ *
 | | * +++++++++++++++++++ * ++++++
 | | v v * +
 | | +---------+ * +
 | |<--->| Subject |<************* * +
 | | +---------+ * * +
 | | ^ ^ ^ * * +
 | | * + ****** * * +
 | | v v * * * +
 | | +---------+ * * * +
 | |<--->| Browser | * * * +
 | | +---------+ * * * +
 | | ^ ^ * * * +
 | | * ++++ * ++++++++ * + * +++ +
 | | v v * * + +
 | | +----------------+ * * + +
 | |<***>| Browser Vendor |<*** * * + +
 | | +----------------+ * * * + +
 | | v v v + +
 | | +---------+ + +
 | |<---------------------->| Monitor | + +
 | | +---------+ + +
 | | ^ ^ + +
 | | + * +++++ +
 | | v v v +
 | | +---------+ +
 | |<---------------------->| Auditor |<+++++
 +-----+ +---------+

 Legend:
 <---> Interface defined by CT
 <***> Interface out of scope for CT
 <+++> Proposed in Experimental Gossip Design

 Figure 1 Elements of the CT Architecture

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Kent, et al. Expires February 5, 2017 [Page 5]

Internet-Draft CT System Architecture August 2016

2. Beneficiaries of CT

 There are three classes of beneficiaries of CT: certificate Subjects,
 TLS Clients, and Certification Authorities (CAs). In the initial
 context of CT, the Web PKI, Subjects are web sites and TLS Clients
 are Browsers employing HTTPS to access these web sites. CAs are the
 issuers of certificates used in the Web PKI context.

 A certificate Subject benefits from CT because CT enables Monitors to
 detect certificates that have been mis-issued in the name of that
 Subject. A Subject learns of a bogus/erroneous certificate (issued in
 its name), via a Monitor, as noted above. (The Monitor function may
 be provided by the Subject itself, i.e., self-monitoring, or by a
 third party trusted by the Subject.) When a Subject is informed of
 certificate mis-issuance by a Monitor, the Subject is expected to
 request/demand revocation of the bogus/erroneous certificate by the
 issuing CA and/or by the browser vendors (if the CA refuses to revoke
 the certificate).

 A Subject also may benefit from the Monitor element of CT even if the
 Subject's legitimate certificate(s) has(have) not been logged. If the
 bogus/erroneous certificate is logged and if a Monitor has been
 provided with reference data from the Subject, then monitoring of
 logs for certificates issued in the Subject's name suffices to detect
 an instance of mis-issuance targeting the Subject. (If a CA operates
 a Monitor on behalf of its Subjects, then the CA has the requisite
 information to detect bogus/erroneous certificates in logs that it
 observes.)

 A TLS client (Browser) benefits from CT if the TLS client rejects a
 mis-issued certificate, i.e., treats the certificate as invalid. A
 TLS client is protected from accepting a mis-issued certificate if
 that certificate is revoked, and if the TLS client checks the
 revocation status of the certificate. (A TLS client also is protected
 if a browser vendor "blacklists" a certificate or a CA as noted
 above.) A TLS client also may benefit from CT if the client validates
 a Signed Certificate Timestamp (SCT) [6962-bis] associated with a
 certificate, and rejects the certificate if the SCT is invalid.

 CAs are also CT beneficiaries. If one CA issues a legitimate
 certificate to a Subject, and another CA issues a bogus certificate,
 the second certificate can be detected by a Monitor (if the bogus
 certificate has been logged). In this fashion the CA that issued the
 legitimate certificate benefits, since the bogus certificate is
 detected and, presumably revoked. Even the CA that issued the bogus
 certificate is a potential beneficiary. If the bogus certificate was
 issued as a result of an error or an (undetected) attack, CT can help

Kent, et al. Expires February 5, 2017 [Page 6]

Internet-Draft CT System Architecture August 2016

 the CA become aware of the error or attack and act accordingly. This
 is presumed to be beneficial to the reputation of this CA.

3. The Elements of the CT Architecture

 There are six elements of the CT architecture: logs, CAs, Monitors,
 Subjects, TLS clients (especially browsers and browser vendors), and
 Auditors. CAs, Subjects, and TLS clients are pre-existing elements
 affected by CT if they choose to participate. Because not all CAs,
 Subjects, and TLS clients may choose to participate in CT, these
 elements are qualified as "CT-aware" to distinguish them from
 existing instances of these types of Web PKI elements. Logs,
 Monitors, and Auditors are new elements introduced by CT and thus
 they are intrinsically CT "aware". Figure 2 shows how all of these
 elements interact with the central CT element, the log. Figure 3
 shows how the pre-existing elements interact with one another under
 CT. Figure 4 shows the interactions of monitors and auditors that are
 not covered by Figure 2.

Kent, et al. Expires February 5, 2017 [Page 7]

Internet-Draft CT System Architecture August 2016

 +-----+ +---------------+
Log	<- add-chain or add-pre-chain -----	CA or Subject
	-- SCT for the new entry --------->	
	<- get-proof-by-hash --------------	
	-- inclusion proof for the entry ->	
	+---------------+	
	+---------+	
	<- get-sth [1] ------	Monitor
	-- current STH ----->	
	<- get-entries [1] --	
	-- log entries ----->	
	+---------+	
	+---------+	
	<- get-proof-by-hash [2] --	Browser
	-- inclusion proof [2] --->	
	+---------+	
	+----------------+	
	<- get log metadata --	Browser Vendor
	-- log metadata ----->	
	+----------------+	
	+-----------------+	
		Auditor
		+---------------+
	<- get-sth [1] --------------	
	-- current STH ------------->	
	<- get-entries [1] ----------	
	-- log entries ------------->	
		+---------------+
	<- get-sth ------------------	
	-- current STH ------------->	
		+---------------+
	<- get-sth [1] --------------	
	-- current STH ------------->	
	<- get-entries [1] ----------	
	-- log entries ------------->	
	<- get-sth-consistency [3] --	
	-- consistency proof ------->	
 +-----+ |+---------------+|
 +-----------------+

 [1] The get-sth operation is performed periodically, and get-entries
 is performed each time a new STH is available.
 [2] See Section 3.5 for privacy and performance caveats.
 [3] If the Auditor stores copies of all Log entries, then this
 operation is not needed.

 Figure 2 Interactions with a Log

Kent, et al. Expires February 5, 2017 [Page 8]

Internet-Draft CT System Architecture August 2016

 +---------+ +---------+
Browser	-- log metadata[1] ------------------------->	Browser				
Vendor	-- revocation information[1] --------------->					
	+---------+					
	/ request \--	Subject				
		to				
		blacklist				
		a CA or				
	<-\ EE cert /					
 +---------+ | | | |
 | | | |
 +----+ | | | |
CA	/ certificate \-----					
	<-\ request /					
	-- certificate[2] ->					
	/ request \---					
		revocation of				
	<-\ a certificate /					
 +----+ | | | |
 | | / TLS \---| |
 | |<-\ connection / | |
 | |-- certificate ->| |
 | |-- SCT[3] ------>| |
 | |<- HTTPS ------->| |
 +---------+ +---------+

 [1] Not subject to standardization.
 [2] Optionally including SCTs in an extension.
 [3] Optional, via an OCSP response or in a TLS extension.

 Figure 3 Interfaces of Pre-existing Elements

Kent, et al. Expires February 5, 2017 [Page 9]

Internet-Draft CT System Architecture August 2016

 +---------+ +---------+
Monitor	<- establish a business relationship [1] ->	Subject
	<- list of protected subject names --------	
	/ per protected subject name, a \---------	
	<-\ list of acceptable public keys /	
	+---------+	
	+----+	
	-- notification of mis-issuance --+-->	CA
		+----+
		+----------------+
	+-->	Browser Vendor
	+----------------+	
	+---------+	
	<- notification of log mis-behavior [2] --	Auditor
 +---------+ +---------+

 [1] In the case of a self-monitor, the business relationship is
 trivial - the Subject and Monitor are the same organization.
 [2] An entity performing the Monitor function MAY also choose to
 implement some of the Auditor functions. In that case the
 Monitor/Auditor interface is trivial. If the Auditor is separate, we
 note that there is no interface defined at the time of this writing.

 Figure 4 Monitor and Auditor Interfaces

3.1. Logs

 Logs are the central elements of the CT architecture. Logging of
 certificates enables Monitors to detect mis-issuance and,
 subsequently, to trigger Subjects to issue revocation requests to CAs
 and/or browser vendors and to notify CAs and browser vendors
 directly. Logging also deters mis-issuance, as noted above. The
 interfaces to a log are defined in [6962-bis], as are the details of
 how a log operates.

 Briefly, a certificate chain (that must be verifiable under a trust
 anchor acceptable to the log) is submitted to a log by a CA, Subject
 or other party. The log creates an entry for the terminal certificate
 in the chain, and returns this Signed Certificate Timestamp (SCT) to
 the submitter. The SCT can be conveyed to a browser in one of three
 ways: it can be incorporated into a certificate by the CA that issues
 it, as described later. (A CA also may submit a so-called "pre-
 certificate" to a log, to acquire an SCT for inclusion in the
 certificate, prior to signing the certificate.) It also can be

Kent, et al. Expires February 5, 2017 [Page 10]

Internet-Draft CT System Architecture August 2016

 conveyed explicitly in the TLS handshake or in OSCP data generated by
 a CA. The SCT is a token that can be verified by browsers to
 establish, to first order, that a certificate has been logged. See
 [6962-bis] for additional details of SCTs.

 All clients that interact with a log require access to metadata
 associated with each log upon which they rely. This metadata includes
 the URL and public key for the log, the list of trust anchors
 accepted by the log, the hash and signature algorithms employed, etc.
 Log metadata is made available to log clients via out of band means
 that are generally outside the scope of the CT specifications. In the
 Web PKI context, CT assumes that browser vendors will make the
 necessary log metadata available to browsers via the same mechanisms
 used to convey trust anchor (and vendor-managed revocation data). Log
 metadata provided via this channel is not mutable by log operators
 (since it is part of browser configuration data), with one exception.
 When a log ceases operation, it publishes its final STH, enabling
 clients to verify previous log entries and to detect any
 (unauthorized) additions to the log. See [6962-bis] for additional
 details.

 An open question is how other log clients receive the metadata they
 require to interact with the log in a predictable fashion. For
 example, a log may elect to check the syntax of certificates relative
 to [RFC5280], or it may skip some of all of the checks specified
 there. Absent a way to determine what checks a log will perform on
 submitted certificates, a CA (or other submitter) has no way to know
 whether a submitted certificate will be accepted by a given log.
 Similarly, a Monitor needs to acquire log metadata so that the
 Monitor can locate the log and verify the signatures on log entries.

3.2. CT-aware Certification Authorities (CAs)

 A (CT-aware) CA interacts with a log to submit a certificate (or a
 pre-certificate) to create a log entry. (Most logged certificates are
 expected to be end-entity certificates, each associated with the web
 site that it represents. However, it also is possible to log a CA
 certificate under certain circumstances. See Section 3.2.3 of [6962-
 bis].) The pre-certificate capability is offered to facilitate rapid
 deployment of CT. It has the advantage that web sites need not make
 any software changes to acquire one or more SCTs, because the SCTs
 are embedded in the certificate itself. There is, however, a downside
 of embedding SCTs in certificates. If a log that provided an SCT is
 compromised or otherwise becomes unacceptable to browsers and
 Monitors, the certificate associated with that SCT will have to be
 re-issued with a replacement SCT. Thus, in the long term, other
 options for conveying an SCT, i.e., via the TLS handshake or in an

https://datatracker.ietf.org/doc/html/rfc5280

Kent, et al. Expires February 5, 2017 [Page 11]

Internet-Draft CT System Architecture August 2016

 OCSP response (perhaps "stapled" into the handshake [RFC6961]), are
 preferred [TLS-Server].

 A CA also may submit a "name-redacted" pre-certificate to a log. A
 name-redacted pre-certificate includes one or more "?" labels in lieu
 of DNS name components. See Section 4.2 of [6962-bis] for more
 details. Name-redaction is a feature of CT designed to enable an
 organization to request a CA to log its certificates without
 revealing all of the DNS name components in the certificate that will
 be matched to the log entry. This is an attractive feature for
 organizations that want to benefit from CT without revealing internal
 server names as a side effect of logging. An end-entity certificate
 that is to be treated as logged via this mechanism contains a
 critical (X.509v3) extension that indicates which labels have been
 redacted in the log entry. This extension is needed to enable TLS
 clients and Monitors to match a received certificate against the
 corresponding log entry in an unambiguous fashion. See Section <TBD>
 of [CA-Subject] for more details.

 The CT architecture does not mandate a specific number of SCTs that
 should be associated with a certificate. Browser vendors might
 establish requirements for the minimum number of associated SCTs in
 different contexts, but such requirements are outside the scope of
 the CT architecture.

 [CA-Subject] describes the requirements imposed on CT-enabled CAs.

3.3. Monitors

 The primary role of a Monitor is to observe a set of logs, looking
 for log entries of interest. A Subject may act as a self-monitor, or
 may make use of the services of a third-party Monitor, as noted
 earlier.

 In the self-monitoring context, log entries of interest are ones that
 contain a Subject or Subject Alternative Name (SAN) associated with
 the Subject's web site(s). (Name-constrained CA certificates and
 wildcard certificates also have to be examined to detect certificates
 that would match the end-entity certificates associated with a
 Subject's web sites.) Whenever a certificate of interest is detected,
 the Subject compares it with the public key information associated
 with its certificate(s). If there is a mismatch, this indicates that
 this logged certificate was mis-issued. The Subject contacts the CA
 that issued the certificate (using the Issuer name in the

Kent, et al. Expires February 5, 2017 [Page 12]

https://datatracker.ietf.org/doc/html/rfc6961

Internet-Draft CT System Architecture August 2016

 certificate) and requests revocation of the mis-issued certificate,
 to resolve the problem. (The means by which a Subject determines how
 to contact a CA based on the issuer name is outside the scope of the
 CT architecture.) The means by which a Subject determines which set
 of logs to watch also is outside the scope of the CT architecture. It
 is anticipated that there will be a small number of logs that are
 widely used, and that the metadata for these logs will be available
 from browser vendors.

 A third-party Monitor watches for certificates of interest to its
 clients. Each client of a third party Monitor supplies the Monitor
 with a list of Subject names and SANs associated with the client's
 web site(s), and public key information associated with each name.
 (As a special case, if a CA offers a Monitor service to its clients,
 then the CA/Monitor already has this information.) The Monitor
 watches a set of logs looking for entries that match the client
 certificates of interest. If it detects an apparent mis-issued
 certificate, the Monitor contacts the client and forwards the log
 entry, along with log metadata. The client (Subject) then follows the
 procedure noted above to request revocation of the mis-issued
 certificate.

 Note that a Monitor does not try to detect mis-behavior by a log.
 That is the responsibility of an Auditor. [Monitor-Auditor] defines
 the requirements for a Monitor (self of third-party) and discusses
 additional operational details.

 Note also that CT does not include any mechanisms designed to detect
 misbehavior by a Monitor. A self-Monitor does not require such
 mechanisms; Subjects who elect to rely upon third-party Monitors
 would benefit from such mechanisms. See [Monitor-Auditor] for the
 requirements imposed on Monitors by CT and for a more detailed
 description of how a Monitor operates.

3.4. CT-aware Subjects (TLS web servers)

 A (CT-aware) Subject (e.g., a web site operator) can submit its
 certificate(s) to a log, and acquire an SCT for each certificate it
 submits (see Section 4.1 of [6962-bis]). There are three reasons why
 a Subject may choose to log its own certificate(s): (1) its CA did
 not embed an SCT in the certificate(s) it issued to the Subject, (2)
 the Subject wants to acquire SCTs from additional logs, or (3) the
 Subject wants the flexibility offered by conveying SCTs (from logs of
 its choosing) in the TLS handshake. [CA-Subject] describes the
 requirements imposed on Subjects for delivery of SCTs to CT-aware TLS
 clients.

Kent, et al. Expires February 5, 2017 [Page 13]

Internet-Draft CT System Architecture August 2016

 Every Subject should either perform self-monitoring, or become a
 client of a third-party Monitor so that bogus certificates issued in
 the name of the Subject will be detected. When a Subject is notified
 of a bogus certificate issued in its name, the Subject contacts the
 CA that issued the certificate and requests that it be revoked, using
 whatever mechanisms the CA provides for such requests. The Subject
 may also contact browser vendors and ask that they put the
 certificate on a blacklist of mis-issued certificates or put the CA's
 certificate on a bad-CA-list, if the CA refuses to revoke the bogus
 certificate. [CA-Subject] describe the requirements established for
 for CT-aware Subjects.

3.5. CT-aware TLS clients (web browsers)

 As noted in Section 2, a TLS client can benefit from CT even without
 actively participating. A Monitor will detect a mis-issued, logged
 certificate and notify the affected Subject. The Subject will, in
 turn attempt to trigger revocation by the CA that mis-issued the
 certificate in question, ultimately asking browser vendors to
 blacklist the certificate (or the CA) if revocation is not effected.
 Thus a TLS client that processes certificate revocation status data,
 e.g., CRLs, OCSP responses, will be protected from bogus certificates
 that have been logged, detected, and revoked.

 If a TLS client required that every certificate it accepted was
 accompanied by an SCT, the client could have some confidence that the
 certificate had been logged. This would increase confidence that the
 certificate, if it were mis-issued, would have been revoked. However,
 there are two problems with mandating that every TLS client reject
 (treat as invalid) any certificate that is not accompanied by an SCT.
 First, such behavior does not accommodate incremental deployment of
 CT. Second, the mere presence of an SCT is not a guarantee that the
 certificate has been logged.

 To have high confidence that a certificate has been logged, a TLS
 client would have to verify that a log entry exists for the
 certificate. This requires acquisition of an inclusion proof from the
 log (see Section 4.5 of [6962-bis]). Requesting an inclusion proof
 directly from a log for a certificate discloses to a log that the TLS
 client is interested in the certificate in question. For a browser,
 this would disclose which web sites a user was visiting, a potential
 privacy concern for many users. Also, the data acquisition and
 processing might pose an unacceptable burden for some TLS clients,
 (e.g., browsers), and might not be performed in realtime anyway. Thus
 CT-aware TLS clients are not expected to fetch an inclusion proof in
 realtime, e.g., during TLS connection establishment. Such clients
 also are not expected to reject a certificate that has no associated

Kent, et al. Expires February 5, 2017 [Page 14]

Internet-Draft CT System Architecture August 2016

 SCT, because there is no plan for incremental deployment of CT that
 accommodates such rejection in a backwards compatible fashion.
 Nonetheless, if an SCT is provided with a certificate, a CT-aware TLS
 client could verify the signature and the SCT data for the
 certificate in question. If performing these checks would not impose
 an undue burden on the TLS client, the checks would help detect
 errors in SCTs and provided feedback to log operators (via Subjects).

 A TLS client that is a browser might discriminate against a
 certificate presented for a web site if the certificate is not
 accompanied by an SCT, e.g., providing an indication of this via the
 user interface. See [browser-vendor] for the requirements established
 for CT-aware browsers and browser vendors.

3.6. Auditors

 Auditors perform checks intended to detect mis-behavior by logs.
 There are four log behavior properties that Auditors check:

 1. The Maximum Merge Delay (MMD)

 2. The STH Frequency Count

 3. The append-only property

 4. The consistency of the log view presented to all query sources

 The first three of these checks are easily performed using existing
 log interfaces and log metadata (see [6962-bis]). For example, an
 Auditor could submit a certificate to a log and request an STH after
 the indicated MMD, to verify that the log is achieving its advertised
 MMD. The last check is more difficult to perform because it requires
 a way to share log responses among a set of CT elements, perhaps
 including browsers, web sites, Monitors, and Auditors, e.g., using
 so-called gossiping [Gossip]. There is as yet no standard for
 gossiping and thus the last check is NOT part of Auditor requirements
 at this time. See [Monitor-Auditor] for additional details of Auditor
 operation.

4. Security Considerations

 CT is a system created to improve security for X.509 public key
 certificates, especially in the Web PKI context. An attack analysis
 [draft-trans-threat-analysis] examines the types of attacks that can
 be mounted against CT, to effect mis-issuance, and how CT addresses
 (or fails to address) each type of attack. That analysis is based on
 the architecture described in this document, and thus readers of this

https://datatracker.ietf.org/doc/html/draft-trans-threat-analysis

Kent, et al. Expires February 5, 2017 [Page 15]

Internet-Draft CT System Architecture August 2016

 document are referred to that one for a thorough discussion of the
 security aspects of CT. Briefly, CT logs represent a viable means of
 deterring semantic mis-issuance of certificates. Monitors are an
 effective way to detect semantic mis-issuance of logged certificates.
 The CT architecture enables certificate Subjects to request
 revocation of mis-issued certificates, thus remedying such mis-
 issuance. Residual vulnerabilities exist with regard to some forms of
 log and Monitor misbehavior, because the architecture does not
 include normative means of detecting such behavior. The current
 design also does not ensure the ability of Monitors to detect
 syntactic mis-issuance of certificates. This is because provisions
 for asserting the type of certificate being issued, for inclusion in
 an SCT, have not been standardized.

5. IANA Considerations

 <TBD>

6. References

6.1. Normative References

 [Merkle] Merkle, R. C. (1988). "A Digital Signature Based on a
 Conventional Encryption Function." Advances in Cryptology -
 CRYPTO '87. Lecture Notes in Computer Science 293. p. 369

 [6962-bis] Laurie, B., Langley, A., Kasper, E., Messeri, E., and R.
 Stradling, "Certificate Transparency," draft-ietf-trans-

rfc6962-bis-10 (work in progress), October 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066, January 2011.

 [RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",

RFC 6960, June 2013.

 [RFC6961] Pettersen, Y., "The Transport Layer Security (TLS) Multiple
 Certificate Status Request Extension," RFC 6961, June 2013.

https://datatracker.ietf.org/doc/html/draft-ietf-trans-rfc6962-bis-10
https://datatracker.ietf.org/doc/html/draft-ietf-trans-rfc6962-bis-10
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc6960
https://datatracker.ietf.org/doc/html/rfc6961

Kent, et al. Expires February 5, 2017 [Page 16]

Internet-Draft CT System Architecture August 2016

6.2. Informative References

 [draft-trans-threat-analysis] Kent, S., "Attack Model and Threat for
 Certificate Transparency," draft-ietf-trans-threat-

analysis-03 (work in progress), October 2015.

 [Gossip] Nordberg, L., Gillmor, D., and Ritter, T., "Gossiping in
 CT," draft-ietf-trans-gossip-01 (work in progress), October
 2015.

 [Monitor-Auditor] <TBD>

 [CA-Subject] <TBD>

 [browser-vendor] <TBD>

7. Acknowledgments

 <TBD>

Kent, et al. Expires February 5, 2017 [Page 17]

https://datatracker.ietf.org/doc/html/draft-trans-threat-analysis
https://datatracker.ietf.org/doc/html/draft-ietf-trans-threat-analysis-03
https://datatracker.ietf.org/doc/html/draft-ietf-trans-threat-analysis-03
https://datatracker.ietf.org/doc/html/draft-ietf-trans-gossip-01

Internet-Draft CT System Architecture August 2016

 Authors' Addresses

 Stephen Kent
 BBN Technologies
 10 Moulton St.
 Cambridge, MA 02138
 US

 Email: kent@bbn.com

 David Mandelberg
 unaffiliated

 Email: david@mandelberg.org

 Karen Seo
 BBN Technologies
 10 Moulton St.
 Cambridge, MA 02138
 US

 Email: kseo@bbn.com

Kent, et al. Expires February 5, 2017 [Page 18]

