
Network Working Group A. Keranen
Internet-Draft Ericsson
Intended status: Informational M. Kovatsch
Expires: September 15, 2016 ETH Zurich
 K. Hartke
 Universitaet Bremen TZI
 March 14, 2016

RESTful Design for Internet of Things Systems
draft-keranen-t2trg-rest-iot-01

Abstract

 This document gives guidance for designing Internet of Things (IoT)
 systems that follow the principles of the Representational State
 Transfer (REST) architectural style.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 15, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Keranen, et al. Expires September 15, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft RESTful Design for IoT Systems March 2016

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 3
3. Basics . 5
3.1. Architecture . 6
3.2. System design . 7
3.3. Resource modeling . 8
3.4. Uniform Resource Identifiers (URIs) 8
3.5. HTTP/CoAP Methods . 9
3.5.1. GET . 9
3.5.2. POST . 9
3.5.3. PUT . 10
3.5.4. DELETE . 10

3.6. HTTP/CoAP Status/Response Codes 10
4. Security Considerations 11
5. Acknowledgement . 11
6. References . 11
6.1. Normative References 11
6.2. Informative References 12

Appendix A. Future Work . 13
 Authors' Addresses . 13

1. Introduction

 The Representational State Transfer (REST) architectural style [REST]
 is a set of guidelines and best practices for building distributed
 hypermedia systems.

 When REST principles are applied to the design of a system, the
 result is often called RESTful and in particular an API following
 these principles is called a RESTful API.

 Different protocols can be used with RESTful systems, but at the time
 of writing the most common protocols are HTTP [RFC7230] and CoAP
 [RFC7252].

 RESTful design facilitates many desirable features for a system, such
 as good scaling properties. RESTful APIs are also often simple and
 lightweight and hence easy to use also with various IoT applications.
 The goal of this document is to give basic guidance for designing
 RESTful systems and APIs for IoT applications and give pointers for
 more information.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7252

Keranen, et al. Expires September 15, 2016 [Page 2]

Internet-Draft RESTful Design for IoT Systems March 2016

 Design of a good RESTful IoT system has naturally many commonalities
 with other Web systems. Compared to other systems, the key
 characteristics of many IoT systems include:

 o data formats, interaction patterns, and other mechanisms that
 minimize, or preferably avoid, the need for human interaction

 o preference for compact and simple data formats to facilitate
 efficient transfer over (often) constrained networks and
 lightweight processing in constrained nodes

2. Terminology

 This section explains some of the common terminology that is used in
 the context of RESTful design for IoT systems. For terminology of
 constrained nodes and networks, see [RFC7228].

 Application State: The state kept by a client between requests.
 This typically includes the "current" resource, the set of active
 requests, the history of requests, bookmarks (URIs stored for
 later retrieval) and application-specific state.

 Cache: A local store of response messages and the subsystem that
 controls storage, retrieval, and deletion of messages in it.

 Client: A node that sends requests to servers and receives
 responses.

 Content Negotiation: The practice of determining the "best"
 representation for a client when examining the current state of a
 resource. The most common forms of content negotiation are
 Proactive Content Negotiation and Reactive Content Negotiation.

 Form: A hypermedia control that enables a client to change the state
 of a resource.

 Forward Proxy: An intermediary that is selected by a client, usually
 via local configuration rules, and that can be tasked to make
 requests on behalf of the client. This may be useful, for
 example, when the client lacks the capability to make the request
 itself or to service the response from a cache in order to reduce
 response time, network bandwidth and energy consumption.

 Gateway: See "Reverse Proxy".

 Hypermedia Control: A component embedded in a representation that
 describes a future request, such as a link or a form. By

https://datatracker.ietf.org/doc/html/rfc7228

Keranen, et al. Expires September 15, 2016 [Page 3]

Internet-Draft RESTful Design for IoT Systems March 2016

 performing the request, the client can change resource state and/
 or application state.

 Idempotent Method: A method where multiple identical requests with
 that method lead to the same visible resource state as a single
 such request. For example, the PUT method replaces the state of a
 resource with a new state; replacing the state multiple times with
 the same new state still results in the same state for the
 resource. However, the response from the server can be different
 when the same idenpotent method is used multiple times. For
 example when DELETE is used twice on an existing resource, the
 first request would remove the association and return success
 acknowledgement whereas the second request would likely result in
 error response due to non-existing resource.

 Link: A hypermedia control that enables a client to navigate between
 resources and thereby change the application state.

 Media Type: A string such as "text/html" or "application/json" that
 is used to label representations so that it is known how the
 representation should be interpreted and how it is encoded.

 Method: An operation associated with a resource. Common methods
 include GET, PUT, POST, and DELETE (see Section 3.5 for details).

 Origin Server: A server that is the definitive source for
 representations of its resources and the ultimate recipient of any
 request that intends to modify its resources. In contrast,
 intermediaries (such as proxies caching a representation) can
 assume the role of a server, but are not the source for
 representations as these are acquired from the origin server.

 Proactive Content Negotiation: A content negotiation mechanism where
 the server selects a representation based on the expressed
 preference of the client. For example, in an IoT application, a
 client could send a request with preferred media type
 "application/senml+json".

 Reactive Content Negotiation: A content negotiation mechanism where
 the client selects a representation from a list of available
 representations. The list may, for example, be included by a
 server in an initial response. If the user agent is not satisfied
 by the initial response representation, it can request one or more
 of the alternative representations, selected based on metadata
 (e.g., available media types) included in the response.

 Representation Format: A set of rules for encoding information in a
 sequence of bytes. In the Web, the most prevalent representation

Keranen, et al. Expires September 15, 2016 [Page 4]

Internet-Draft RESTful Design for IoT Systems March 2016

 format is HTML. Other common formats include plain text (in UTF-8
 or another encoding) and formats based on JSON [RFC7159] or XML.
 With IoT systems, often compact formats based on JSON, CBOR
 [RFC7049], and EXI [W3C.REC-exi-20110310] are used.

 Representation: A sequence of bytes, plus representation metadata,
 that captures the current or intended state of a resource and that
 can be transferred between clients and servers (possibly via one
 or more intermediaries).

 Representational State Transfer (REST): An architectural style for
 Internet-scale distributed hypermedia systems.

 Resource: An item of interest identified by a URI. Anything that
 can be named can be a resource. A resource often encapsulates a
 piece of state in a system. Typical resources in an IoT system
 can be, e.g., a sensor, the current value of a sensor, the
 location of a device, or the current state of an actuator.

 Resource State: A mapping of a resource to a set of values that may
 change over time.

 Reverse Proxy: An intermediary that appears as a server towards the
 client but satisfies the requests by forwarding them to the actual
 server (possibly via one or more other intermediaries). A reverse
 proxy is often used to encapsulate legacy services, to improve
 server performance through caching, and to enable load balancing
 across multiple machines.

 Safe Method: A method that does not result in any state change on
 the origin server when applied to a resource. For example, the
 GET method only returns a representation of the resource state but
 does not change the resource. Thus, it is always safe for a
 client to retrieve a representation without affecting server-side
 state.

 Server: A node that listens for requests, performs the requested
 operation and sends responses back to the clients.

 Uniform Resource Identifier (URI): A global identifier for
 resources. See Section 3.4 for more details.

3. Basics

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7049

Keranen, et al. Expires September 15, 2016 [Page 5]

Internet-Draft RESTful Design for IoT Systems March 2016

3.1. Architecture

 The components of a RESTful system are assigned one of two roles:
 client or server. User agents are always in the client role and have
 the initiative to issue requests. Intermediaries (such as forward
 proxies and reverse proxies) implement both roles, but only forward
 requests to other intermediaries or origin servers. They can also
 translate requests to different protocols, for instance, as CoAP-HTTP
 cross-proxies.

 Note that the terms "client" and "server" refer only to the roles
 that the nodes assume for a particular message exchange. The same
 node might act as a client in some communications and a server in
 others.

 ________ _________
 | | | |
 | User (C)-------------------(S) Origin |
 | Agent | | Server |
 |________| |_________|
 (Browser) (Web Server)

 Figure 1: Client-Server Communication

 ________ __________ _________
 | | | | | |
 | User (C)---(S) Inter- (C)--------------------(S) Origin |
 | Agent | | mediary | | Server |
 |________| |__________| |_________|
 (Browser) (Forward Proxy) (Web Server)

 Figure 2: Communication with Forward Proxy

 Reverse proxies are usually imposed by the origin server. In
 addition to the features of a forward proxy, they can also provide an
 interface for non-RESTful services such as legacy systems or
 alternative technologies such as Bluetooth ATT/GATT. This property
 is enforced by the layered system constraint of REST, which says that
 a client cannot see beyond the server it is connected to.

 ________ __________ _________
 | | | | | |
 | User (C)--------------------(S) Inter- (x)---(x) Origin |
 | Agent | | mediary | | Server |
 |________| |__________| |_________|
 (Browser) (Reverse Proxy) (Legacy System)

 Figure 3: Communication with Reverse Proxy

Keranen, et al. Expires September 15, 2016 [Page 6]

Internet-Draft RESTful Design for IoT Systems March 2016

 Nodes in IoT systems often implement both roles. Unlike
 intermediaries, however, they can take the initiative as a client
 (e.g., to register with a directory, such as CoRE Resource Directory
 [I-D.ietf-core-resource-directory], or to interact with another
 thing) and act as origin server at the same time (e.g., to serve
 sensor values or provide an actuator interface).

 ________ _________
 | | | |
 | Thing (C)-------------------------------------(S) Origin |
 | (S) | Server |
 |________| \ |_________|
 (Sensor) \ ________ (Resource Directory)
 \ | |
 (C) Thing |
 |________|
 (Controller)

 Figure 4: Constrained RESTful environments

3.2. System design

 When designing a RESTful system, the state of the distributed
 application must be assigned to the different components. Here, it
 is important to distinguish between "session state" and "resource
 state".

 Session state encompasses the control flow and the interactions
 between the components (see Section 2). Following the statelessness
 constraint, the session state must be kept only on clients. On the
 one hand, this makes requests a bit more verbose since every request
 must contain all the information necessary to process it. On the
 other hand, this makes servers efficient, since they do not have to
 keep any state about their clients. Requests can easily be
 distributed over multiple worker threads or server instances. For
 the IoT systems, it lowers the memory requirements for server
 implementations, which is particularly important for constrained
 servers and servers serving large amount of clients.

 Resource state includes the more persistent data of an application
 (i.e., independent of the application control flow). This can be
 static data such as device descriptions, persistent data such as
 system configuration, but also dynamic data such as the current value
 of a sensor on a thing.

Keranen, et al. Expires September 15, 2016 [Page 7]

Internet-Draft RESTful Design for IoT Systems March 2016

3.3. Resource modeling

 Important part of RESTful API design is to model the system as a set
 of resources whose state can be retrieved and/or modified and where
 resources can be potentially also created and/or deleted.

 Resource representations have a media type that tells how the
 representation should be interpreted. Typical media types for IoT
 systems include "text/plain" for simple UTF-8 text, "application/
 octet-stream" for arbitrary binary data, "application/json" for JSON
 [RFC7159], "application/senml+json" [I-D.jennings-core-senml] for
 Sensor Markup Language (SenML) formatted data, "application/cbor" for
 CBOR [RFC7049], "application/exi" for EXI [W3C.REC-exi-20110310].
 Full list of registered internet media types is available at the IANA
 registry [IANA-media-types] and media types registered for use with
 CoAP are listed at CoAP Content-Formats IANA registry
 [IANA-CoAP-media].

3.4. Uniform Resource Identifiers (URIs)

 Uniform Resource Identifiers (URIs) are used to indicate a resource
 for interaction, to reference a resource from another resource, to
 advertise or bookmark a resource, or to index a resource by search
 engines.

 foo://example.com:8042/over/there?name=ferret#nose
 _/ ______________/_________/ _________/ __/
 | | | | |
 scheme authority path query fragment

 A URI is a sequence of characters that matches the syntax defined in
 [RFC3986]. It consists of a hierarchical sequence of five
 components: scheme, authority, path, query, and fragment (from most
 significant to least significant). A scheme creates a namespace for
 resources and defines how the following components identify a
 resource within that namespace. The authority identifies an entity
 that governs part of the namespace, such as the server
 "www.example.org" in the "http" scheme. A host name (e.g., a fully
 qualified domain name) or an IP address, potentially followed by a
 transport layer port number, are usually used in the authority
 component for the "http" and "coap" schemes. The path and query
 contain data to identify a resource within the scope of the URI's
 scheme and naming authority. The path is hierarchical; the query is
 non-hierarchical. The fragment allows to refer to some portion of
 the resource, such as a section in an HTML document.

 For RESTful IoT applications, typical schemes include "https",
 "coaps", "http", and "coap". These refer to HTTP and CoAP, with and

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc3986

Keranen, et al. Expires September 15, 2016 [Page 8]

Internet-Draft RESTful Design for IoT Systems March 2016

 without Transport Layer Security (TLS) [RFC5246]. (CoAP uses
 Datagram TLS (DTLS) [RFC6347], the variant of TLS for UDP.) These
 four schemes also provide means for locating the resource; using the
 HTTP protocol for "http" and "https", and with the CoAP protocol for
 "coap" and "coaps". If the scheme is different for two URIs (e.g.,
 "coap" vs. "coaps"), it is important to note that even if the rest of
 the URI is identical, these are two different resources, in two
 distinct namespaces.

 The query parameters can be used to parametrize the resource. For
 example, a GET request may use query parameters to request the server
 to send only certain kind data of the resource (i.e., filtering the
 response). Query parameters in PUT and POST requests do not have
 such established semantics and are not commonly used.

3.5. HTTP/CoAP Methods

Section 4.3 of [RFC7231] defines the set of methods in HTTP;
Section 5.8 of [RFC7252] defines the set of methods in CoAP. The

 following lists the most relevant methods and gives a short
 explanation of their semantics.

3.5.1. GET

 The GET method requests a current representation for the target
 resource. Only the origin server needs to know how each of its
 resource identifiers corresponds to an implementation and how each
 implementation manages to select and send a current representation of
 the target resource in a response to GET.

 A payload within a GET request message has no defined semantics.

 The GET method is safe and idempotent.

3.5.2. POST

 The POST method requests that the target resource process the
 representation enclosed in the request according to the resource's
 own specific semantics.

 If one or more resources has been created on the origin server as a
 result of successfully processing a POST request, the origin server
 sends a 201 (Created) response containing a Location header field
 that provides an identifier for the resource created and a
 representation that describes the status of the request while
 referring to the new resource(s).

 The POST method is not safe nor idempotent.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc7231#section-4.3
https://datatracker.ietf.org/doc/html/rfc7252#section-5.8

Keranen, et al. Expires September 15, 2016 [Page 9]

Internet-Draft RESTful Design for IoT Systems March 2016

3.5.3. PUT

 The PUT method requests that the state of the target resource be
 created or replaced with the state defined by the representation
 enclosed in the request message payload. A successful PUT of a given
 representation would suggest that a subsequent GET on that same
 target resource will result in an equivalent representation being
 sent.

 The fundamental difference between the POST and PUT methods is
 highlighted by the different intent for the enclosed representation.
 The target resource in a POST request is intended to handle the
 enclosed representation according to the resource's own semantics,
 whereas the enclosed representation in a PUT request is defined as
 replacing the state of the target resource. Hence, the intent of PUT
 is idempotent and visible to intermediaries, even though the exact
 effect is only known by the origin server.

 The PUT method is not safe, but is idempotent.

3.5.4. DELETE

 The DELETE method requests that the origin server remove the
 association between the target resource and its current
 functionality.

 If the target resource has one or more current representations, they
 might or might not be destroyed by the origin server, and the
 associated storage might or might not be reclaimed, depending
 entirely on the nature of the resource and its implementation by the
 origin server.

 The DELETE method is not safe, but is idempotent.

3.6. HTTP/CoAP Status/Response Codes

Section 6 of [RFC7231] defines a set of Status Codes in HTTP that are
 used by application to indicate whether a request was understood and
 satisfied, and how to interpret the answer. Similarly, Section 5.9
 of [RFC7252] defines the set of Response Codes in CoAP.

 The status codes consist of three digits (e.g., "404" with HTTP or
 "4.04" with CoAP) where the first digit expresses the class of the
 code. Implementations do not need to understand all status codes,
 but the class of the code must be understood. Codes starting with 1
 are informational; the request was received and being processed.
 Codes starting with 2 indicate successful request. Codes starting
 with 3 indicate redirection; further action is needed to complete the

https://datatracker.ietf.org/doc/html/rfc7231#section-6
https://datatracker.ietf.org/doc/html/rfc7252#section-5.9
https://datatracker.ietf.org/doc/html/rfc7252#section-5.9

Keranen, et al. Expires September 15, 2016 [Page 10]

Internet-Draft RESTful Design for IoT Systems March 2016

 request. Codes stating with 4 and 5 indicate errors. The codes
 starting with 4 mean client error (e.g., bad syntax in request)
 whereas codes starting with 5 mean server error; there was no
 apparent problem with the request but server was not able to fulfill
 the request.

 Responses may be stored in a cache to satisfy future, equivalent
 requests. HTTP and CoAP use two different patterns to decide what
 responses are cacheable. In HTTP, the cacheability of a response
 depends on the request method (e.g., responses returned in reply to a
 GET request are cacheable). In CoAP, the cacheability of a response
 depends on the response code (e.g., responses with code 2.04 are
 cacheable). This difference also leads to slightly different
 semantics for the codes starting with 2; for example, CoAP does not
 have a 2.00 response code whereas 200 ("OK") is commonly used with
 HTTP.

4. Security Considerations

 This document does not define new functionality and therefore does
 not introduce new security concerns. However, security consideration
 from related specifications apply to RESTful IoT design. These
 include:

 o HTTP security: Section 9 of [RFC7230], Section 9 of [RFC7231],
 etc.

 o CoAP security: Section 11 of [RFC7252]

 o URI security: Section 7 of [RFC3986]

5. Acknowledgement

 The authors would like to thank Mert Ocak, Heidi-Maria Back, Tero
 Kauppinen, and Michael Koster for the reviews and feedback.

6. References

6.1. Normative References

 [I-D.ietf-core-resource-directory]
 Shelby, Z., Koster, M., Bormann, C., and P. Stok, "CoRE
 Resource Directory", draft-ietf-core-resource-directory-05
 (work in progress), October 2015.

 [REST] Fielding, R., "Architectural Styles and the Design of
 Network-based Software Architectures", Ph.D. Dissertation,
 University of California, Irvine , 2000.

https://datatracker.ietf.org/doc/html/rfc7230#section-9
https://datatracker.ietf.org/doc/html/rfc7231#section-9
https://datatracker.ietf.org/doc/html/rfc7252#section-11
https://datatracker.ietf.org/doc/html/rfc3986#section-7
https://datatracker.ietf.org/doc/html/draft-ietf-core-resource-directory-05

Keranen, et al. Expires September 15, 2016 [Page 11]

Internet-Draft RESTful Design for IoT Systems March 2016

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/

RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <http://www.rfc-editor.org/info/rfc7049>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing", RFC

7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231, DOI
 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

 [W3C.REC-exi-20110310]
 Schneider, J. and T. Kamiya, "Efficient XML Interchange
 (EXI) Format 1.0", World Wide Web Consortium
 Recommendation REC-exi-20110310, March 2011,
 <http://www.w3.org/TR/2011/REC-exi-20110310>.

6.2. Informative References

 [I-D.jennings-core-senml]
 Jennings, C., Shelby, Z., Arkko, J., and A. Keranen,
 "Media Types for Sensor Markup Language (SENML)", draft-

jennings-core-senml-04 (work in progress), January 2016.

 [IANA-CoAP-media]
 "CoAP Content-Formats", n.d.,
 <http://www.iana.org/assignments/core-parameters/

core-parameters.xhtml#content-formats>.

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
http://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347
http://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc7049
http://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
http://www.rfc-editor.org/info/rfc7231
http://www.w3.org/TR/2011/REC-exi-20110310
https://datatracker.ietf.org/doc/html/draft-jennings-core-senml-04
https://datatracker.ietf.org/doc/html/draft-jennings-core-senml-04
http://www.iana.org/assignments/core-parameters/core-parameters.xhtml#content-formats
http://www.iana.org/assignments/core-parameters/core-parameters.xhtml#content-formats

Keranen, et al. Expires September 15, 2016 [Page 12]

Internet-Draft RESTful Design for IoT Systems March 2016

 [IANA-media-types]
 "Media Types", n.d., <http://www.iana.org/assignments/

media-types/media-types.xhtml>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228, DOI 10.17487/

RFC7228, May 2014,
 <http://www.rfc-editor.org/info/rfc7228>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

Appendix A. Future Work

 o More details on the definition of application state. Is server
 involved and to what extent.

 o Discuss design patterns, such as "Observing state (asynchronous
 updates) of a resource", "Executing a Function", "Events as
 State", "Conversion", "Collections", "robust communication in
 network with high packet loss", "unreliable (best effort)
 communication", "3-way commit", etc.

 o Discuss directories, such as CoAP Resource Directory

 o More information on how to design resources; choosing what is
 modeled as a resource, etc.

Authors' Addresses

 Ari Keranen
 Ericsson
 Jorvas 02420
 Finland

 Email: ari.keranen@ericsson.com

http://www.iana.org/assignments/media-types/media-types.xhtml
http://www.iana.org/assignments/media-types/media-types.xhtml
https://datatracker.ietf.org/doc/html/rfc7159
http://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc7228
http://www.rfc-editor.org/info/rfc7228
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
http://www.rfc-editor.org/info/rfc7252

Keranen, et al. Expires September 15, 2016 [Page 13]

Internet-Draft RESTful Design for IoT Systems March 2016

 Matthias Kovatsch
 ETH Zurich
 Universitaetstrasse 6
 Zurich CH-8092
 Switzerland

 Email: kovatsch@inf.ethz.ch

 Klaus Hartke
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Email: hartke@tzi.org

Keranen, et al. Expires September 15, 2016 [Page 14]

