
Network Working Group S. Khan
Internet-Draft Author
Document: Network Appliance, Inc.
draft-khan-nfsv4-directory-delegation-00.txt February 2004

NFSv4.1: Directory Delegations and Notifications

Status of this Memo

 This document is an Internet-Draft and is subject to all provisions
 of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-
 Drafts as reference material or to cite them other than as
 "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

ABSTRACT

 This document proposes adding directory delegations and notifications
 to NFS Version 4 [RFC3530]. It is hoped that these changes will be
 part of a new minor version of NFS, such as NFSv4.1.

TABLE OF CONTENTS

1. Introduction . 2
 2. Proposed protocol extensions. 3

3. Design . 3
 4. New Operation 40: GET_DIR_DELEGATION - Get a directory
 delegation . 4

5. New Recommended Attributes 7
 6. New Callback Operation: CB_NOTIFY - Notify directory changes . 8

7. Delegation Recall . 11
 8. New Callback Operation: CB_RECALL_ANY - Keep any N
 delegations . 11

Expires: August 2004 [Page 1]

https://datatracker.ietf.org/doc/html/draft-khan-nfsv4-directory-delegation-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc3530

INTERNET-DRAFT NFSv4.1: Directory Delegations" February 2004

9. Delegation Recovery . 12
10. Issues . 12
10.1. Synchronous vs. Asynchronous notifications 12
11. RPC Definition File Changes 13
12. IANA Considerations . 22
13. Acknowledgements . 22
14. Normative References 22
15. Informative References 23
16. Author's Address . 23
17. IPR Notices . 23
18. Copyright Notice . 23

1. Introduction

 This document assumes understanding of the NFSv4.0 specification. It
 also assumes that the changes proposed by [talpey] will be present in
 the same minor version and that the protocol would need some
 adjustment in the event that the session changes are not present.

 The major addition to NFS version 4 in the area of caching is the
 ability of the server to delegate certain responsibilities to the
 client. When the server grants a delegation for a file to a client,
 the client receives certain semantic guarentees with respect to the
 sharing of that file with other clients. At OPEN, the server may
 provide the client either a read or write delegation for the file. If
 the client is granted a read delegation, it is assured that no other
 client has the ability to write to the file for the duration of the
 delegation. If the client is granted a write delegation, the client
 is assured that no other client has read or write access to the file.
 This reduces network traffic by allowing the client to perform
 various operations locally on file data.

 Directory caching for the NFS version 4 protocol is similar to
 previous versions. Clients typically cache directory information for
 a duration determined by the client. At the end of a predefined
 timeout, the client will query the server to see if the directory has
 been updated. By caching attributes, clients reduce the number of
 GETATTR calls made to the server to validate attributes. Furthermore,
 frequently accessed files and directories, such as the current
 working directory, have their attributes cached on the client so that
 some NFS operations can be performed without having to make an RPC
 call. By caching name and inode information about most recently
 looked up entries in DNLC (Directory Name Lookup Cache), clients do
 not need to send LOOKUP calls to the server every time these files
 are accessed.

 Delegation of directory contents is proposed as an extension for
 NFSv4. Such an extension would provide similar traffic reduction

 benefits as with file delegations. By allowing clients to cache

Expires: August 2004 [Page 2]

INTERNET-DRAFT NFSv4.1: Directory Delegations" February 2004

 directory contents (in a read-only fashion) while being notified of
 changes, the client can avoid making frequent requests to interrogate
 the contents of slowly-changing directories, reducing network traffic
 and improving client performance.

2. Proposed protocol extensions.

 This document includes the definition of protocol extensions to
 implement directory delegations. It is believed that these extension
 fit within the minor-versioning framework presented in RFC3530,
 although careful review on this point needs to be undertaken. As
 stated above, these extensions are designed supposing that the
 session extensions [talpey] will be present in the same minor
 version, as currently seems likely. Some modifications will be
 necessary, if that turns out not to be the case.

 Mainly in the interests of clarity of presentation, elements within
 these extensions are assigned numeric identifiers such as operation
 numbers and attribute identitifies. It should be understood that
 when these extensions are included in a minor version of NFSv4, the
 actual numeric identifiers assigned may be different from the ones
 chosen here.

3. Design

 A client gets a directory delegation by use of a new operation
 (GET_DIR_DELEGATION) and also informs the server if it wants to be
 notified of any changes that are made to the directory. If the server
 is unable to notify the client of some set of changes, it should
 inform the client of its inability to do so. The server will send
 notifications for all change events it has agreed to. Because true
 synchronous notification poses significant server implementation
 difficulties, the document describes just an asynchronous approach.
 The clients are notified of changes to the directory only after the
 change has been processed by the server. See the section "Synchronous
 vs. Asynchronous notifications" for a discussion on different types
 of notifications and the reason for choosing asynchronous
 notifications. The delegation is read only and the client may not
 make changes to the directory other than by performing NFSv4
 operations that modify the directory or the associated file
 attributes so that the server has knowledge of these changes. If a
 client holding the delegation makes any changes to the directory, it
 will not be notified and the delegation will not be recalled. The
 client making changes is presumed not to need notifications of
 changes that it itself is making.

 Delegations can be recalled by the server. The server is free to
 recall the delegation at any time. Normally, the server will recall

https://datatracker.ietf.org/doc/html/rfc3530

 the delegation when the directory changes in a way that is not

Expires: August 2004 [Page 3]

INTERNET-DRAFT NFSv4.1: Directory Delegations" February 2004

 covered by the notification, or when there is a directory change and
 notifications have not been requested.

 Also if the server notices that handing out a delegation for a
 directory is causing too many notifications to be sent out, it may
 decide not to hand out a delegation for that directory or recall
 existing delegations. If another client removes the directory for
 which a delegation has been granted, the server will recall the
 delegation.

 Both the notification and recall operations need a callback path to
 exist between the client and server. If the callback path does not
 exist, then delegations should not be granted. Note that with the
 session extensions [talpey] that should not be an issue.

4. New Operation 40: GET_DIR_DELEGATION - Get a directory delegation

 SYNOPSIS
 (cfh), notification, claim -> (cfh), cookieverf, stateid,
 notification

 ARGUMENT
 struct GET_DIR_DELEGATION4args {
 dir_notification_type4 notification_type;
 fattr4 file_attributes;
 attr_notice file_attr_notice;
 fattr4 dir_attributes;
 attr_notice dir_attr_notice;
 };

 /*
 * Notification types.
 */
 const DIR_NOTIFICATION_NONE = 0x00000000;
 const DIR_NOTIFICATION_CHANGE_FILE_ATTRIBUTES = 0x00000001;
 const DIR_NOTIFICATION_CHANGE_DIR_ATTRIBUTES = 0x00000002;
 const DIR_NOTIFICATION_REMOVE_ENTRY = 0x00000004;
 const DIR_NOTIFICATION_ADD_ENTRY = 0x00000008;
 const DIR_NOTIFICATION_RENAME_ENTRY = 0x00000010;
 const DIR_NOTIFICATION_CHANGE_COOKIE_VERIFIER = 0x00000020;

 typedef uint32_t dir_notification_type4;

 RESULT
 struct GET_DIR_DELEGATION4resok {
 verifier4 cookieverf;
 /* Stateid for get_dir_delegation */
 stateid4 stateid;

Expires: August 2004 [Page 4]

INTERNET-DRAFT NFSv4.1: Directory Delegations" February 2004

 /* Which notifications can the server support */
 dir_notification_type4 supp_notification;
 fattr4 file_attributes;
 fattr4 dir_attributes;
 };

 struct attr_notice {
 bitmap4 attr_notice_req;
 uint32_t attr_notice_delays<>;
 };

 union GET_DIR_DELEGATION4res switch (nfsstat4 status) {
 case NFS4_OK:
 /* CURRENT_FH: delegated dir */
 GET_DIR_DELEGATION4resok resok4;
 default:
 void;
 };

 DESCRIPTION:
 The GET_DIR_DELEGATION operation is used by the client to
 request a directory delegation. The directory is represented by
 the current filehandle. The client also specifies whether it
 wants the server to notify it when the directory changes in
 certain ways by setting bits in a bitmap. The server may choose
 not to grant the delegation. In that case the server will return
 NFS4ERR_DIRDELEG_UNAVAIL. If the server decides to hand out the
 delegation, it will return a cookie verifier for that directory.
 If the cookie verifier changes when the client is holding the
 delegation, it will be notified about the change, provided the
 client has asked for the notification. Otherwise, the delegation
 will be recalled.

 The server will also return a directory delegation stateid in
 addition to the cookie verifier as a result of the
 GET_DIR_DELEGATION operation. This stateid will appear in
 callback messages related to the delegation, such as
 notifications and delegation recalls. The client will use this
 stateid to return the delegation voluntarily or upon recall.
 Delegation is returned by calling the DELEGRETURN operation.

 The server may not be able to support notifications of certain
 events. If the client asks for such notifications, the server
 must inform the client of its inability to do so as part of the
 GET_DIR_DELEGATION reply.

 The GET_DIR_DELEGATION operation can be used for both normal and

Expires: August 2004 [Page 5]

INTERNET-DRAFT NFSv4.1: Directory Delegations" February 2004

 named attribute directories.

 IMPLEMENTATION:
 Notifications are specified in terms of potential changes to the
 directory. A client can ask to be notified whenever an entry is
 added to a directory by setting notification_type to
 DIR_NOTIFICATION_ADD_ENTRY. It can also ask for notifications on
 entry removal, renames, attribute and cookie verifier changes by
 setting notification_type flag appropriately . A client can also
 ask to be notified of all events that would invalidate its
 attribute cache. In that case it will set the notification_type
 to D IR_NOTIFICATION_CHANGE_FILE_ATTRIBUTES and
 DIR_NOTIFICATION_CHANGE_DIR_ATTRIBUTES. The server will then
 noti fy it of any file or directory attribute changes. If a
 client is interested in directory entry caching, or negative
 name caching, it can set the notification_type appropriately and
 the server will notify it of all changes that would otherwise
 invalidate its name cache.

 The client will set one or more bits in a bitmap to let the
 server know what kind of notification(s) it is interested in
 getting. For attribute caching the client registers interest in
 getting notifications for certain attributes by setting file and
 directory attributes in two separate attribute bitmaps. One of
 the bitmaps covers directory attributes changes and the other
 covers changes to any files in the directory. The server can
 choose to support notifications on only a subset of attributes.
 The client will also specify the frequency of notifications for
 each attribute change by setting the file_attr_notice and
 dir_attr_notice arguments. The server will deny the request if
 it does not support notifications on that attribute or the
 requested frequency. If the client wants notifications for all
 changes, it will set the time delay to zero indicating it wants
 to be notified as soon as the change occurs. For other types of
 notifications, the client does not need to provide the server
 with this additional information. So in these cases the
 attribute masks for file and directory will not be set.

 The server will set a bitmap to inform the client of which
 notifications it will receive. If it agrees to send attribute
 notifications, it will also set two attribute masks indicating
 which attribute change notifications it supports. One of the
 masks covers changes in directory attributes and the other
 covers changes to any files in the directory.

 ERRORS
 NFS4ERR_ACCESS
 NFS4ERR_BADHANDLE

 NFS4ERR_BADCHAR

Expires: August 2004 [Page 6]

INTERNET-DRAFT NFSv4.1: Directory Delegations" February 2004

 NFS4ERR_BADNAME
 NFS4ERR_BADXDR
 NFS4ERR_FHEXPIRED
 NFS4ERR_INVAL
 NFS4ERR_MOVED
 NFS4ERR_NAMETOOLONG
 NFS4ERR_NOENT
 NFS4ERR_NOFILEHANDLE
 NFS4ERR_NOTDIR
 NFS4ERR_RESOURCE
 NFS4ERR_SERVERFAULT
 NFS4ERR_STALE
 NFS4ERR_DIRDELEG_UNAVAIL
 NFS4ERR_DIRDELEG_DENIED

5. New Recommended Attributes

 #56 - supp_dir_attr_notice - Range of notification delays on
 directory attributes
 #57 - supp_file_attr_notice - Range of notification delays on file
 attributes

 DESCRIPTION:
 These attributes allow the client and server to negotiate the
 frequency of notifications sent due to changes in attributes.
 The server returns these attributes for every attribute that it
 supports. Each has a range of supported notification delay for
 every attribute. If the server does not support notifications on
 a certain attribute, it must indicate that by not setting these
 attributes.

 These attributes are per filesystem attributes. The client need
 only get the values when it encounters a new fsid during
 navigation of the server's namespace.

 The client gets this information when it does a GETATTR on a
 directory. The server will return supp_dir_attr_notice on every
 directory attribute giving a range of notification frequencies.
 It is possible that the server does not support or supports
 different ranges for file attributes. The server will set
 supp_file_attr_notice to indicate the range of notification
 frequencies for file attribute changes. This attribute covers
 all files in the directory. e.g. A server can choose to support
 notifications for mtime updates between 0 to 5 seconds. If the
 client specifies a time delay of 3 seconds, the server will
 guarentee that mtime updates are not out of sync by more than 3
 seconds. For file changes, the server will provide the same

 guarentee for any mtime change on any file in the directory.

Expires: August 2004 [Page 7]

INTERNET-DRAFT NFSv4.1: Directory Delegations" February 2004

 When the client calls the GET_DIR_DELEGATION operation and asks
 for attribute change notifications, it will request a
 notification time that is within the supported server range. If
 the client violates what supp_attr_file_notice or
 supp_attr_dir_notice values are, GET_DIR_DELEGATION fails with
 NFS4ERR_DIRDELEG_DENIED.

6. New Callback Operation: CB_NOTIFY - Notify directory changes

 SYNOPSIS
 stateid, notification -> {}

 ARGUMENT
 struct CB_NOTIFY4args {
 stateid4 stateid;
 dir_notification4 changes<>;
 };

 /*
 * Notification information sent to the client.
 */
 union dir_notification4
 switch (dir_notification_type4 notification_type) {
 case DIR_NOTIFICATION_CHANGE_FILE_ATTRIBUTE:
 dir_notification_attribute4 change_file_attributes;
 case DIR_NOTIFICATION_CHANGE_DIR_ATTRIBUTE:
 fattr4 change_dir_attributes;
 case DIR_NOTIFICATION_REMOVE_ENTRY:
 dir_notification_remove4 remove_notification;
 case DIR_NOTIFICATION_ADD_ENTRY:
 dir_notification_add4 add_notification;
 case DIR_NOTIFICATION_RENAME_ENTRY:
 dir_notification_rename4 rename_notification;
 case DIR_NOTIFICATION_CHANGE_COOKIE_VERIFIER:
 dir_notification_verifier4 verf_notification;
 };

 struct dir_notification_attribute4 {
 dir_entry changed_entry;
 fattr4 change_dir_attributes;
 };

 struct dir_notification_remove4 {
 dir_entry old_entry;
 nfs_cookie4 old_entry_cookie;
 };

 struct dir_notification_rename4 {

Expires: August 2004 [Page 8]

INTERNET-DRAFT NFSv4.1: Directory Delegations" February 2004

 dir_entry old_entry;
 dir_notification_add4 new_entry;
 };

 struct dir_notification_verifier4 {
 verifier4 old_cookieverf;
 verifier4 new_cookieverf;
 };

 struct dir_notification_add4 {
 dir_entry new_entry;
 /* what READDIR would have returned for this entry */
 nfs_cookie4 new_entry_cookie;
 bool last_entry;
 prev_entry4 prev_entry_info;
 };

 union prev_entry4 switch (bool isprev) {
 case TRUE: /* A previous entry exists */
 prev_entry4 prev_entry_info;
 case FALSE: /* we are adding to an empty
 directory */
 void;
 };

 /*
 * Previous entry information
 */
 struct prev_entry4 {
 dir_entry prev_entry;
 /* what READDIR returned for this entry */
 nfs_cookie4 prev_entry_cookie;
 }
 /*
 * Changed entry information.
 */
 struct dir_entry {
 component4 file;
 fattr4 attrs;
 };

 RESULT
 struct CB_NOTIFY4res {
 nfsstat4 status;
 };

 DESCRIPTION:
 The CB_NOTIFY operation is used by the server to send

 notifications to clients about changes in a delegated directory.

Expires: August 2004 [Page 9]

INTERNET-DRAFT NFSv4.1: Directory Delegations" February 2004

 These notifications are sent over the callback path. The
 notification is sent once the original request has been
 processed on the server. The server will send an array of
 notifications for all changes that might have occured in the
 directory. It will send the following information for each
 operation:

 o ADDING A FILE: The server sends information about the new
 entry being created along with the cookie for that entry. The
 entry information contains the nfs name of the entry and
 attributes. If this entry is added to the end of the
 directory, the server will set a last_entry flag to true. If
 the file is added such that there is atleast one entry before
 it, the server will also return the previous entry
 information along with its cookie. This is to help clients
 find the right location in their DNLC or directory caches
 where this entry should be cached.

 o REMOVING A FILE: The server sends information about the
 directory entry being deleted. The server also sends the
 cookie value for the deleted entry so that clients can get to
 the cached information for this entry.

 o RENAMING A FILE: The server sends information about both the
 old entry and the new entry. This includes name and
 attributes for each entry. This notification is only sent if
 both entries are in the same directory. If the rename is
 across directories, the server will send a remove
 notification to one directory and an add notification to the
 other directory, assuming both have a directory delegation.

 o FILE/DIR ATTRIBUTE CHANGE: The client uses the attribute
 mask to inform the server of attributes for which it wants to
 receive notifications. This change notification can be
 requested for both changes to the attributes of the directory
 as well as changes to any files in the directory by using two
 separate attribute masks. The client can not ask for change
 attribute notification per file. One attribute mask covers
 all the files in the directory. Upon any attribute change,
 the server will send back the values of changed attributes.
 If the client asks for change attributes on files, the server
 will send back the change notification for both files and
 directory. Notifications might not make sense for some
 filesystem wide attributes and it is up to the server to
 decide which subset it wants to support. The client can

 negotiate the frequency of attribute notifications by letting

Expires: August 2004 [Page 10]

INTERNET-DRAFT NFSv4.1: Directory Delegations" February 2004

 the server know how often it wants to be notified of an
 attribute change. The server will return a range of supported
 notification frequencies or an indication that no
 notification is permitted for every attribute by setting the
 supp_attr_file_notice and supp_attr_dir_notice attributes.

 o COOKIE VERIFIER CHANGE: If the cookie verifier changes while
 a client is holding a delegation, the server will notify the
 client so that it can invalidate its cookies and reissue a
 READDIR to get the new set of cookies.

 ERRORS
 NFS4ERR_BAD_STATEID
 NFS4ERR_INVAL
 NFS4ERR_BADXDR

7. Delegation Recall

 The server will recall the directory delegation by sending a callback
 to the client. It will use the same callback procedure as used for
 recalling file delegations. The server will recall the delegation
 when the directory changes in a way that is not covered by the
 notification. Also if the server notices that handing out a
 delegation for a directory is causing too many notifications to be
 sent out, it may decide not to hand out a delegation for that
 directory. If another client tries to remove the directory for which
 a delegation has been granted, the server may recall the delegation.

 The server will recall the delegation by sending a CB_RECALL callback
 to the client and if the delegation is being recalled due to a change
 being made to the directory that is not covered by the notification,
 the request making that change may need to wait while the client
 returns the delegation.

8. New Callback Operation: CB_RECALL_ANY - Keep any N delegations

 SYNOPSIS
 N -> {}

 ARGUMENT
 struct CB_RECALLANYY4args {
 uint4 dlgs_to_keep;
 }

 RESULT
 struct CB_RECALLANY4res {
 nfsstat4 status;

Expires: August 2004 [Page 11]

INTERNET-DRAFT NFSv4.1: Directory Delegations" February 2004

 };

 DESCRIPTION:
 The server may decide that it can not hold all the delegation
 state without running out of resources. Since the server has no
 knowledge of which delegations are being used more than others,
 it can not implement an effective reclaim scheme that avoids
 reclaiming frequently used delegations. In that case the server
 may issue a CB_RECALL_ANY callback to the client asking it to
 keep N delegations and return the rest. The reason why
 CB_RECALL_ANY specifies a count of delegations the client may
 keep as opposed to a count of delegations the client must yield
 is as follows. Were it otherwise, there is a potential for a
 race between a CB_RECALL_ANY that had a count of delegations to
 free with a set of client originated operations to return
 delegations. As a result of the race the client and server would
 have differing ideas as to how many delegations to return. Hence
 the client could mistakenly free too many delegations.

 The client can choose to return any type of delegation as a
 result of this callback i.e. read, write or directory
 delegation. The client can also choose to keep more delegations
 than what the server asked for and it is up to the server to
 handle this situation. The server must give the client enough
 time to return the delegations. This time should not be less
 than the lease period.

 ERRORS
 NFS4ERR_RESOURCE

9. Delegation Recovery

 Since the mode of notifications proposed in this draft is
 asynchronous in nature, and since the primary use of directory
 delegations is anticipated to be in the conjection with
 notifications, adding reclaim functionality will add unnecessary
 implementation complexity. Thus, the client is required to establish
 a new delegation on a server or client reboot.

10. Issues

10.1. Synchronous vs. Asynchronous notifications

 An async notification would be sent to a client holding the
 delegation after a directory changing event has taken place. It is
 possible that the client holding the delegation tries to act on the
 change before it has been notified by the server and fails. It would
 certainly be better if the notification was synchronous so that when

Expires: August 2004 [Page 12]

INTERNET-DRAFT NFSv4.1: Directory Delegations" February 2004

 the client tried to access, e.g. a newly created file, it was
 guaranteed to be there.

 For one form of synchronous notification, the server would suspend
 the request and send a notification to the client notifying it of the
 change about to occur. However this is not a true synchronous
 notification, since after the server has sent out the notification,
 it might discover that due to some error the request cannot be
 completed. If this is for a regular file create, the client might add
 this information to its directory cache and return bogus positive
 information as a result of a readdir call. This puts the client in a
 worse situation than with async notifications where the change is
 guaranteed to be available but a delay may be involved.

 For another form of synchronous notification, the server would notify
 a client holding the delegation about a change about to occur in a
 directory, only after the server has determined that this request is
 definitely going to succeed. At that time, the server would send a
 notification to the client holding the delegation while suspending
 the original request. However note that the server has not yet
 committed the change so at this point in time, only the client
 holding the delegation knows about this change. Once the client
 acknowledges the notification, the server will commit the change
 making it visible to all other clients. It is doubtful many operating
 environments would allow a server to provide this form of
 notification.

 Since synchronous notifications do not guarentee true request
 ordering any better than asynchronous notifications except by adding
 substantial implementation complexity, asynchronous notifications are
 proposed as the default method for notifying the client. These
 notifications l be sent after the directory changing operation has
 completed.

11. RPC Definition File Changes

 /*
 * Copyright (C) The Internet Society (2003)
 * All Rights Reserved.
 */

 /*
 * nfs41_prot.x
 */

 %/* $Id: nfs41_prot.x,v 1.1 2004/02/01 05:10:53 saadia Exp $ */

 /* new operation, GET_DIR_DELEGATION */

Expires: August 2004 [Page 13]

INTERNET-DRAFT NFSv4.1: Directory Delegations" February 2004

 /*
 * Notification mask for letting the server know which notifications
 * the client is interested in.
 */
 typedef uint32_t dir_notification_type4;

 /*
 * The bitmask constants used for notification_type field
 */
 const DIR_NOTIFICATION_NONE = 0x00000000;
 const DIR_NOTIFICATION_CHANGE_FILE_ATTRIBUTES = 0x00000001;
 const DIR_NOTIFICATION_CHANGE_DIR_ATTRIBUTES = 0x00000002;
 const DIR_NOTIFICATION_REMOVE_ENTRY = 0x00000004;
 const DIR_NOTIFICATION_ADD_ENTRY = 0x00000008;
 const DIR_NOTIFICATION_RENAME_ENTRY = 0x00000010;
 const DIR_NOTIFICATION_CHANGE_COOKIE_VERIFIER = 0x00000020;

 /*
 * Input arguments passed to the GET_DIR_DELEGATION operation.
 */
 struct GET_DIR_DELEGATION4args {
 /* CURRENT_FH: directory */
 dir_notification_type4 notification_type;
 fattr4 file_attributes;
 attr_notice file_attr_notice;
 fattr4 dir_attributes;
 attr_notice dir_attr_notice;
 };

 /*
 * Result flags
 */

 struct GET_DIR_DELEGATION4resok {
 verifier4 cookieverf;
 /* Stateid for get_dir_delegation */
 stateid4 stateid;
 /* Which notifications can the server support */
 dir_notification_type4 supp_notification;
 /* Which attribute notifications can the server support */
 fattr4 file_attributes;
 fattr4 dir_attributes;
 };

 struct attr_notice {
 bitmap4 attr_notice_req;
 uint32_t attr_notice_delays<>;
 };

Expires: August 2004 [Page 14]

INTERNET-DRAFT NFSv4.1: Directory Delegations" February 2004

 union GET_DIR_DELEGATION4res switch (nfsstat4 status) {
 case NFS4_OK:
 /* CURRENT_FH: delegated dir */
 GET_DIR_DELEGATION4resok resok4;
 default:
 void;
 };

 /*
 * Operation arrays
 */

 enum nfs_opnum4 {
 OP_ACCESS = 3,
 OP_CLOSE = 4,
 OP_COMMIT = 5,
 OP_CREATE = 6,
 OP_DELEGPURGE = 7,
 OP_DELEGRETURN = 8,
 OP_GETATTR = 9,
 OP_GETFH = 10,
 OP_LINK = 11,
 OP_LOCK = 12,
 OP_LOCKT = 13,
 OP_LOCKU = 14,
 OP_LOOKUP = 15,
 OP_LOOKUPP = 16,
 OP_NVERIFY = 17,
 OP_OPEN = 18,
 OP_OPENATTR = 19,
 OP_OPEN_CONFIRM = 20,
 OP_OPEN_DOWNGRADE = 21,
 OP_PUTFH = 22,
 OP_PUTPUBFH = 23,
 OP_PUTROOTFH = 24,
 OP_READ = 25,
 OP_READDIR = 26,
 OP_READLINK = 27,
 OP_REMOVE = 28,
 OP_RENAME = 29,
 OP_RENEW = 30,
 OP_RESTOREFH = 31,
 OP_SAVEFH = 32,
 OP_SECINFO = 33,
 OP_SETATTR = 34,
 OP_SETCLIENTID = 35,
 OP_SETCLIENTID_CONFIRM = 36,

 OP_VERIFY = 37,

Expires: August 2004 [Page 15]

INTERNET-DRAFT NFSv4.1: Directory Delegations" February 2004

 OP_WRITE = 38,
 OP_RELEASE_LOCKOWNER = 39,
 OP_OPENDIR = 40,
 OP_ILLEGAL = 10044
 };

 union nfs_argop4 switch (nfs_opnum4 argop) {
 case OP_ACCESS: ACCESS4args opaccess;
 case OP_CLOSE: CLOSE4args opclose;
 case OP_COMMIT: COMMIT4args opcommit;
 case OP_CREATE: CREATE4args opcreate;
 case OP_DELEGPURGE: DELEGPURGE4args opdelegpurge;
 case OP_DELEGRETURN: DELEGRETURN4args opdelegreturn;
 case OP_GETATTR: GETATTR4args opgetattr;
 case OP_GETFH: void;
 case OP_LINK: LINK4args oplink;
 case OP_LOCK: LOCK4args oplock;
 case OP_LOCKT: LOCKT4args oplockt;
 case OP_LOCKU: LOCKU4args oplocku;
 case OP_LOOKUP: LOOKUP4args oplookup;
 case OP_LOOKUPP: void;
 case OP_NVERIFY: NVERIFY4args opnverify;
 case OP_OPEN: OPEN4args opopen;
 case OP_OPENATTR: OPENATTR4args opopenattr;
 case OP_OPEN_CONFIRM: OPEN_CONFIRM4args opopen_confirm;
 case OP_OPEN_DOWNGRADE: OPEN_DOWNGRADE4args opopen_downgrade;
 case OP_PUTFH: PUTFH4args opputfh;
 case OP_PUTPUBFH: void;
 case OP_PUTROOTFH: void;
 case OP_READ: READ4args opread;
 case OP_READDIR: READDIR4args opreaddir;
 case OP_READLINK: void;
 case OP_REMOVE: REMOVE4args opremove;
 case OP_RENAME: RENAME4args oprename;
 case OP_RENEW: RENEW4args oprenew;
 case OP_RESTOREFH: void;
 case OP_SAVEFH: void;
 case OP_SECINFO: SECINFO4args opsecinfo;
 case OP_SETATTR: SETATTR4args opsetattr;
 case OP_SETCLIENTID: SETCLIENTID4args opsetclientid;
 case OP_SETCLIENTID_CONFIRM: SETCLIENTID_CONFIRM4args
 opsetclientid_confirm;
 case OP_VERIFY: VERIFY4args opverify;
 case OP_WRITE: WRITE4args opwrite;
 case OP_RELEASE_LOCKOWNER: RELEASE_LOCKOWNER4args
 oprelease_lockowner;
 case OP_OPENDIR: OPENDIR4args opopendir;
 case OP_ILLEGAL: void;

 };

Expires: August 2004 [Page 16]

INTERNET-DRAFT NFSv4.1: Directory Delegations" February 2004

 union nfs_resop4 switch (nfs_opnum4 resop){
 case OP_ACCESS: ACCESS4res opaccess;
 case OP_CLOSE: CLOSE4res opclose;
 case OP_COMMIT: COMMIT4res opcommit;
 case OP_CREATE: CREATE4res opcreate;
 case OP_DELEGPURGE: DELEGPURGE4res opdelegpurge;
 case OP_DELEGRETURN: DELEGRETURN4res opdelegreturn;
 case OP_GETATTR: GETATTR4res opgetattr;
 case OP_GETFH: GETFH4res opgetfh;
 case OP_LINK: LINK4res oplink;
 case OP_LOCK: LOCK4res oplock;
 case OP_LOCKT: LOCKT4res oplockt;
 case OP_LOCKU: LOCKU4res oplocku;
 case OP_LOOKUP: LOOKUP4res oplookup;
 case OP_LOOKUPP: LOOKUPP4res oplookupp;
 case OP_NVERIFY: NVERIFY4res opnverify;
 case OP_OPEN: OPEN4res opopen;
 case OP_OPENATTR: OPENATTR4res opopenattr;
 case OP_OPEN_CONFIRM: OPEN_CONFIRM4res opopen_confirm;
 case OP_OPEN_DOWNGRADE: OPEN_DOWNGRADE4res opopen_downgrade;
 case OP_PUTFH: PUTFH4res opputfh;
 case OP_PUTPUBFH: PUTPUBFH4res opputpubfh;
 case OP_PUTROOTFH: PUTROOTFH4res opputrootfh;
 case OP_READ: READ4res opread;
 case OP_READDIR: READDIR4res opreaddir;
 case OP_READLINK: READLINK4res opreadlink;
 case OP_REMOVE: REMOVE4res opremove;
 case OP_RENAME: RENAME4res oprename;
 case OP_RENEW: RENEW4res oprenew;
 case OP_RESTOREFH: RESTOREFH4res oprestorefh;
 case OP_SAVEFH: SAVEFH4res opsavefh;
 case OP_SECINFO: SECINFO4res opsecinfo;
 case OP_SETATTR: SETATTR4res opsetattr;
 case OP_SETCLIENTID: SETCLIENTID4res opsetclientid;
 case OP_SETCLIENTID_CONFIRM: SETCLIENTID_CONFIRM4res
 opsetclientid_confirm;
 case OP_VERIFY: VERIFY4res opverify;
 case OP_WRITE: WRITE4res opwrite;
 case OP_RELEASE_LOCKOWNER: RELEASE_LOCKOWNER4res
 oprelease_lockowner;
 case OP_OPENDIR: OPENDIR4res opopendir;
 case OP_ILLEGAL: ILLEGAL4res opillegal;
 };

 struct COMPOUND4args {
 utf8str_cs tag;
 uint32_t minorversion; /* == 1 !!! */
 nfs_argop4 argarray<>;

 };

Expires: August 2004 [Page 17]

INTERNET-DRAFT NFSv4.1: Directory Delegations" February 2004

 struct COMPOUND4res {
 nfsstat4 status;
 utf8str_cs tag;
 nfs_resop4 resarray<>;
 };

 /*
 * New error codes
 */

 enum nfsstat4 {
 NFS4_OK = 0, /* everything is okay */
 NFS4ERR_PERM = 1, /* caller not privileged */
 NFS4ERR_NOENT = 2, /* no such file/directory */
 NFS4ERR_IO = 5, /* hard I/O error */
 NFS4ERR_NXIO = 6, /* no such device */
 NFS4ERR_ACCESS = 13, /* access denied */
 NFS4ERR_EXIST = 17, /* file already exists */
 NFS4ERR_XDEV = 18, /* different filesystems */
 /* Unused/reserved 19 */
 NFS4ERR_NOTDIR = 20, /* should be a directory */
 NFS4ERR_ISDIR = 21, /* should not be directory */
 NFS4ERR_INVAL = 22, /* invalid argument */
 NFS4ERR_FBIG = 27, /* file exceeds server max */
 NFS4ERR_NOSPC = 28, /* no space on filesystem */
 NFS4ERR_ROFS = 30, /* read-only filesystem */
 NFS4ERR_MLINK = 31, /* too many hard links */
 NFS4ERR_NAMETOOLONG = 63, /* name exceeds server max */
 NFS4ERR_NOTEMPTY = 66, /* directory not empty */
 NFS4ERR_DQUOT = 69, /* hard quota limit reached*/
 NFS4ERR_STALE = 70, /* file no longer exists */
 NFS4ERR_BADHANDLE = 10001,/* Illegal filehandle */
 NFS4ERR_BAD_COOKIE = 10003,/* READDIR cookie is stale */
 NFS4ERR_NOTSUPP = 10004,/* operation not supported */
 NFS4ERR_TOOSMALL = 10005,/* response limit exceeded */
 NFS4ERR_SERVERFAULT = 10006,/* undefined server error */
 NFS4ERR_BADTYPE = 10007,/* type invalid for CREATE */
 NFS4ERR_DELAY = 10008,/* file "busy" - retry */
 NFS4ERR_SAME = 10009,/* nverify says attrs same */
 NFS4ERR_DENIED = 10010,/* lock unavailable */
 NFS4ERR_EXPIRED = 10011,/* lock lease expired */
 NFS4ERR_LOCKED = 10012,/* I/O failed due to lock */
 NFS4ERR_GRACE = 10013,/* in grace period */
 NFS4ERR_FHEXPIRED = 10014,/* filehandle expired */
 NFS4ERR_SHARE_DENIED = 10015,/* share reserve denied */
 NFS4ERR_WRONGSEC = 10016,/* wrong security flavor */
 NFS4ERR_CLID_INUSE = 10017,/* clientid in use */

 NFS4ERR_RESOURCE = 10018,/* resource exhaustion */

Expires: August 2004 [Page 18]

INTERNET-DRAFT NFSv4.1: Directory Delegations" February 2004

 NFS4ERR_MOVED = 10019,/* filesystem relocated */
 NFS4ERR_NOFILEHANDLE = 10020,/* current FH is not set */
 NFS4ERR_MINOR_VERS_MISMATCH = 10021,/* minor vers not supp */
 NFS4ERR_STALE_CLIENTID = 10022,/* server has rebooted */
 NFS4ERR_STALE_STATEID = 10023,/* server has rebooted */
 NFS4ERR_OLD_STATEID = 10024,/* state is out of sync */
 NFS4ERR_BAD_STATEID = 10025,/* incorrect stateid */
 NFS4ERR_BAD_SEQID = 10026,/* request is out of seq. */
 NFS4ERR_NOT_SAME = 10027,/* verify - attrs not same */
 NFS4ERR_LOCK_RANGE = 10028,/* lock range not supported*/
 NFS4ERR_SYMLINK = 10029,/* should be file/directory*/
 NFS4ERR_RESTOREFH = 10030,/* no saved filehandle */
 NFS4ERR_LEASE_MOVED = 10031,/* some filesystem moved */
 NFS4ERR_ATTRNOTSUPP = 10032,/* recommended attr not sup*/
 NFS4ERR_NO_GRACE = 10033,/* reclaim outside of grace*/
 NFS4ERR_RECLAIM_BAD = 10034,/* reclaim error at server */
 NFS4ERR_RECLAIM_CONFLICT = 10035,/* conflict on reclaim */
 NFS4ERR_BADXDR = 10036,/* XDR decode failed */
 NFS4ERR_LOCKS_HELD = 10037,/* file locks held at CLOSE*/
 NFS4ERR_OPENMODE = 10038,/* conflict in OPEN and I/O*/
 NFS4ERR_BADOWNER = 10039,/* owner translation bad */
 NFS4ERR_BADCHAR = 10040,/* utf-8 char not supported*/
 NFS4ERR_BADNAME = 10041,/* name not supported */
 NFS4ERR_BAD_RANGE = 10042,/* lock range not supported*/
 NFS4ERR_LOCK_NOTSUPP = 10043,/* no atomic up/downgrade */
 NFS4ERR_OP_ILLEGAL = 10044,/* undefined operation */
 NFS4ERR_DEADLOCK = 10045,/* file locking deadlock */
 NFS4ERR_FILE_OPEN = 10046,/* open file blocks op. */
 NFS4ERR_ADMIN_REVOKED = 10047,/* lockowner state revoked */
 NFS4ERR_CB_PATH_DOWN = 10048,/* callback path down */
 NFS4ERR_DIRDELEG_UNAVAIL= 10049,/* dir dlg. not returned */
 NFS4ERR_DIRDELEG_DENIED = 10050 /* dir delegation denied */
 };

 /*
 * New Callback operation CB_NOTIFY
 */

 struct CB_NOTIFY4args {
 stateid4 stateid;
 dir_notification4 changes<>;
 };

 /*
 * Changed entry information.
 */
 struct dir_entry {

 component4 file;

Expires: August 2004 [Page 19]

INTERNET-DRAFT NFSv4.1: Directory Delegations" February 2004

 fattr4 attrs;
 };

 struct dir_notification_attribute4 {
 dir_entry changed_entry;
 fattr change_dir_attributes;
 };

 struct dir_notification_remove4 {
 dir_entry old_entry;
 nfs_cookie4 old_entry_cookie;
 };

 struct dir_notification_rename4 {
 dir_entry old_entry;
 dir_notification_add4 new_entry;
 };

 struct dir_notification_verifier4 {
 verifier4 old_cookieverf;
 verifier4 new_cookieverf;
 };

 struct dir_notification_add4 {
 dir_entry new_entry;
 nfs_cookie4 new_entry_cookie; /* what READDIR would
 have returned
 for this entry */
 bool last_entry;
 prev_entry4 prev_entry_info;
 };

 union prev_entry4 switch (bool isprev) {
 case TRUE:
 prev_entry4 prev_entry_info;
 case FALSE: /* we are adding to an empty directory */
 void;
 };

 /*
 * Previous entry information
 */
 struct prev_entry4 {
 dir_entry prev_entry;
 /* what READDIR returned for this entry */
 nfs_cookie4 prev_entry_cookie;
 };

 /*

Expires: August 2004 [Page 20]

INTERNET-DRAFT NFSv4.1: Directory Delegations" February 2004

 * Notification information sent to the client.
 */
 union dir_notification4
 switch (dir_notification_type4 notification_type) {
 case DIR_NOTIFICATION_CHANGE_FILE_ATTRIBUTE:
 dir_notification_attribute4 change_file_attributes;
 case DIR_NOTIFICATION_CHANGE_DIR_ATTRIBUTE:
 fattr4 change_dir_attributes;
 case DIR_NOTIFICATION_REMOVE_ENTRY:
 dir_notification_remove4 remove_notification;
 case DIR_NOTIFICATION_ADD_ENTRY:
 dir_notification_add4 add_notification;
 case DIR_NOTIFICATION_RENAME_ENTRY:
 dir_notification_rename4 rename_notification;
 case DIR_NOTIFICATION_CHANGE_COOKIE_VERIFIER:
 dir_notification_verifier4 verf_notification;
 };

 struct CB_NOTIFY4res {
 nfsstat4 status;
 };

 /*
 * New Callback operation CB_RECALL_ANY
 *

 struct CB_RECALLANYY4args {
 uint4 dlgs_to_keep;
 }

 struct CB_RECALLANY4res {
 nfsstat4 status;
 };

 /*
 * Various definitions for CB_COMPOUND
 */
 enum nfs_cb_opnum4 {
 OP_CB_GETATTR = 3,
 OP_CB_RECALL = 4,
 OP_CB_NOTIFY = 5,
 OP_CB_RECALL_ANY = 6,
 OP_CB_ILLEGAL = 10044
 };

 union nfs_cb_argop4 switch (unsigned argop) {
 case OP_CB_GETATTR: CB_GETATTR4args opcbgetattr;
 case OP_CB_RECALL: CB_RECALL4args opcbrecall;

 case OP_CB_NOTIFY: CB_NOTIFY4args opcbnotify;

Expires: August 2004 [Page 21]

INTERNET-DRAFT NFSv4.1: Directory Delegations" February 2004

 case OP_CB_RECALLANY: CB_RECALLANY4args opcbrecallany;
 case OP_CB_ILLEGAL: CB_ILLEGAL4args opcbillegal;
 };

 union nfs_cb_resop4 switch (unsigned resop) {
 case OP_CB_GETATTR: CB_GETATTR4res opcbgetattr;
 case OP_CB_RECALL: CB_RECALL4res opcbrecall;
 case OP_CB_NOTIFY: CB_NOTIFY4res opcbnotify;
 case OP_CB_RECALLANY: CB_RECALLANY4res opcbrecallany;
 case OP_CB_ILLEGAL: CB_ILLEGAL4res opcbillegal;
 };

 struct CB_COMPOUND4args {
 utf8str_cs tag;
 uint32_t minorversion;
 uint32_t callback_ident;
 nfs_cb_argop4 argarray<>;
 };

 struct CB_COMPOUND4res {
 nfsstat4 status;
 utf8str_cs tag;
 nfs_cb_resop4 resarray<>;
 };

12. IANA Considerations

 The IANA considerations of NFSv4.0 apply to NFSv4.1.

13. Acknowledgements

 David Noveck and Michael Eisler for their constructive feedback and
 critical comments.

14. Normative References

 [RFC3530]
 S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M.
 Eisler, D. Noveck, "NFS version 4 Protocol", RFC 3530, April,
 2003.

 [talpey]
 T. Talpey, S. Shepler, "NFSv4 RDMA and Session Extensions",
 Internet-Draft, May, 2003. A URL for this Internet-Draft is
 available at http://www.ietf.org/internet-drafts/draft-talpey-

nfsv4-rdma-sess-00.txt

https://datatracker.ietf.org/doc/html/rfc3530
http://www.ietf.org/internet-drafts/draft-talpey-nfsv4-rdma-sess-00.txt
http://www.ietf.org/internet-drafts/draft-talpey-nfsv4-rdma-sess-00.txt

Expires: August 2004 [Page 22]

INTERNET-DRAFT NFSv4.1: Directory Delegations" February 2004

15. Informative References

 None.

16. Author's Address

 Saadia Khan
 2324 Dubois Street
 Milpitas, CA 95035
 USA

 Phone: 408-957-9626
 EMail: saadiak@yahoo.com

17. IPR Notices

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

18. Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of

https://datatracker.ietf.org/doc/html/bcp11

Expires: August 2004 [Page 23]

INTERNET-DRAFT NFSv4.1: Directory Delegations" February 2004

 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Expires: August 2004 [Page 24]

