
Workgroup: Network Working Group

Internet-Draft:

draft-kiesewalter-asdf-yang-sdf-01

Published: 7 November 2021

Intended Status: Informational

Expires: 11 May 2022

Authors: J. Kiesewalter

Universität Bremen

C. Bormann, Ed.

Universität Bremen TZI

Mapping between YANG and SDF

Abstract

YANG and SDF are two languages for modelling the interaction with

and the data interchanged with devices in the network. As their

areas of application (network management, IoT, resp.) overlap, it is

useful to be able to translate between the two.

The present specification provides information about how models in

one of the two languages can be translated into the other. This

specification is not intended to be normative, but to help with

creating translators.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 11 May 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Pairing SDF and YANG features

3. Mapping from YANG to SDF

3.1. Module

3.2. Submodule

3.3. Container Statement

3.4. Leaf Statement

3.5. Leaf-List Statement

3.6. List Statement

3.7. Grouping Statement

3.8. Uses Statement

3.9. Choice Statement

3.10. RPC Statement

3.11. Action Statement

3.12. Notification Statement

3.13. Augment Statement

3.14. Anydata and Anyxml Statements

3.15. Type Statement

3.16. String Built-In Type

3.17. Decimal64 Built-In Type

3.18. Integer Built-In Types

3.19. Boolean Built-In Type

3.20. Binary Built-In Type

3.21. Enumeration Built-In Type

3.22. Bits Built-In Type

3.23. Union Built-In Type

3.24. Leafref and Identityref Built-In Types

3.25. Empty Built-In Type

3.26. Instance-Identifier Built-In Type

3.27. Typedef Statement

3.28. Identity Statement

3.29. Config Statement

3.30. Status Statement

3.31. Reference Statement

3.32. When and Must Statements

3.33. Extension Statement

4. Mapping from SDF to YANG

4.1. Information Block

4.2. Namespace Section

4.3. SdfThing Quality

4.4. SdfObject Quality

4.5. Common Qualities

¶

4.6. Data Qualities

4.7. SdfData Quality

4.8. SdfProperty Quality

4.9. SdfAction Quality

4.10. SdfEvent Quality

5. Challenges

5.1. Differences in Expressiveness of SDF and YANG

5.2. Round Trips

5.3. Type References

6. Implementation Considerations

7. IANA Considerations

8. Security considerations

9. References

9.1. Normative References

9.2. Informative References

Acknowledgements

Authors' Addresses

1. Introduction

YANG [RFC7950] and SDF [I-D.ietf-asdf-sdf] are two languages for

modelling the interaction with and the data interchanged with

devices in the network. As their areas of application (network

management, IoT, resp.) overlap, it is useful to be able to

translate between the two.

The present specification provides information about how models in

one of the two languages can be translated into the other. This

specification is not intended to be normative, but to help with

creating translators.

2. Pairing SDF and YANG features

Table 1 gives an overview over how language features of YANG can be

mapped to SDF features. In many cases, several translations are

possible, and the right choice depends on the context. The mappings

in this draft often accommodate the use of the YANG parser Libyang

[LIBYANG].

For YANG statements that are not mentioned in the table no

conversion to SDF was found that preserves the statement's

semantics.

For possible conversions of YANG's built-in types please refer to

Section 3. Please note that a 'type object' is not the same as an

sdfObject but refers to SDF's built-in type 'object', also called

compound-type. This built-in type makes use of the 'properties'

quality which is not to be confused with the sdfProperty class. The

data types number/decimal64, integer, boolean, string are also

¶

¶

¶

¶

referred to as simple (data) types. In turn, the types array and

object are sometimes referred to as complex (data) types. Concerning

YANG, the expression 'schema tree' refers to the model's tree

whereas 'data tree' describes the tree of an instance of the model.

YANG

statement

remark on YANG

statement
converted to SDF

module
SDF model (i.e., info block,

namespace section & definitions)

submodule
included in

supermodule

integrated into SDF model of

supermodule

on its own SDF model

container top-level sdfObject

one level below

top-level

sdfProperty of type object

(compound-type)

on any other

level

property (type object) of the

'parent' definition of type object

(compound-type)

leaf
on top-level and

one level below

sdfProperty (type integer/number/

boolean/string)

on any other

level

property (type integer/number/

boolean/string) of the 'parent'

definition of type object (compound-

type)

leaflist
on top-level and

one level below
sdfProperty of type array

on any other

level

property (type array) of the

'parent' definition of type object

(compound-type)

list
on top-level and

one level below

sdfProperty of type array with items

of type object (compound-type)

on any other

level

property (type array with items of

type object (compound-type)) of the

'parent' definition of type object*

(compound-type)

choice sdfChoice

case
belonging to

choice
element of the sdfChoice

grouping

sdfData of compound-type (type

object) at the top level which can

then be referenced

uses
referencing a

grouping

sdfRef to the SDF definition

corresponding to the referenced

grouping

rpc
sdfAction at the top-level of the

SDF model

action

¶

YANG

statement

remark on YANG

statement
converted to SDF

sdfAction of the sdfObject

corresponding to a container the

action is a descendant node to

notification sdfEvent

anydata not converted

anyxml not converted

augment

augment's target is converted with

the augmentation already applied,

mentioned in the description

type
referring to a

built-in type

type with other data qualities

(e.g., default) if necessary

type
referring to a

typedef

sdfRef to the corresponding sdfData

element

base
sdfRef to the sdfData definition

corresponding to the base

bit

'parent' definition is of compound-

type and gets one entry in the

properties quality of type boolean

for each bit

enum

each enum statement's argument is

added as an element to the SDF enum

quality's string array

fraction-

digits
multipleOf quality

length
single length

range
minLength/maxLength qualities

single value
minLength and maxLength qualities

set to the same value

contains

alternatives

sdfChoice with alternatives for

minLength/maxLength qualities

path
sdfRef to the corresponding SDF

definition

pattern single pattern pattern quality

multiple

patterns

pattern quality, the regular

expressions are combined using

positive lookahead

invert-match

pattern quality, the regular

expression is modified using

negative lookahead

range single range minimum/maximum qualities

single value

(constant)
const quality

contains

alternatives

sdfChoice with either minimum/

maximum or const quality as

alternatives

typedef

YANG

statement

remark on YANG

statement
converted to SDF

sdfData definition, sdfRef where it

is used

identity
sdfData definition, sdfRef where it

is used

config

of a container

that became an

sdfObject

set writable for all elements in the

sdfObject that can be marked as

writable (i.e., that use the data

qualities)

of any other

YANG element
set writable

import

the module that the import

references is converted (elements

can now be referenced by sdfRef) and

its prefix and namespace are added

the to namespace section

revisions
first revision date becomes version

in information block

namespace added to namespace section

prefix added to namespace section

Table 1: Mapping YANG to SDF

Table 2 provides the inverse mapping.

SDF quality
remark on SDF

quality
converted to YANG

sdfThing container node

sdfObject container node

sdfProperty
type integer/number/

boolean/string
leaf node

type array with

items of type

integer/number/

boolean/string

leaf-list node

type array with

items of type object

(compound-type)

list node

type object

(compound-type)
container node

sdfAction

at the top-level,

not part of an

sdfObject

rpc node

inside of an

sdfObject

action node as child node to the

container corresponding to the

sdfObject

sdfEvent

¶

SDF quality
remark on SDF

quality
converted to YANG

notification node with child

nodes that were translated like

sdfProperty

sdfData
type integer/number/

boolean/string
typedef

type array with

items of type

integer/number/

boolean/string

grouping node with leaf-list

child node

type array with

items of type object

(compound-type)

grouping node with list child

node

type object

(compound-type)
grouping node

sdfRef

referenced

definition was

converted to typedef

type is set to the typedef

corresponding to the sdfData

definition

referenced

definition was

converted to leaf or

leaf-list node

leafref

referenced

definition was

converted to

grouping node

"uses" node that references

corresponding grouping (and

refine if necessary)

sdfRequired

referenced

definition was

converted to a leaf

or choice node

set the mandatory statement of

the corresponding leaf/choice

node to true

find the first descendant node

that is either a leaf/choice node

and set their mandatory statement

to true or that is a leaf-list/

list node and set their min-

elements statement to 1 (if not

already >= 0)

sdfChoice

choice node with one case node

for each alternative of the

sdfChoice, each alternative is

converted like sdfProperty

type

const

corresponding YANG

element has empty

range

range statement with a single

value

range not empty

SDF quality
remark on SDF

quality
converted to YANG

add single value alternative to

range statement (must be

disjunct)

default

type is one of

integer/number/

boolean/string or

array with items of

these types

default statement of leaf/leaf-

list nodes

minimum/

maximum

corresponding YANG

element has empty

range

range statement

range not empty
add range alternative to range

statement (must be disjunct)

multipleOf fraction-digits statement

minLength/

maxLength
length statement

pattern pattern statement

minItems/

maxItems

min-elements/max-elements

statements

uniqueItems

set to true

if the 'parent' SDF

definition is

converted to a list

node

unique statement mentioning all

of the leaf/leaf-list nodes in

the list node's sub-tree

items

sub-statements of list/leaf-list

node corresponding to the item

quality's 'parent' definition

properties

child nodes of container/grouping

node corresponding to the

properties quality's 'parent'

definition

unit units statement

enum

type enumeration with enum

statements for each string in the

SDF enum quality

sdfType
has value 'byte-

string'
built-in type 'binary'

writable config statement

Table 2: Mapping SDF to YANG

3. Mapping from YANG to SDF

This section specifies one possible mapping for each of the YANG

statements to SDF in detail. For reference on the individual YANG

statements see [RFC7950] and [I-D.ietf-asdf-sdf] for SDF. Examples

have been included where they serve to assist the reader's

understanding of the conversion.¶

3.1. Module

YANG: Section 7.1 (module) of [RFC7950]

SDF:

Section 3.1 (information block) of [I-D.ietf-asdf-sdf]

Sections 3.2 and 4 (namespaces section) of [I-D.ietf-asdf-sdf]

The module statement in YANG subsumes all other statements included

in a module. After conversion the SDF model as a whole corresponds

to the YANG module. The argument of the namespace statement of the

YANG module is added to the SDF namespace quality together with the

argument of the prefix statement of the YANG module which also

becomes the entry of the defaultNamespace quality in the SDF model.

Additionally, the namespaces and prefixes of each of the modules

mentioned in the import statements are added to the namespace

quality of the SDF model. Libyang loads the imported modules

automatically and in the correct version. These modules are then

also converted and stored so their definitions can be referenced via

the sdfRef common quality when necessary. Figure 2 and Figure 1

illustrate these mappings.

The contents of the organization, contact and yang-version

statements are stored alongside the description of the YANG module

in a special sdfData definition designated to hold information on

the module that does not fit into the SDF information block. This is

done in with a conversion note to facilitate round trips in the

future as described in Section 5.2. To illustrate this conversion,

Figure 2 contains a converted model with an sdfData definition

called ietf-foo-info. The original YANG module can be found in

Figure 1. The description of the module is scanned for information

regarding copyright and licensing which are then transferred to the

copyright and license qualities of the information block in the SDF

model. The version quality of the information block is set to the

first revision date given in the YANG revision statement. All other

revision dates are ignored as of now.

YANG modules can define features via the feature statement to make

parts of the module conditional. The abilities of a server are

checked against the features stated in the module. Nodes reference

features as an argument to the if-feature statement. If a server

does not support a certain feature, nodes that reference that

feature are ignored by the server. Since this functionality cannot

be represented in SDF yet, YANG features are stored in the

description of the sdfData definition designated to hold information

on the module. The conversion note that is added to the descriptions

looks as described in Section 5.2.

* ¶

* ¶

- ¶

- ¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7950#section-7.1
https://rfc-editor.org/rfc/rfc7950#section-7.1
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-3.1
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-3.1
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-3.2
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4

If the deviation statement (introducing a deviation from the

original YANG module) is present in the YANG module, Libyang applies

the deviation directly and the converter converts the module that

way. The presence of the deviation in the original YANG module is

not indicated in the resulting SDF model as of now which might cause

inconsistencies after round trips. This is not believed to be of

great importance because deviations are supposed to only occur in

unpublished modules.

 module ietf-foo {

 namespace "urn:ietf:params:xml:ns:yang:ietf-foo";

 prefix "foo";

 organization "Foo Inc.";

 contact "foo@mail.com";

 description

 "This is an example module

 Copyright Foo Inc.

 License XY";

 revision 2016-03-20;

 feature bar;

 feature baz;

 // ... more statements

 }

Figure 1: Example YANG module

 {

 "defaultNamespace": "foo",

 "info": {

 "copyright": "Copyright Foo Inc.",

 "license": "License XY",

 "title": "ietf-foo",

 "version": "2016-03-20"

 },

 "namespace": { "foo": "urn:ietf:params:xml:ns:yang:ietf-foo" },

 "sdfData": {

 "ietf-foo-info": {

 "description": "This is an example module\n\nCopyright Foo Inc.\n\nLicense XY\n!Conversion note: revision 2016-03-20!\n\n!Conversion note: organization Foo Inc.!\n\n!Conversion note: contact foo@mail.com!\n!Conversion note: feature bar!\n\n!Conversion note: feature baz!\n"

 }

 }

 }

Figure 2: SDF conversion of YANG module from the last figure

¶

3.2. Submodule

YANG: Section 7.2 (submodule) of [RFC7950]

If a complex YANG module is composed of several components, the

single components can be represented via the submodule statement.

For conversion, the nodes of a submodule that is included into its

super-module with the include statement are integrated into the

super-module and converted that way. This is due to the way Libyang

represents included submodules. Submodules on their own cannot be

converted since Libyang does not parse files that solely contain a

submodule.

3.3. Container Statement

YANG: Section 7.5 (container) of [RFC7950]

SDF:

Sections 2.2.1 and 5.1 (sdfObject) of [I-D.ietf-asdf-sdf]

Sections 2.2.6 and 6.3 (sdfThing) of [I-D.ietf-asdf-sdf]

YANG uses container nodes to group together other nodes. Containers

on the top-level of a module are converted to sdfObject definitions.

This is illustrated in the definition called level0 in Figure 3 and

Figure 4. A container that is a direct child node to a top-level

container is converted to a compound-type sdfProperty definition

inside an sdfObject, as illustrated in the definition called level1

in Figure 3 and Figure 4. Any other container becomes an entry to

the properties quality of the compound-type definition corresponding

to the parent node of the container. An example of this mapping can

be found in Figure 3 and Figure 4 in the definition called level2.

Since the first SDF Internet-Draft did not contain the compound-type

as a possible argument to the type quality, containers used to be

translated to sdfThing definitions. This, was not a very suitable

conversion semantically, however. At that time, sdfThings were the

only elements that could contain elements of the same class, that is

sdfThings could contain other sdfThings. This ability is required to

represent the tree structure of YANG where, for example, containers

can contain other containers. In the second SDF Internet-Draft the

compound-type was introduced. This feature effectively makes it

possible for elements of the sdfData and sdfProperty classes to

contain elements that share the same qualities.

A sub-statement to the container statement that cannot be

represented in SDF as of now is the optional presence statement. The

argument of the presence statement assigns a meaning to the presence

or absence of a container node in an instance of the module. This

* ¶

¶

* ¶

* ¶

- ¶

- ¶

¶

¶

https://rfc-editor.org/rfc/rfc7950#section-7.2
https://rfc-editor.org/rfc/rfc7950#section-7.2
https://rfc-editor.org/rfc/rfc7950#section-7.5
https://rfc-editor.org/rfc/rfc7950#section-7.5
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-2.2.1
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.1
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.1
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-2.2.6
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-6.3
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-6.3

concept is expressed in the description of the SDF definition in

question as shown in Section 5.2. This is also illustrated in the

definition level2 in Figure 3 and Figure 4.

 module container-example {

 // [...]

 container level0 {

 container level1 {

 container level2 {

 presence "Enables SSH";

 // [...]

 }

 }

 }

 }

Figure 3: YANG module with multiple nested container statements

 {

 ; [...]

 "sdfObject": {

 "level0": {

 "sdfProperty": {

 "level1": {

 "properties": {

 "level2": {

 "properties": {

 "description": "!Conversion note: presence Enables SSH!\n",

 ; [...]

 },

 "type": "object"

 }

 },

 "type": "object"

 }

 }

 }

 }

 }

Figure 4: SDF conversion of the YANG module from the last figure

3.4. Leaf Statement

YANG: Section 7.6 (leaf) of [RFC7950]

SDF:

Sections 2.2.2 and 5.2 (sdfProperty) of [I-D.ietf-asdf-sdf]

¶

* ¶

* ¶

- ¶

https://rfc-editor.org/rfc/rfc7950#section-7.6
https://rfc-editor.org/rfc/rfc7950#section-7.6
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-2.2.2
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.2
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.2

Section 4.7 (data qualities) of [I-D.ietf-asdf-sdf]

Leaf nodes in YANG represent scalar variables. If a leaf statement

occurs at the top-level of the module or as a direct child node of a

top-level container (which is converted to sdfObject) it becomes an

sdfProperty. On any other level a leaf is mapped to an entry of the

properties quality of the compound-type definition corresponding to

the parent node of the leaf. In both cases the SDF type quality is

set to one of the simple data types because leaf nodes can only have

simple data types. Leaf nodes can be assigned default values which

are used in case the node does not exist in an instance of the YANG

module. The default value of a leaf is converted to SDF through the

quality default. The units sub-statement of a leaf node in YANG

becomes the SDF quality unit. An example of such a conversion can be

found in the level0 element in Figure 5 and Figure 6. The SDF

quality unit is constrained to the SenML unit names. Although it

could cause conformance issues, the content of the YANG units

statement is not processed to fit the SenML unit names as of now.

This is due to the low probability that a unit from a YANG module is

not listed in the SenML unit names in comparison to the time

required to implement a mechanism to check conformance and convert

non-conforming units. This feature might be added in later versions

of the converter. YANG leaf nodes can be marked as mandatory to

occur in an instance of the module by the mandatory statement. The

statement takes true and false as arguments. This can easily be

mapped to SDF through the sdfRequired quality. A reference to the

SDF equivalent of the mandatory YANG leaf node is added to the

sdfRequired quality of the containing sdfObject. If a mandatory leaf

is transformed to an entry in the properties quality of a compound-

type definition in SDF, said entry is mentioned in the required

quality. If the sdfRequired or required quality does not already

exist it is added at this point. The latter is demonstrated in the

level2 element in Figure 5 and Figure 6.

- ¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7

 module leaf-example {

 // [...]

 leaf level0 {

 type int32;

 units "kg";

 default 14;

 }

 container dummy0 {

 leaf level1 { type string; }

 container dummy1 {

 leaf level2 {

 type string;

 mandatory true;

 }

 }

 }

 }

Figure 5: YANG module containing multiple leaf statements

 {

 ; [...]

 "sdfObject": {

 "dummy0": {

 "sdfProperty": {

 "dummy1": {

 "properties": {

 "level2": { "type": "string" }

 },

 "required": ["level2"],

 "type": "object"

 },

 "level1": { "type": "string" }

 }

 }

 },

 "sdfProperty": {

 "level0": {

 "default": 14,

 ; [...]

 "type": "integer",

 "unit": "kg"

 }

 }

 }

Figure 6: SDF conversion of the YANG module from the last figure

3.5. Leaf-List Statement

YANG: Section 7.7 (leaf-list) of [RFC7950]

SDF:

Sections 2.2.2 and 5.2 (sdfProperty) of [I-D.ietf-asdf-sdf]

Section 4.7 (data qualities) of [I-D.ietf-asdf-sdf]

Similarly to leaf nodes, leaf-list nodes hold data of simple types

in YANG but as items in an array. As such, leaf-lists are converted

to sdfProperties if they occur on the top-level or one level below

in a module. On any other level a leaf-list becomes an entry to the

properties quality of the compound-type definition corresponding to

the parent node of the leaf-list. In both cases the type is set to

array. The items of the array are of simple data types since leaf-

list nodes can only have simple data types as well. The minimal and

maximal number of elements in a YANG leaf-list can be specified by

the min-elements and max-elements sub-statements. This is analogue

to the minItems and maxItems qualities of SDF which are set

accordingly by the converter. A leaf-list can specify whether the

system or the user is responsible for ordering the entries of the

leaf-list. This information is stored in the ordered-by statement in

YANG which is represented in SDF by a remark in the description (as

shown in Section 5.2) of the SDF equivalent to the leaf-list node in

question. Since leaf-list nodes are just leaf nodes that can occur

multiple times, the units and default statements of leaf-list nodes

are converted as described for leaf nodes in Section 3.4.

3.6. List Statement

YANG: Section 7.8 (list) of [RFC7950]

SDF:

Sections 2.2.2 and 5.2 (sdfProperty) of [I-D.ietf-asdf-sdf]

Section 4.7 (data qualities) of [I-D.ietf-asdf-sdf]

The list statement of YANG is similar to the leaf-list statement.

The only difference is that, opposed to leaf-lists, lists represent

an assortment of nodes that can occur multiple times. Therefore,

YANG lists are mapped to SDF similarly to leaf-lists. List nodes on

the top-level or one level below become sdfProperties. On any other

level a list is converted to an entry to the properties quality of

the compound-type definition corresponding to the parent node of the

list. The type is set to array for both alternatives. Since lists

contain a set of nodes, the items of the corresponding array are of

type object. The minimal and maximal number of elements in a list

* ¶

* ¶

- ¶

- ¶

¶

* ¶

* ¶

- ¶

- ¶

https://rfc-editor.org/rfc/rfc7950#section-7.7
https://rfc-editor.org/rfc/rfc7950#section-7.7
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-2.2.2
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.2
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.2
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7
https://rfc-editor.org/rfc/rfc7950#section-7.8
https://rfc-editor.org/rfc/rfc7950#section-7.8
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-2.2.2
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.2
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.2
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7

can be specified by the min-elements and max-elements sub-

statements. This is analogue to the minItems and maxItems qualities

of SDF which are set accordingly by the converter. List nodes in

YANG can define one or multiple keys leafs of the list via the key

statement. There is no SDF quality that could represent this

feature. To preserve the information the names of the list keys are

stored in the description of the SDF definition in question as

described in section Section 5.2. The unique sub-statement of the

YANG list defines a number of descendant leaf nodes of the list that

must have a unique combination of values in a module instance. This

concept can be partly represented through the uniqueItems quality of

SDF. However, the boolean-typed uniqueItems quality only specifies

that the items of an SDF array have to be unique with all of their

values combined. The YANG statement unique specifies a selection of

leaf node values in the list that must be unique when combined.

Thus, in addition to setting the uniqueItems quality of the SDF

equivalent of the YANG list to true, a conversion note is added to

the SDF equivalents of all leafs that are mentioned in the unique

statement. This is done as shown in Section Section 5.2. The

ordered-by statement of a list is also preserved in a conversion

note. An example conversion of a list node with the mentioned sub-

statements to SDF can be found in Figure 7 and Figure 8.

 list server {

 key "name";

 unique "ip";

 ordered-by user;

 min-elements 1;

 max-elements 100;

 leaf name { type string; }

 leaf ip { type string; }

 }

Figure 7: YANG list node

¶

 "sdfProperty": {

 "server": {

 "description": "!Conversion note: key name!\n!Conversion note: ordered-by user!\n",

 "items": {

 "properties": {

 "ip": {

 "description": "!Conversion note: unique!\n",

 "type": "string"

 },

 "name": { "type": "string" }

 },

 "type": "object"

 },

 "maxItems": 100.0,

 "minItems": 1.0,

 "type": "array",

 "uniqueItems": true

 }

 }

Figure 8: SDF conversion of the YANG list node from the last figure

3.7. Grouping Statement

YANG: Section 7.12 (grouping) of [RFC7950]

SDF: Section 5.5 (sdfData) of [I-D.ietf-asdf-sdf]

Grouping nodes are very similar to container nodes with the

difference that the set of nodes contained in a grouping does not

occur in the data tree unless the grouping has been referenced at

least once by a uses node. Thus, a grouping node is converted to a

compound-type sdfData definition which defines a reusable definition

that is not a declaration as well. The nodes inside the grouping are

converted as entries to the properties quality in SDF. Figure 9 and

Figure 10 contain an example conversion of a grouping.

3.8. Uses Statement

YANG: Section 7.13 (uses) of [RFC7950]

SDF: Section 4.4 (sdfRef) of [I-D.ietf-asdf-sdf]

A uses node has the purpose of referencing a grouping node. The set

of child nodes of the referenced grouping are copied to wherever the

uses node is featured. Some of the sub-statements of the referenced

grouping can be altered via the refine statement of the uses node.

In SDF a uses node is represented by the sdfRef quality which is

added to the definition in question. As an argument the sdfRef

contains a reference to the sdfData definition corresponding to the

* ¶

* ¶

¶

* ¶

* ¶

https://rfc-editor.org/rfc/rfc7950#section-7.12
https://rfc-editor.org/rfc/rfc7950#section-7.12
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.5
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.5
https://rfc-editor.org/rfc/rfc7950#section-7.13
https://rfc-editor.org/rfc/rfc7950#section-7.13
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.4
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.4

grouping referenced by the uses node. If the uses node contains a

refine statement, the specified refinements are also applied in the

target SDF definition. An example for such a conversion is

illustrated in Figure 9 and Figure 10.

 module restaurant {

 // [...]

 grouping dish {

 leaf name { type string; }

 leaf price { type int32; }

 }

 list menu {

 // [...]

 uses dish {

 refine name { mandatory true; }

 }

 }

 }

Figure 9: YANG module with uses and grouping statements

¶

 {

 ; [...]

 "sdfData": {

 "dish": {

 "properties": {

 "name": { "type": "string" },

 "price": {

 ; [...]

 "type": "integer"

 }

 },

 "type": "object"

 }

 },

 "sdfProperty": {

 "menu": {

 "items": {

 "properties": {

 "dish": {

 "sdfRef": "#/sdfData/dish",

 "required": ["name"],

 }

 }

 "type": "object"

 },

 "type": "array"

 }

 }

 }

Figure 10: SDF conversion of the YANG module from the last figure

3.9. Choice Statement

YANG: Section 7.9 (choice) of [RFC7950]

SDF: Section 4.7.2 (sdfChoice) of [I-D.ietf-asdf-sdf]

Conversion of the choice statement from YANG is simple since it is

similar to the sdfChoice quality. The choice statement is used to

define alternative sub-trees for the node the choice occurs in. Only

one of the alternatives is present in the data tree. A YANG choice

is converted to an sdfProperty if it occurs on top-level or one

level below, like the snack definition in Figure 11 and Figure 12.

On any other level a choice is mapped to an entry of the properties

quality of the compound-type definition corresponding to the parent

node of the choice. The food-level2 definition in Figure 11 and

Figure 12 is an example of this kind of mapping. The SDF equivalent

of the choice contains the sdfChoice quality. Case or other child

* ¶

* ¶

https://rfc-editor.org/rfc/rfc7950#section-7.9
https://rfc-editor.org/rfc/rfc7950#section-7.9
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7.2
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7.2

nodes of the choice are mapped to SDF as one of the named

alternatives of the sdfChoice each. What cannot be represented is

the default sub-statement of the YANG choice that defines which of

the alternatives is considered the default one. This information is

preserved in a conversion note as described in Section 5.2.

 container food {

 container food-level2 {

 choice dinner {

 default home-cooked;

 case restaurant {

 leaf steak { type boolean; }

 leaf pizza { type boolean; }

 }

 case home-cooked {

 leaf pasta { type boolean; }

 }

 }

 }

 choice snack {

 case sports-arena {

 leaf pretzel { type boolean; }

 leaf beer { type boolean; }

 }

 case late-night {

 leaf chocolate { type boolean; }

 }

 }

 }

Figure 11: YANG container using the choice statement

¶

 "sdfObject": {

 "food": {

 "sdfProperty": {

 "food-level2": {

 "properties": {

 "dinner": {

 "description": "!Conversion note: default home-cooked!\n",

 "sdfChoice": {

 "home-cooked": {

 "properties": {

 "pasta": { "type": "boolean" }

 },

 "type": "object"

 },

 "restaurant": {

 "properties": {

 "pizza": { "type": "boolean" },

 "steak": { "type": "boolean" }

 },

 "type": "object"

 }

 }

 }

 },

 "type": "object"

 },

 "snack": {

 "description": "!Conversion note: default late-night!\n",

 "sdfChoice": {

 "late-night": {

 "properties": {

 "chocolate": { "type": "boolean" }

 },

 "type": "object"

 },

 "sports-arena": {

 "properties": {

 "beer": { "type": "boolean" },

 "pretzel": { "type": "boolean" }

 },

 "type": "object"

 }

 }

 }

 }

 }

 }

Figure 12: SDF conversion of the YANG container from the last figure

3.10. RPC Statement

YANG: Section 7.14 (rpc) of [RFC7950]

SDF: Sections 2.2.3 and 5.3 (sdfAction) of [I-D.ietf-asdf-sdf]

Remote procedure calls (RPCs) can be modeled in YANG with rpc nodes

which have up to one input child node holding the commands input

data and up to one output node for the output data. In YANG RPCs can

only occur on the top-level because in contrast to actions in YANG

they do not belong to a container. This can easily be represented by

sdfActions. The corresponding sdfAction is not placed inside an

sdfObject or sdfThing but at the top-level of the SDF model to

represent independence from a container. The input node of the RPC

is converted to the sdfInputData quality of the sdfAction which is

of type object. Equivalently, the output node of the RPC becomes the

sdfOutputData of the sdfAction, which is also of type object.

Groupings and typedefs in the RPC are converted to sdfData

definitions inside the sdfAction.

3.11. Action Statement

YANG: Section 7.15 (action) of [RFC7950]

SDF: Sections 2.2.3 and 5.3 (sdfAction) of [I-D.ietf-asdf-sdf]

Action nodes in YANG work similarly to rpc nodes in the way that

they are used to model operations that can be invoked in the module

and also have up to one input and output child node respectively. As

mentioned before, YANG actions are affiliated to a container. The

representation of this affiliation is not quite trivial because YANG

containers are not translated to sdfObjects in all cases. Only

sdfObjects can have sdfActions, however. If an action occurs in a

container that is a below-top-level container (and thus not

converted to sdfObject), as illustrated in Figure 13, the

affiliation cannot be represented directly in SDF as of now. Figure

14 shows how an XML instance of calling the action in Figure 13 and

the reply would look like. As an input, the action specifies the

container server it is affiliated to and its name. The actual

action, reset and the value of its input, reset-at are specified

inside the container instance. The result after converting the

container from Figure 13 to SDF can be found in Figure 15: To ensure

equivalence of model instances a copy of the contents of the

converted container is set as the sdfInputData of the sdfAction. The

sdfInputData is of type object. The conversion of the actual action

along with its input is added to the copy of the container

conversion as another entry to its properties quality. Furthermore,

a conversion note is added as described in Section 5.2.

Equivalently, the output nodes of the action become the

* ¶

* ¶

¶

* ¶

* ¶

https://rfc-editor.org/rfc/rfc7950#section-7.14
https://rfc-editor.org/rfc/rfc7950#section-7.14
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-2.2.3
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.3
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.3
https://rfc-editor.org/rfc/rfc7950#section-7.15
https://rfc-editor.org/rfc/rfc7950#section-7.15
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-2.2.3
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.3
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.3

sdfOutputData of the sdfAction which is also of type object.

Groupings and typedefs in the action node are converted to sdfData

definitions inside the sdfAction.

 container example-container {}

 container server {

 leaf name { type string; }

 action reset {

 input {

 leaf reset-at { type string; }

 }

 output {

 leaf reset-finished-at { type string; }

 }

 }

 }

 }

Figure 13: YANG container using the action statement

Figure 14: XML instance of the action from the last figure

¶

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <action xmlns="urn:ietf:params:xml:ns:yang:1">

 <server xmlns="urn:example:server-farm">

 <name>apache-1</name>

 <reset>

 <reset-at>2014-07-29T13:42:00Z</reset-at>

 </reset>

 </server>

 </action>

 </rpc>

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <reset-finished-at xmlns="urn:example:server-farm">

 2014-07-29T13:42:12Z

 </reset-finished-at>

 </rpc-reply>

 "sdfObject": {

 "example-container": {

 "sdfAction": {

 "reset": {

 "description": "Action connected to server\n\n",

 "sdfInputData": {

 "properties": {

 "server": {

 "properties": {

 "name": { "type": "string" },

 "reset": {

 "properties": {

 "reset-at": { "type": "string" }

 },

 "type": "object"

 }

 },

 "type": "object"

 }

 },

 "required": ["server"],

 "type": "object"

 },

 "sdfOutputData": {

 "properties": {

 "reset-finished-at": { "type": "string" }

 },

 "type": "object"

 }

 }

 },

 "sdfProperty": {

 "server": {

 "properties": {

 "name": { "type": "string" }

 },

 "type": "object"

 }

 }

 }

 }

Figure 15: SDF conversion of the YANG container from Figure 13

3.12. Notification Statement

YANG: Section 7.16 (notification) of [RFC7950]

SDF: Sections 2.2.4 and 5.4 (sdfEvent) of [I-D.ietf-asdf-sdf]

* ¶

* ¶

https://rfc-editor.org/rfc/rfc7950#section-7.16
https://rfc-editor.org/rfc/rfc7950#section-7.16
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-2.2.4
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.4
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.4

In YANG, notification nodes are used to model notification messages.

Notification nodes are converted to sdfEvent definitions. Their

child nodes are converted to the sdfOutputData of the sdfEvent which

is of type object. Groupings and typedefs in the notification node

are converted to sdfData definitions inside the sdfEvent.

3.13. Augment Statement

YANG: Section 7.17 (augment) of [RFC7950]

SDF: Section 4.6. (common qualities) of [I-D.ietf-asdf-sdf]

The augment statement can either occur at the top-level of a module

to add nodes to an existing target module or sub-module, or in a

uses statement to augment the targeted and thus integrated grouping.

The conversion of the augment statement to SDF is not trivial

because SDF does not feature this mechanism.

The tool used to deserialize YANG modules, Libyang, adds the nodes

into the target of the augment statement automatically for targets

that are modules or sub-modules. This is adopted in the mapping: The

SDF model that corresponds to target of the the augment statement is

converted with the augmentation already applied. A conversion note

is added to the description as described in Section 5.2 to preserve

where the augmentation was issued from. This mapping is illustrated

in Figure 16, Figure 17 and Figure 18. If the resulting SDF model

has to be converted back to YANG, definitions that are marked as

augmentations are converted back accordingly. This way of mapping

the augment statement to SDF causes problems if the augmentation

target lies within a module whose converted version is already

available and should not be replaced. Because, as of now, SDF does

not offer means to extend already existing models retroactively

these augmentations cannot be converted to SDF.

When the target of the augment is a grouping the augmentation cannot

be represented in SDF, either. The reason for this is that grouping

nodes are converted to SDF definitions with the type object. The

nodes inside the grouping are converted with the help of the

properties quality. It is currently not possible to add properties

to the properties quality, it can only be overridden as a whole.

 module example-module {

 // [...]

 leaf leaf1 { type string; }

 }

Figure 16: YANG module that serves as an augmentation target

¶

* ¶

* ¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7950#section-7.17
https://rfc-editor.org/rfc/rfc7950#section-7.17
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.6.
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.6.

 module augmenting-module {

 // [...]

 augment "/example" {

 leaf additional-leaf { type string; }

 }

 }

Figure 17: YANG module using the augment statement on the module from

the last figure

 {

 ; [...]

 "sdfProperty": {

 "leaf1": { "type": "string" },

 "additional-leaf": {

 "description": "!Conversion note: augmented-by augmenting-module!\n",

 "type": "string"

 }

 }

 }

Figure 18: SDF conversion of the YANG module from Figure 16 after

conversion of the YANG module from Figure 17

3.14. Anydata and Anyxml Statements

YANG: Sections 7.10 and 7.11 (augment) of [RFC7950]

SDF: Section 4.6 (common qualities) of [I-D.ietf-asdf-sdf]

The anydata and anyxml statements are designated for nodes in the

schema tree whose structure is unknown at the design time of the

module or in general. Since this is not a concept that can be

represented in SDF as of now, anydata and anyxml nodes are not

converted. Instead, to preserve the information a conversion note is

added to the SDF element corresponding to the parent node of the

anydata or anyxml node as described in Section 5.2.

3.15. Type Statement

YANG: Section 7.4 (type) of [RFC7950]

SDF: Section 4.7 (data qualities) of [I-D.ietf-asdf-sdf]

The type statement of YANG is used to specify the built-in or

derived type used by a leaf or typedef node. Mapping this statement

to YANG is trivial if the argument is a simple data type because the

SDF data qualities also contain a type quality. A derived type used

as an argument to the YANG type statement is converted via the

sdfRef quality. As an argument, the sdfRef quality contains a

* ¶

* ¶

¶

* ¶

* ¶

https://rfc-editor.org/rfc/rfc7950#section-7.10
https://rfc-editor.org/rfc/rfc7950#section-7.11
https://rfc-editor.org/rfc/rfc7950#section-7.11
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.6
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.6
https://rfc-editor.org/rfc/rfc7950#section-7.4
https://rfc-editor.org/rfc/rfc7950#section-7.4
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7

reference to the sdfData definition corresponding to the derived

type. If the derived type is restricted, for example with the length

statement, the restrictions are converted as they would be for the

base type and added to the SDF definition containing the type in

question.

There are multiple sub-statements to the type statement that depend

on its value. The conversion of those sub-statements is discussed in

the section of the built-in type the sub-statement belongs to.

3.16. String Built-In Type

YANG: Section 9.4 (string) of [RFC7950]

SDF: Section 4.7 (data qualities) of [I-D.ietf-asdf-sdf]

The YANG built-in type string is converted to the SDF built-in type

string. Strings in YANG can be restricted in length and by regular

expressions.

The length statement can specify either a constant length, a lower

inclusive length, an upper inclusive length or both a lower and

upper inclusive length. A length statement can also specify more

than one disjoint constant length or length ranges. The values min

and max in a length statement represent the minimum and maximum

lengths accepted for strings. If the length statement in YANG does

not contain a constant value but a length range it is converted to

the minLength and maxLength SDF qualities. This is illustrated in

Figure 19 and Figure 20. If a constant value is defined through the

YANG length statement the minLength and maxLength qualities are set

to the same value. If the length statement specifies multiple length

ranges or constant values the sdfChoice quality is used for

conversion. The named alternatives of the sdfChoice contain the

single converted length ranges or constant values each. If the min

and max values are present in the YANG length statement they are

converted to the respective minimum and maximum lengths accepted for

strings.

The YANG pattern statement can be used to hold regular expressions

that the affiliated string has to match. To patterns from YANG in

SDF the pattern quality can be used. One problem in the conversion

of patterns is that YANG strings can be restricted by multiple

patterns but SDF strings can have at most one pattern. To represent

multiple patterns from YANG in SDF the patterns are combined into

one regular expression with the help of positive look-ahead. Figure

19 contains an example leaf of type string with multiple defined

patterns which is converted as shown in Figure 20. This does not

always convey the meaning of the original regular expression.

Another issue is the possibility to declare invert-match patterns in

¶

¶

* ¶

* ¶

¶

¶

https://rfc-editor.org/rfc/rfc7950#section-9.4
https://rfc-editor.org/rfc/rfc7950#section-9.4
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7

YANG. These types of patterns are converted to SDF by adding

negative look-ahead to the regular expression, as illustrated in

Figure 21 and Figure 22. To preserve the original patterns and to

facilitate round trips, the original patterns are stored with a

conversion note in the description of the containing definition as

described in section Section 5.2.

 leaf example {

 type string {

 length "1..4";

 pattern "[0-9]*";

 pattern "[a-z]*";

 }

 }

Figure 19: YANG leaf node with type string, multiple pattern statements

and a length statement

 "sdfProperty": {

 "example": {

 "description": "!Conversion note: pattern [0-9]*!\n!Conversion note: pattern [a-z]*!\n",

 "maxLength": 4.0,

 "minLength": 1.0,

 "pattern": "(?=[0-9]*)[a-z]*",

 "type": "string"

 }

 }

Figure 20: SDF conversion of the YANG leaf from the last figure

 leaf example {

 type string {

 pattern "[0-9]*" { modifier invert-match; }

 }

 }

Figure 21: YANG leaf definition with type string and an invert-match

pattern

 "sdfProperty": {

 "example": {

 "description": "!Conversion note: pattern [0-9]*!\n",

 "pattern": "((?!([0-9]*)).)*",

 "type": "string"

 }

 }

Figure 22: SDF conversion of the YANG leaf from the last figure

¶

Another, more general problem regarding the conversion of regular

expressions from YANG to SDF is the fact that YANG uses a regular

expression language as defined by W3C Schema while SDF adopts

ECMAscript regular expressions. Both regular expression languages

share most of their features. Since this does not cause problems in

most cases and regarding the time constraints of this thesis, this

issue is not given any further attention beyond what was stated in

this paragraph. There is, however, a project of the IETF Network

Working Group to create an interoperable regular expression format.

Once the work on the draft has progressed the format might be

adopted by the SDF/YANG converter.

3.17. Decimal64 Built-In Type

YANG: Section 9.3 (decimal64) of [RFC7950]

SDF: Section 4.7 (data qualities) of [I-D.ietf-asdf-sdf]

The decimal64 built-in type of YANG is converted to the number type

in SDF. A decimal64 type in YANG has a mandatory fraction-digits

sub-statement that specifies the possible number of digits after the

decimal separator. The value of the fraction-digits statement is

converted to the multipleOf quality of SDF which states the

resolution of a number, that is the size of the minimal distance

between number values. Figure 23 and Figure 24 contain examples for

the conversion of the decimal64 built-in type.

A YANG decimal64 type can be restricted by means of the range

statement specifying either a constant value, a lower inclusive

bound, an upper inclusive bound or both a lower and upper inclusive

value. The range statement can also be used to specify multiple

disjoint constant values or ranges. The min and max key words in a

range statement represent the minimum and maximum values of the type

in question. If the range statement in YANG contains a range and not

a constant value it is converted to the minimum and maximum data

qualities in SDF. This is illustrated in the definition called my-

sensor-value in the example. If a constant value is defined through

the YANG range the SDF const quality is set accordingly, as shown

for the definition room-temperature in the example. If the range

specifies multiple ranges or constant values the sdfChoice quality

is used for conversion. The named alternatives of the sdfChoice

contain the single converted ranges or constant values each. An

example for this conversion can be found in the my-sensor-value3

example definition. If the min and max values are present in the

YANG range they are converted to the respective minimum and maximum

values for the type in question, as shown for the max value in the

example definition my-sensor-value2.

¶

* ¶

* ¶

¶

¶

https://rfc-editor.org/rfc/rfc7950#section-9.3
https://rfc-editor.org/rfc/rfc7950#section-9.3
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7

 module decimal64-example {

 // [...]

 leaf my-sensor-value {

 type decimal64 {

 fraction-digits 2;

 range "-50.0..150.0";

 }

 }

 leaf my-sensor-value2 {

 type decimal64 {

 fraction-digits 4;

 range "0..max";

 }

 }

 leaf my-sensor-value3 {

 type decimal64 {

 fraction-digits 6;

 range "0.0..1.0 | 5.0";

 }

 }

 leaf room-temperature {

 type decimal64 {

 fraction-digits 1;

 range "21.5";

 }

 }

 }

Figure 23: YANG module using the decimal64 built-in type

 {

 ; [...]

 "sdfProperty": {

 "my-sensor-value": {

 "maximum": 150.0,

 "minimum": -50.0,

 "multipleOf": 0.01,

 "type": "number"

 },

 "my-sensor-value2": {

 "maximum": 3.3999999521443642e+38,

 "minimum": 0.0,

 "multipleOf": 0.0001,

 "type": "number"

 },

 "my-sensor-value3": {

 "sdfChoice": {

 "range_option_1": {

 "maximum": 0.0,

 "minimum": 1.0,

 "multipleOf": 0.000001,

 "type": "number"

 },

 "range_option_2": {

 "const": 5.0,

 "multipleOf": 0.000001,

 "type": "number"

 }

 }

 },

 "room-temperature": {

 "const": 21.5,

 "multipleOf": 0.1,

 "type": "number"

 }

 }

 }

Figure 24: SDF conversion of the YANG module from the last figure

3.18. Integer Built-In Types

YANG: Section 9.2 (integer) of [RFC7950]

SDF: Section 4.7 (data qualities) of [I-D.ietf-asdf-sdf]

In YANG there are 8 different integer types: int8, uint8, int16,

uint16, int32, uint32, int64 and uint64. Each of them is converted

to type integer in SDF. A conversion note specifying the exact type

* ¶

* ¶

https://rfc-editor.org/rfc/rfc7950#section-9.2
https://rfc-editor.org/rfc/rfc7950#section-9.2
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7

is added as described in Section 5.2. Additionally, the minimum and

maximum qualities of the SDF definition that the converted type

belongs to are set to the respective minimum and maximum values of

the integer type in question. If the YANG type also specifies a

range, the minimum and maximum SDF qualities are altered

accordingly. Like the decimal64 YANG built-in type, the YANG integer

types can also be restricted by a range statement. The integer range

statement is converted as described in Section 3.17.

 leaf example {

 type int32;

 }

Figure 25: YANG leaf with the int32 built-in type

 "sdfProperty": {

 "example": {

 "description": "!Conversion note: type int32!\n",

 "maximum": 2147483647,

 "minimum": -2147483648,

 "type": "integer"

 }

 }

Figure 26: SDF conversion of the YANG leaf from the last figure

3.19. Boolean Built-In Type

YANG: Section 9.5 (boolean) of [RFC7950]

SDF: Section 4.7 (data qualities) of [I-D.ietf-asdf-sdf]

The YANG boolean built-in type holds a boolean value, that is one of

either true or false. It is converted to the SDF boolean type. There

are no further sub-statements to this type in YANG.

3.20. Binary Built-In Type

YANG: Section 9.8 (binary) of [RFC7950]

SDF: Section 4.7 (data qualities) of [I-D.ietf-asdf-sdf]

To represent binary data, the YANG built-in type binary can be used.

If the argument of the YANG type statement is binary the SDF type

quality is set to string. In addition, the sdfType quality is set to

byte-string. A YANG binary can have a sub-statement restricting its

length. This is converted to SDF via the minLength and maxLength

qualities. Like the string YANG built-in type, the binary type can

¶

* ¶

* ¶

¶

* ¶

* ¶

https://rfc-editor.org/rfc/rfc7950#section-9.5
https://rfc-editor.org/rfc/rfc7950#section-9.5
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7
https://rfc-editor.org/rfc/rfc7950#section-9.8
https://rfc-editor.org/rfc/rfc7950#section-9.8
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7

also be restricted by a length statement. This length statement is

converted as described in Section 3.16.

3.21. Enumeration Built-In Type

YANG: Section 9.6 (enumeration) of [RFC7950]

SDF: Section 4.7 (data qualities) of [I-D.ietf-asdf-sdf]

The YANG built-in type enumeration is used to map string-valued

alternatives to integer values. Additionally each string can have a

description and other sub-statements. SDF also specifies an enum

quality which is used to represent YANG enumerations. The SDF enum

quality only holds an array of strings. All other information is

stored in conversion notes in the description of the SDF definition

the enum belongs to, as specified in Section 5.2.

3.22. Bits Built-In Type

YANG: Section 9.8 (bits) of [RFC7950]

SDF: Section 4.7 (data qualities) of [I-D.ietf-asdf-sdf]

SDF does not specify a built-in type to represent a set of named

bits and their positions like YANG does with its built-in type bits.

Therefore, this built-in type has to be converted to SDF type object

with one entry to the properties quality of type boolean for each

bit. The property is named after the name of the bit. The position

of the bit is stored in a conversion note as described in Section

5.2. An example conversion of a leaf with type bits to SDF can be

found in Figure 27 and Figure 28.

 leaf example {

 type bits {

 bit auto-adapt {

 description "1 if automatic adaption is enabled, 0 otherwise";

 position 1;

 }

 bit battery-only { position 2; }

 bit disable-sensor { position 0; }

 }

 }

Figure 27: YANG leaf that is of the built-in type bits

¶

* ¶

* ¶

¶

* ¶

* ¶

¶

https://rfc-editor.org/rfc/rfc7950#section-9.6
https://rfc-editor.org/rfc/rfc7950#section-9.6
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7
https://rfc-editor.org/rfc/rfc7950#section-9.8
https://rfc-editor.org/rfc/rfc7950#section-9.8
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7

 "sdfProperty": {

 "example": {

 "description": "!Conversion note: type bits!\n",

 "properties": {

 "auto-adapt": {

 "description": "Bit at position 1: 1 if automatic adaption is enabled, 0 otherwise",

 "type": "boolean"

 },

 "battery-only": {

 "description": "Bit at position 2",

 "type": "boolean"

 },

 "disable-sensor": {

 "description": "Bit at position 0",

 "type": "boolean"

 }

 },

 "type": "object"

 }

 }

Figure 28: SDF conversion of the YANG leaf from the last figure

3.23. Union Built-In Type

YANG: Section 9.12 (union) of [RFC7950]

SDF: Section 4.7.2 (sdfChoice) of [I-D.ietf-asdf-sdf]

YANG unions hold a set of alternatives for the type statement.

Although the union built-in type of YANG does not exist as a built-

in type in SDF, its meaning can be easily represented by the

sdfChoice quality. The sdfChoice corresponding to the union contains

a set of named alternatives each named after the respective type in

the YANG union and each containing nothing but the SDF type quality

set to the SDF equivalent of the respective type. Figure 29 and

Figure 30 illustrate this mapping.

 leaf example {

 type union {

 type string;

 type boolean;

 }

 }

Figure 29: YANG leaf that uses the union built-in type

* ¶

* ¶

¶

https://rfc-editor.org/rfc/rfc7950#section-9.12
https://rfc-editor.org/rfc/rfc7950#section-9.12
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7.2
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7.2

 "sdfProperty": {

 "example": {

 "description": "!Conversion note: type union!\n",

 "sdfChoice": {

 "boolean": {

 "type": "boolean"

 },

 "string": {

 "type": "string"

 }

 }

 }

 }

Figure 30: SDF conversion of the YANG leaf from the last figure

3.24. Leafref and Identityref Built-In Types

YANG: Section 9.9 (leafref) of [RFC7950] Section 9.10

(identityref) of [RFC7950]

SDF: Section 4.4 (sdfRef) of [I-D.ietf-asdf-sdf]

The YANG built-in types leafref and identityref are used to

reference a leaf node or identity definition respectively. They are

represented in SDF by the sdfRef quality. As an argument said sdfRef

quality contains a reference to the SDF element corresponding to the

target of the leafref or identityref statement.

3.25. Empty Built-In Type

YANG: Section 9.11 (empty) of [RFC7950]

SDF: Section 4.7 (data qualities) of [I-D.ietf-asdf-sdf]

Another concept that is not contained in SDF directly is that of the

YANG built-in type empty. YANG elements with this type convey

meaning by their mere existence or non-existence. This is

represented in SDF using the compound-type with an empty set of

properties.

3.26. Instance-Identifier Built-In Type

YANG: Section 9.13 (instance-identifier) of [RFC7950]

The instance-identifier built-in type of YANG is used to refer to a

particular instance of a node in the data tree. As of now, it cannot

be represented functionally in SDF because there is currently no

possibility to refer to specific instances of SDF definitions. This

feature might be added to SDF in the future. For now, this type is

*

¶

* ¶

¶

* ¶

* ¶

¶

* ¶

https://rfc-editor.org/rfc/rfc7950#section-9.9
https://rfc-editor.org/rfc/rfc7950#section-9.9
https://rfc-editor.org/rfc/rfc7950#section-9.10
https://rfc-editor.org/rfc/rfc7950#section-9.10
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.4
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.4
https://rfc-editor.org/rfc/rfc7950#section-9.11
https://rfc-editor.org/rfc/rfc7950#section-9.11
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7
https://rfc-editor.org/rfc/rfc7950#section-9.13
https://rfc-editor.org/rfc/rfc7950#section-9.13

represented by the string built-in type of SDF. Furthermore, a

conversion note is added to the resulting SDF definition as

specified in Section 5.2. .

3.27. Typedef Statement

YANG: Section 9.3 (typedef) of [RFC7950]

SDF: Section 4.4 (sdfRef) of [I-D.ietf-asdf-sdf]

The typedef statement has the purpose to define derived types in

YANG. The SDF class sdfData is used to represent typedefs after

conversion. The usage of a derived type via the type statement is

converted to an sdfRef to the corresponding sdfData definition. If a

derived type is restricted according to its base type, for example

with a range statement, the restrictions are converted as they would

be for the base type and added to the sdfData definition.

3.28. Identity Statement

YANG: Section 7.18 (identity) of [RFC7950]

SDF: Section 5.5 (sdfData) of [I-D.ietf-asdf-sdf]

The YANG identity statement is used to denote the name and existence

of an identity. Identities can be based on one or more other

identities. They are referenced with the identityref statement. This

concept is converted to SDF by sdfData definitions for each

identity. If an identity is based on one other identity this is

represented by an sdfRef reference to the sdfData definition

corresponding to the base identity. If an identity has multiple base

identities it is converted to a compound-type sdfData definition

with one property for each base identity. Each property contains an

sdfRef reference to the sdfData definition corresponding to one of

the base identities.

3.29. Config Statement

YANG: Section 7.21.1 (config) of [RFC7950]

SDF: Section 4.7 (data qualities) of [I-D.ietf-asdf-sdf]

The config statement of YANG can have the boolean values true or

false as arguments. If config is set to true the element containing

the config statement represents readable and writable configuration

data. If the config statement is set to false the element containing

the statement represents read-only state data. This is transferred

to SDF via the readable and writable qualities. If the config

statement is set to true it is mapped to the readable and writable

qualities both being set to true. If the config statement is set to

¶

* ¶

* ¶

¶

* ¶

* ¶

¶

* ¶

* ¶

https://rfc-editor.org/rfc/rfc7950#section-9.3
https://rfc-editor.org/rfc/rfc7950#section-9.3
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.4
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.4
https://rfc-editor.org/rfc/rfc7950#section-7.18
https://rfc-editor.org/rfc/rfc7950#section-7.18
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.5
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.5
https://rfc-editor.org/rfc/rfc7950#section-7.21.1
https://rfc-editor.org/rfc/rfc7950#section-7.21.1
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7

false it is converted by setting the readable quality to true and

the writable quality to false. There are, however, cases in which

the SDF definition corresponding to the YANG element containing the

config statement is not one that can use data qualities. This is the

case, for example, if a top-level container, which is converted to

sdfObject, holds a config statement. In this case, all definitions

inside the sdfObject that can use data qualities have the readable

and writable qualities set as described above.

3.30. Status Statement

YANG: Section 7.21.2 (status) of [RFC7950]

SDF: Section 4.6 (common qualities) of [I-D.ietf-asdf-sdf]

The status statement of YANG is used to express whether a definition

is either current, deprecated or obsolete. In SDF there is no

quality with a similar meaning. Thus, the YANG status statement is

represented by a conversion note in the description of the SDF

definition corresponding to the YANG element the status statement

occurred in as described in Section 5.2.

3.31. Reference Statement

YANG: Section 7.21.4 (reference) of [RFC7950]

SDF: Section 4.6 (common qualities) of [I-D.ietf-asdf-sdf]

In YANG the reference statement holds a human-readable reference to

an external document related to its containing YANG definition. This

information is preserved through a conversion note in the

description of the SDF definition equivalent to the node containing

the reference statement as described in Section 5.2.

3.32. When and Must Statements

YANG: Section 7.5.3 (must) of [RFC7950] Section 7.21.5 (when) of

[RFC7950]

SDF: Section 4.6 (common qualities) of [I-D.ietf-asdf-sdf]

As mentioned before, YANG provides means to impose conditions on its

definitions. If a node in the data tree has an unfulfilled must or

when condition it is invalidated. Must and when conditions use XML

Path Language expressions to indicate dependencies. This feature is

not realizable in SDF as of now and is thus preserved through

conversion notes as described in Section 5.2.

There is a query language similar to XML Path Language for JSON

called JSONPath. If SDF adopts JSONPath or something similar in the

¶

* ¶

* ¶

¶

* ¶

* ¶

¶

*

¶

* ¶

¶

https://rfc-editor.org/rfc/rfc7950#section-7.21.2
https://rfc-editor.org/rfc/rfc7950#section-7.21.2
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.6
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.6
https://rfc-editor.org/rfc/rfc7950#section-7.21.4
https://rfc-editor.org/rfc/rfc7950#section-7.21.4
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.6
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.6
https://rfc-editor.org/rfc/rfc7950#section-7.5.3
https://rfc-editor.org/rfc/rfc7950#section-7.5.3
https://rfc-editor.org/rfc/rfc7950#section-7.21.5
https://rfc-editor.org/rfc/rfc7950#section-7.21.5
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.6
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.6

future the converter can be extended to process the functionality of

must and when statements.

3.33. Extension Statement

YANG: Section 7.19 (extension) of [RFC7950]

SDF: Section 4.6 (common qualities) of [I-D.ietf-asdf-sdf]

The extension statement in YANG has the purpose of defining new

statements for the YANG language. This is not a concept that can be

transferred to SDF yet. When an extension is used, this fact has to

be stored in a conversion note in the description of the SDF

definition that is analogue to the YANG definition containing the

extension statement, as described in Section 5.2. The definition of

the extension is not converted.

4. Mapping from SDF to YANG

In this section the conversion of each element of SDF to YANG is

explained in detail. For reference on the individual YANG statements

see [RFC7950] and [I-D.ietf-asdf-sdf] for SDF. Examples have been

inserted where they are necessary to understand the mapping.

4.1. Information Block

SDF: Section 3.1 (information block) of [I-D.ietf-asdf-sdf]

YANG: Section 7.1 (module) of [RFC7950]

At the top of an SDF model the information block holds meta data,

that is the title, version, copyright and license information, about

the model. When mapping an SDF model to YANG, the content of the

title quality is used as the name for the YANG module. For this, the

title string has to be modified to only contain lower case letters,

digits and the characters "_", "-" and ".". If the version quality

contains a date in the format month-day-year it is analogue to the

revision statement of YANG and converted as such. The strings from

the copyright and license qualities are stored in the description of

the resulting YANG module since there are no dedicated YANG

statements equivalent to these qualities.

4.2. Namespace Section

SDF: Sections 3.2 and 4 (namespaces section) of [I-D.ietf-asdf-

sdf]

YANG: Section 7.1.3 (namespace) of [RFC7950] Section 7.1.5

(import) of [RFC7950]

¶

* ¶

* ¶

¶

¶

* ¶

* ¶

¶

*

¶

*

¶

https://rfc-editor.org/rfc/rfc7950#section-7.19
https://rfc-editor.org/rfc/rfc7950#section-7.19
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.6
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.6
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-3.1
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-3.1
https://rfc-editor.org/rfc/rfc7950#section-7.1
https://rfc-editor.org/rfc/rfc7950#section-7.1
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-3.2
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4
https://rfc-editor.org/rfc/rfc7950#section-7.1.3
https://rfc-editor.org/rfc/rfc7950#section-7.1.3
https://rfc-editor.org/rfc/rfc7950#section-7.1.5
https://rfc-editor.org/rfc/rfc7950#section-7.1.5

The purpose of the namespace section in an SDF model is to specify

its (optional) namespace and the namespaces of external models whose

definitions are referenced. The namespace section has a namespace

quality mapping namespace URIs to a shortened name for that URI. The

shortened name is also used as a prefix when referring to external

definitions. If an SDF model is supposed to contribute globally

available definitions, a value is given to the defaultNamespace

quality and mapped to a namespace URI in the namespace quality. To

map this to YANG, three of its statements are necessary: the import,

the prefix and the namespace statement. To be able to use

definitions from external modules in YANG, their names have to be

declared by one import statement each. As a first step, each

external SDF model that is mentioned in the namespace map also has

to be converted to a YANG module. The default namespaces of the

external SDF models are represented in the prefix sub-statement of

the respective import statement. To represent the namespace and

short name of the model, if present, the YANG namespace and prefix

statements that are set accordingly. Both are top-level statements.

4.3. SdfThing Quality

SDF: Sections 2.2.6 and 6.3 (sdfThing) of [I-D.ietf-asdf-sdf]

YANG: Section 7.5 (container) of [RFC7950]

An sdfThing definition holds the definition of a complex device that

can be made up of multiple sdfObjects and multiple other sdfThings.

SdfThings are converted to YANG container nodes. The sdf-spec

extension is inserted to inform about the origin of the container as

an sdfThing. This is necessary to facilitate round-trips because the

container could also originate from an sdfObject.

4.4. SdfObject Quality

SDF: Sections 2.2.1 and 5.1 (sdfObject) of [I-D.ietf-asdf-sdf]

YANG: Section 7.5 (container) of [RFC7950]

SdfObject definitions are the main building blocks of an SDF model,

grouping together definitions of the classes sdfProperty, sdfData,

sdfAction and sdfEvent. They can also be used as arrays via their

minItems and maxItems qualities. An sdfObject is mapped to a YANG

container node if it is not defined as an array. Otherwise the

sdfObject can be converted to a list node with the min-elements and

max-elements statements set analogous to the minItems and maxItems

qualities. This feature was only recently added to SDF and is thus

not yet implemented neither in the SDF serializer/deserializer nor

in the SDF/YANG converter.

¶

* ¶

* ¶

¶

* ¶

* ¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-2.2.6
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-6.3
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-6.3
https://rfc-editor.org/rfc/rfc7950#section-7.5
https://rfc-editor.org/rfc/rfc7950#section-7.5
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-2.2.1
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.1
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.1
https://rfc-editor.org/rfc/rfc7950#section-7.5
https://rfc-editor.org/rfc/rfc7950#section-7.5

4.5. Common Qualities

SDF: Section 4.6 (common qualities) of [I-D.ietf-asdf-sdf]

YANG:

Section 7.21.3 (description) of [RFC7950]

Section 7.3 (typedef) of [RFC7950]

Section 9.9 (leafref) of [RFC7950]

Section 7.13 (uses) of [RFC7950]

Section 3 (terminology for mandatory) of [RFC7950]

The set of qualities that is grouped under the name of common

qualities can be used to provide meta data for SDF definitions.

The description quality is converted to the YANG description

statement. The label quality is ignored because it is identical to

the identifier of the definition in most cases.

The sdfRef quality is supposed to hold references to other

definitions whose qualities are then copied into the referencing

definition. Qualities of the referenced definition can also be

overridden by defining them again in the referencing definition. The

conversion of an sdfRef depends on what is referenced by it and what

that is converted to. Figure 31 and Figure 32, as well as Figure 33

and Figure 34 illustrate different conversions of the sdfRef

quality. If the referenced definition is converted to a typedef the

sdfRef is analogous to the type statement in YANG which points to

the typedef. Overridden qualities can be represented by the

respective sub-statements of the type which in turn override the

sub-statements of the type of the typedef. This is the case for

simpleDataRef in Figure 31 and Figure 32. If the referenced

definition is mapped to a leaf or leaf-list node it can be

referenced by the leafref built-in type in YANG. This is the case

for simplePropertyRef and simpleArrayPropertyRef in Figure 33 and

Figure 34. In this case overridden qualities cannot be represented

in SDF. If the YANG equivalent of the referenced definition is a

grouping node the sdfRef is converted to a uses node which points to

said grouping. The uses node is placed inside an additional

container to preserve the name of the referencing SDF definition and

to avoid sibling nodes with identical names (which is invalid in

YANG). This is what is done for compoundDataRef, simpleArrayDataRef

and compoundArrayDataRef in Figure 31 and Figure 32. In all other

cases the YANG equivalent of the referenced SDF definition cannot be

referenced directly but has first to be packaged in a grouping node.

This is done by first creating a grouping on the top-level of the

* ¶

* ¶

- ¶

- ¶

- ¶

- ¶

- ¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.6
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.6
https://rfc-editor.org/rfc/rfc7950#section-7.21.3
https://rfc-editor.org/rfc/rfc7950#section-7.21.3
https://rfc-editor.org/rfc/rfc7950#section-7.3
https://rfc-editor.org/rfc/rfc7950#section-7.3
https://rfc-editor.org/rfc/rfc7950#section-9.9
https://rfc-editor.org/rfc/rfc7950#section-9.9
https://rfc-editor.org/rfc/rfc7950#section-7.13
https://rfc-editor.org/rfc/rfc7950#section-7.13
https://rfc-editor.org/rfc/rfc7950#section-3
https://rfc-editor.org/rfc/rfc7950#section-3

module in order for the grouping to be available globally (in case

it is also referenced in another model). The YANG node that is

equivalent to the referenced SDF definition is copied into the new

grouping and afterwards replaced with a uses node referencing the

grouping. This is done to avoid redundancy. Lastly, the actual

sdfRef is represented by another uses node referencing the newly

created grouping. The uses node is placed inside a container node

that represents the SDF definition that contains the sdfRef to

preserve the name of the SDF definition. Furthermore, there cannot

be two sibling nodes with the same name in YANG. The definitions

compoundPropertyRef and compoundArrayPropertyRef in Figure 33 and

Figure 34 are examples of such conversions. If SDF qualities of the

referenced definition are overridden in the referencing definition

this is represented with the refine statement which can be a sub-

statement to uses node (see compoundArrayPropertyRef in Figure 33

and Figure 34).¶

 {

 ; [...]

 "sdfObject": {

 "ExampleObject": {

 "sdfData": {

 "simpleData": { "type": "string" },

 "compoundData": {

 "type": "object",

 "properties": {

 "A": { "type": "string" },

 "B": { "type": "string" }

 }

 },

 "simpleArrayData": {

 "type": "array",

 "items": { "type": "string" }

 },

 "compoundArrayData": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "A": { "type": "string" },

 "B": { "type": "string" }

 }

 }

 }

 },

 "sdfProperty": {

 "simpleDataRef": {

 "sdfRef": "#/sdfObject/ExampleObject/sdfData/simpleData",

 "pattern": "[a-z]*"

 },

 "compoundDataRef": { "sdfRef": "#/sdfObject/ExampleObject/sdfData/compoundData" },

 "simpleArrayDataRef": { "sdfRef": "#/sdfObject/ExampleObject/sdfData/simpleArrayData" },

 "compoundArrayDataRef": { "sdfRef": "#/sdfObject/ExampleObject/sdfData/compoundArrayData" }

 }

 }

 }

 }

Figure 31: SDF model that uses the sdfRef with different sdfData

definitions

 module exampleModel {

 // [...]

 typedef simpleData { type string; }

 grouping compoundArrayData {

 helper:sdf-spec "sdfData";

 list compoundArrayData {

 config false;

 leaf A { type string; }

 leaf B { type string; }

 }

 }

 grouping compoundData {

 helper:sdf-spec "sdfData";

 leaf A { type string; }

 leaf B { type string; }

 }

 grouping simpleArrayData {

 helper:sdf-spec "sdfData";

 leaf-list simpleArrayData { type string; }

 }

 container ExampleObject {

 helper:sdf-spec "sdfObject";

 container compoundArrayDataRef {

 helper:sdf-spec "sdfProperty";

 uses compoundArrayData;

 }

 container compoundDataRef {

 helper:sdf-spec "sdfProperty";

 uses compoundData;

 }

 container simpleArrayDataRef {

 helper:sdf-spec "sdfProperty";

 uses simpleArrayData;

 }

 leaf simpleDataRef {

 type simpleData { pattern "[a-z]*"; }

 }

 }

 }

Figure 32: YANG conversion of the SDF model from the last figure

 {

 ; [...]

 "sdfObject": {

 "ExampleObject2": {

 "sdfProperty": {

 "simpleProperty": { "type": "string" },

 "compoundProperty": {

 "type": "object",

 "properties": {

 "A": { "type": "string" },

 "B": { "type": "string" }

 }

 },

 "simpleArrayProperty": {

 "type": "array",

 "items": { "type": "string" }

 },

 "compoundArrayProperty": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "A": { "type": "string" },

 "B": { "type": "string" }

 }

 }

 },

 "simplePropertyRef": { "sdfRef": "#/sdfObject/ExampleObject2/sdfProperty/simpleProperty" },

 "compoundPropertyRef": { "sdfRef": "#/sdfObject/ExampleObject2/sdfProperty/compoundProperty" },

 "simpleArrayPropertyRef": { "sdfRef": "#/sdfObject/ExampleObject2/sdfProperty/simpleArrayProperty" },

 "compoundArrayPropertyRef": {

 "sdfRef": "#/sdfObject/ExampleObject2/sdfProperty/compoundArrayProperty",

 "minItems": 4

 }

 }

 }

 }

 }

Figure 33: SDF model that uses the sdfRef with sdfProperty definitions

 module exampleModel {

 // [...]

 grouping compoundArrayProperty {

 list compoundArrayProperty {

 helper:sdf-spec "sdfProperty";

 key "A";

 leaf A { type string; }

 leaf B { type string; }

 }

 }

 grouping compoundProperty {

 helper:sdf-spec "sdfProperty";

 leaf A { type string; }

 leaf B { type string; }

 }

 container ExampleObject2 {

 helper:sdf-spec "sdfObject";

 container compoundPropertyRef {

 helper:sdf-spec "sdfProperty";

 uses compoundProperty;

 }

 uses compoundProperty;

 leaf-list simpleArrayProperty { type string; }

 leaf-list simpleArrayPropertyRef {

 type leafref { path "/ExampleObject2/simpleArrayProperty"; }

 }

 leaf simpleProperty { type string; }

 leaf simplePropertyRef {

 type leafref { path "/ExampleObject2/simpleProperty"; }

 }

 container compoundArrayPropertyRef {

 uses compoundArrayProperty {

 refine compoundArrayProperty { min-elements 4; }

 }

 }

 uses compoundArrayProperty;

 }

 }

Figure 34: YANG conversion of the SDF model from the last figure

The common quality sdfRequired contains a list of SDF declarations

that are mandatory to be present in an instance of the SDF model.

The issue with the conversion of this quality is that in YANG not

all nodes can be marked with the mandatory statement while in SDF

all declarations (that means sdfProperties, sdfActions and sdfEvents

that occur in an sdfObject) can be mentioned in the sdfRequired

list. In YANG only leaf and choice nodes (and anyxml and anydata

nodes but these are not used for conversion) can be directly labeled

as mandatory. List and leaf-list nodes can indirectly be made

mandatory through the min-elements statement. Furthermore, container

nodes without a presence statement that have at least one mandatory

node as a child are also mandatory themselves. Not all SDF

declarations are always converted to YANG leaf, choice, list or

leaf-list nodes, however. Thus, if the YANG node equivalent to the

mandatory SDF declaration is a non-presence container, its sub-tree

is traversed until a leaf or choice node is found. This leaf or

choice node is labeled as mandatory, now making its parent container

mandatory as well because one of its child nodes is mandatory. An

example for such a conversion is illustrated in the compoundProperty

definition in Figure 35 and Figure 36. Consequently, if the parent

node of the now mandatory container would be a container it would

now be mandatory as well. Alternatively, if a list or leaf-list node

is found first, the min-elements statement of the node is set to 1

if it is not already set to a value greater than zero, which also

makes a node mandatory. This is illustrated in the

simpleArrayProperty and compoundArrayProperty definitions in Figure

35 and Figure 36. To prevent loss of information and to facilitate

round trips, the declaration originally listed in the sdfRequired

quality is preserved in the sdf-spec extension as described in

Section 5.2.¶

 "sdfObject": {

 "ExampleObject": {

 "sdfRequired": [

 "#/sdfObject/ExampleObject/sdfProperty/simpleProperty",

 "#/sdfObject/ExampleObject/sdfEvent/compoundProperty",

 "#/sdfObject/ExampleObject/sdfEvent/simpleArrayProperty",

 "#/sdfObject/ExampleObject/sdfEvent/compoundArrayProperty"

],

 "sdfProperty": {

 "simpleProperty": { "type": "string" },

 "compoundProperty": {

 "type": "object",

 "properties": {

 "A": { "type": "string" },

 "B": { "type": "string" }

 }

 },

 "simpleArrayProperty": {

 "type": "array",

 "items": { "type": "string" }

 },

 "compoundArrayProperty": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "A": { "type": "string" },

 "B": { "type": "string" }

 }

 }

 }

 }

 }

 }

Figure 35: SDF model that contains the sdfRequired quality

 container ExampleObject {

 helper:sdf-spec "sdfObject";

 list compoundArrayProperty {

 helper:sdf-spec "sdfProperty";

 helper:sdf-spec "sdfRequired";

 config false;

 min-elements 1;

 leaf A { type string; }

 leaf B { type string; }

 }

 container compoundProperty {

 helper:sdf-spec "sdfProperty";

 helper:sdf-spec "sdfRequired";

 leaf A {

 type string;

 mandatory true;

 }

 leaf B { type string; }

 }

 leaf-list simpleArrayProperty {

 helper:sdf-spec "sdfProperty";

 helper:sdf-spec "sdfRequired";

 type string;

 min-elements 1;

 }

 leaf simpleProperty {

 helper:sdf-spec "sdfRequired";

 type string;

 mandatory true;

 }

 }

Figure 36: YANG conversion of the last figure

4.6. Data Qualities

SDF: Section 4.7 (data qualities) of [I-D.ietf-asdf-sdf]

YANG:

Section 7.4.1 (type) of [RFC7950]

The set of qualities labeled as data qualities contains qualities

inspired by the json-schema.org specifications that SDF adopted as

well as qualities specifically defined for SDF. In the first group

* ¶

* ¶

- ¶

https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-4.7
https://rfc-editor.org/rfc/rfc7950#section-7.4.1
https://rfc-editor.org/rfc/rfc7950#section-7.4.1

there is a total of 18 qualities out of which some are

interdependent.

The quality that a lot of the other qualities presence or absence

depends on is the type quality. The type can be one of number,

string, boolean, integer, array or object. This quality is directly

converted to the YANG type statement for all simple type. The type

number becomes decimal64, integer becomes int64. The types string

and boolean have built-in type equivalents in YANG. The types array

and object cannot be converted to a YANG built-in type directly.

Instead SDF definitions with these types are converted as described

in Section 4.8 and Section 4.7, that is type array is mapped to

leaflist or list nodes and type object is mapped to container nodes.

If a constant value is defined in an SDF definition, the data

quality const is used to hold it. If the value of the type quality

is number or integer the const quality is mapped to the range sub-

statement of the type statement of YANG, which can also contain a

single value. An example of such a conversion is illustrated in

displayWidth in Figure 37 and Figure 38. For constant string values

the YANG pattern statement containing the constant string is used,

as shown in the displayText definition in Figure 37 and Figure 38.

Unfortunately, constant values of types boolean and array can only

be preserved in YANG through the sdf-spec extension.

 "sdfObject": {

 "Display": {

 "sdfProperty": {

 "displayText": {

 "type": "string",

 "const": "Hello World!"

 },

 "displayWidth": {

 "type": "integer",

 "const": 300

 }

 }

 }

 }

Figure 37: SdfObject that contains the const quality

¶

¶

¶

 container Display {

 helper:sdf-spec "sdfObject";

 leaf displayText {

 type string { pattern "Hello World!"; }

 }

 leaf displayWidth {

 type int64 { range "300"; }

 }

 }

Figure 38: YANG conversion of the sdfObject from the last figure

The default data quality in SDF holds the default value for its

definition. Since YANG leaf and leaf-list nodes have a default sub-

statement, SDF default values of simple types or of type array with

items of simple types can easily be represented.

The data qualities minimum, maximum, exclusiveMinimum and

exclusiveMaximum which are only valid for the types number and

integer are converted using the YANG range statement again. For

exclusive boundaries the range is reduced accordingly in YANG. This

is only possible for integer types or if the multipleOf quality

specifies the size by which the number limit has to be reduced.

Alternatives in the YANG range have to be disjoint, however. This

poses a problem when the range statement is already used to map a

constant value. Thus, if both minimum or maximum and constant values

are defined, this is represented through the YANG union built-in

type, instead. As illustrated in Figure 39 and Figure 40, in the

YANG conversion of the definition the union contains the same type

twice, but with different ranges.

 "sdfProperty": {

 "displayWidth": {

 "type": "integer",

 "const": 300,

 "minimum": 100,

 "maximum": 1000

 }

 }

Figure 39: SdfProperty that uses the minimum and maximum qualities in

conjunction with the const quality

¶

¶

 leaf displayWidth {

 type union {

 type int64 { range "300"; }

 type int64 { range "100..1000"; }

 }

 }

Figure 40: YANG conversion of the sdfProperty from the last figure

The multipleOf data quality is one that can only be used in

conjunction with the number type in SDF and states the resolution of

the decimal value, that is, of which decimal number the value is a

multiple of. This quality is converted to the fraction-digits sub-

statement to the type statement in YANG by counting the digits after

the decimal separator of the value of the multipleOf quality. Since

the fraction-digits statement is mandatory in YANG, it is set to 6

by default. This is done because six is also the default decimal

resolution of the std::to_string() method of the C++ standard

library. This method is used for transferring data from the C++

objects that represent SDF definitions into JSON.

The minLength and maxLength data qualities of SDF are used to hold

the minimal and maximal length of strings. This concept can be

transferred to YANG by using the length sub-statement of the type

statement that specifies a length range.

The SDF pattern data quality holds regular expressions for string

typed definitions. This can be converted directly to the pattern

sub-statement of the type statement in YANG. As already mentioned in

Section 3.16 regular expressions cannot be converted directly

between SDF and YANG in theory, due to the differing languages used

for regular expressions. Because of the time limitations of this

thesis no further measures are taken to insure the conformance of

converted regular expressions.

The string type in SDF can be supplemented by the format quality.

This quality can specify one of the formats found on json-

schema.org. This could be translated to YANG referencing typedefs

from the widely used ietf-yang-types module. To not rely on external

modules, the format is only preserved through an addition of the

sdf-spec extension to the YANG equivalent of the SDF definition the

format quality is contained in.

The length of an array in SDF can be restricted by the minItems and

maxItems qualities. In YANG, both list and leaf-list nodes use the

sub-statements min-elements and max-elements to express the same

concept. They are therefore used to convert the SDF array length

qualities.

¶

¶

¶

¶

¶

Another restriction for SDF arrays is the uniqueItems quality that

can be set to either true or false. If it is set to true all items

of an array are required to be different. For this purpose, YANG

specifies the key and the unique sub-statements for list nodes. The

combined values of the mentioned nodes have to be unique. These

statements can only be applied to leaf nodes in the sub-tree. This

does not pose a problem, however, because the uniqueness of a

definition can only be measured by the uniqueness of its scalar

values anyway. Thus, if an SDF array is converted to a YANG list

node and the uniqueItems SDF quality is set to true, the key

statement of the list states the first descendant leaf node of the

list as the key, as illustrated in the compoundArrayProperty

definition in Figure 41 and Figure 42. The key statement is chosen

over the unique statement because it must be present in all writable

lists anyway. It is not possible to explicitly represent the

uniqueItems quality in leaf-list nodes. However, the values of leaf-

list nodes that represent configuration data, and are therefore

writable, must be unique. The writable quality is set to true by

default. Thus, to represent an SDF array with unique items, in YANG

the config statement is set to true whenever the writable quality in

SDF is not set to false. An example of such a conversion can be

found in the simpleArrayProperty definition in Figure 41 and Figure

42. Non-writable arrays with unique items cannot be represented as

YANG leaf-lists.

 "sdfObject": {

 "ExampleObject": {

 "sdfProperty": {

 "simpleArrayProperty": {

 "type": "array",

 "uniqueItems": true,

 "items": { "type": "string" }

 },

 "compoundArrayProperty": {

 "type": "array",

 "uniqueItems": true,

 "items": {

 "type": "object",

 "properties": {

 "A": { "type": "string" },

 "B": { "type": "string" }

 }

 }

 }

 }

 }

 }

¶

Figure 41: SdfObject containing the uniqueItems quality

 container ExampleObject {

 helper:sdf-spec "sdfObject";

 list compoundArrayProperty {

 helper:sdf-spec "sdfProperty";

 key "A";

 leaf A { type string; }

 leaf B { type string; }

 }

 leaf-list simpleArrayProperty {

 type string;

 config true;

 }

 }

Figure 42: YANG conversion of the sdfObject from the last figure

The items data quality of SDF is a quality that specifies item

constraints for the items of an array-typed SDF definition using a

subset of the common and data qualities. SDF definitions with the

type array are converted to list or leaf-list nodes. These node

types in themselves indicate that a node represents an array. Thus,

the qualities defined in the item constraints of an array are

converted to the sub-statements of the equivalent list or leaf-list

node as described in this section. Figure 41 and Figure 42 contain

an illustration of this mapping.

Another SDF data quality is the properties quality. Properties

defined through this quality are different from sdfProperties. The

properties quality is used in conjunction with the object type and

contains a set of named definitions made up of data qualities

themselves. SDF definitions of type object are converted to

container or grouping nodes. Thus, the named entries in the

properties quality are each transformed to the child nodes of the

container or grouping in question. This is illustrated in Section

4.8 in the compoundProperty definition of Figure 45 and Figure 46.

To label the properties as mandatory the required quality is used.

Since it is resembling the sdfRequired quality, it is translated in

the same way. The SDF type object was first introduced in SDF

version 1.1 and made conversion of SDF models to YANG significantly

more complicated. On the other hand, it is crucial to represent the

tree structure of YANG.

The second group of qualities that is part of the data qualities

includes 11 qualities that are defined specifically for SDF.

¶

¶

¶

The unit quality can be set to any of the SenML unit names to

represent the unit of an SDF definition. There is also a similar

statement that can be defined as a sub-statement to typedef

definitions, leaf nodes and leaf-list nodes. The units statement in

YANG can contain any string and thus is simply set to the SenML unit

name from the SDF definition.

An important data quality is the sdfChoice quality. It represents

the choice between several sets of named definitions made up of data

qualities themselves. YANG provides a very similar statement, the

choice statement. An sdfChoice is turned into a YANG choice node.

Each of the alternatives of the sdfChoice is converted like an

sdfProperty (see Section 4.8) and added to the choice node inside

its own case node. SdfChoice definitions that give the choice

between the type quality could also be mapped to the YANG type

union. This is omitted for reasons of simplicity. An example

conversion of the sdfChoice quality can be found in Figure 43 and

Figure 44.

 "sdfObject": {

 "ExampleObject": {

 "sdfProperty": {

 "choiceProperty": {

 "sdfChoice": {

 "foo": { "type": "string" },

 "bar": { "type": "boolean" },

 "baz": { "type": "integer" }

 }

 }

 }

 }

 }

Figure 43: SdfObject with an sdfChoice quality

¶

¶

 container ExampleObject {

 helper:sdf-spec "sdfObject";

 choice choiceProperty {

 case bar {

 leaf bar { type boolean; }

 }

 case baz {

 leaf baz { type int64; }

 }

 case foo {

 leaf foo { type string; }

 }

 }

 }

Figure 44: YANG conversion of the sdfObject from the last figure

SDF also offers the possibility to define the choice between string

values by means of the enum data quality. It consists of an array of

strings. This concept also exists in YANG with the enumeration type

and the corresponding enum sub-statement to the type statement. For

an SDF definition that contains the enum quality the YANG type of

its equivalent is set to enumeration. Each of the strings in the

array of the enum SDF quality is converted to an enum entry in the

type statement in YANG. The enum entries are also assigned an

associated value.

The scaleMinimum and scaleMaximum qualities represent limits in

units as specified by the unit quality. They are not mapped to YANG

because they will not be included in future versions of SDF. They

are to be replaced in the future, therefore a mapping will have to

be developed for their replacement.

The contentFormat quality of SDF can provide an additional IANA

content type. This information is preserved with the help of sdf-

spec extension in the YANG equivalent of the SDF definition.

Another way to complement the type quality is the sdfType quality

that can either be set to byte-string or unix-time. A byte string is

converted to the YANG type binary. There is no built-in YANG type

corresponding to unix time it is thus converted through the YANG

units statement. The unit of the YANG conversion mentions unix-time

as an argument.

SDF defines the readable and writable qualities to flag whether read

or write operations are allowed on definitions. Read operations are

always allowed in YANG modules so a readable quality that is set to

false cannot be represented in YANG. The config YANG statement can

be used to represent the value of the writable quality, however. If

¶

¶

¶

¶

an SDF definition is explicitly marked as writable config is set to

true. Otherwise, it is set to false.

The observable and nullable qualities in SDF cannot be represented

in YANG but are preserved by adding an sdf-spec extension to the

YANG equivalent of their containing SDF definition.

4.7. SdfData Quality

SDF: Sections 2.2.5 and 5.5 (sdfData) of [I-D.ietf-asdf-sdf]

YANG:

Section 7.13 (uses) of [RFC7950]

Section 7.12 (grouping) of [RFC7950]

Elements of the sdfData class are meant to hold data type

definitions to be shared by sdfProperty, sdfAction and sdfEvent

definitions. SdfData definitions can make use of the data qualities

and the common qualities described in Section 4.6 and Section 4.5

respectively. Because an sdfData definition embodies a data type

definition the YANG statements typedef and grouping have to be used

for conversion. Which of the two is used depends on the value of the

type quality of the sdfData definition. If the type is one of the

simple data types, that is integer, number, boolean or string, the

sdfData definition is converted to a YANG typedef. If the type is

object the sdfData definition is mapped to a grouping node with each

of the entries of the properties quality of the compound-type being

mapped to a child node of the grouping. When mapping sdfData

definitions with type array to YANG, the type mentioned in the type

quality of the items quality is essential as well. If an array has

items of any of the simple types the resulting YANG element is a

grouping node containing a single leaf-list node. Otherwise, if the

array items are compound-types the sdfData definition is converted

into a grouping node containing a single list node. The child nodes

of the list node are equivalent to the entries of the properties

quality that is contained in the item quality.

One issue with converting sdfData definitions of type array is the

added grouping node that is necessary to hold the equivalent leaf-

list or list node. If the grouping is used in the schema tree the

added level will cause model instances of the original and converted

model to be in-equivalent. If the sdfData definition is referenced

in the SDF model via the sdfRef common quality this is represented

in YANG with the uses statement pointing to the grouping equivalent

to the sdfData definition. The sdfRef quality can occur at most once

in each definition while there can be multiple uses statements in a

single container, list or grouping. Thus, instead of representing

definitions containing an sdfRef by a parent node containing a uses

¶

¶

* ¶

* ¶

- ¶

- ¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-2.2.5
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.5
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.5
https://rfc-editor.org/rfc/rfc7950#section-7.13
https://rfc-editor.org/rfc/rfc7950#section-7.13
https://rfc-editor.org/rfc/rfc7950#section-7.12
https://rfc-editor.org/rfc/rfc7950#section-7.12

node, the aforementioned issue with array-typed sdfData definitions

could be solved by replacing the parent node with the uses node

itself, effectively removing the excess level. This, however, gives

rise to other issues because the name of the superordinate

definition of the sdfRef is lost this way. An example for this issue

is illustrated in Figure 53 and Figure 54. If the sdfData definition

is converted to a typedef no such issues arise. The typedef in

question is inserted as an argument to the YANG type quality

wherever the original sdfData definition was referenced by an

sdfRef.

Another issue is a different view on global accessibility of data

type definitions in YANG and SDF. In SDF, all definitions are

globally available as long as a default namespace is defined in the

SDF model. In YANG on the other hand, only data type definitions,

that is groupings and typedefs, that occur on the top-level of a

YANG module are globally accessible. Thus, to represent the global

accessibility of all data type definitions in SDF, all converted

sdfData definition equivalents in YANG are added to the top-level of

the created module.

Since these issues are also discussed in Section 4.5, examples

conversion can be found there in Figure 31 and Figure 32.

4.8. SdfProperty Quality

SDF: Sections 2.2.2 and 5.2 (sdfProperty) of [I-D.ietf-asdf-sdf]

YANG:

Section 7.6 (leaf) of [RFC7950]

Section 7.7 (leaf-list) of [RFC7950]

Section 7.8 (list) of [RFC7950]

SdfProperty definitions represent elements of state as suggested by

their name. SdfProperty definitions can make use of the data

qualities and the common qualities described in Section 4.6 and

Section 4.5. The mapping of an sdfProperty definition to YANG

depends on the value of the type quality. SdfProperties with simple

types are mapped to leaf nodes in YANG, as illustrated in the

simpleProperty definition in Figure 45 and Figure 46. If the type is

complex, that is type object, conversion results in a container node

with each of the entries in the properties quality being mapped to a

child node of the container. An example of such a conversion is the

compoundProperty definition in Figure 45 and Figure 46. If the

sdfProperty is of type array the deciding factor is the type quality

inside the items quality. If an array has items of a simple type, it

is converted to a leaf-list node. This is demonstrated by the

¶

¶

¶

* ¶

* ¶

- ¶

- ¶

- ¶

https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-2.2.2
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.2
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.2
https://rfc-editor.org/rfc/rfc7950#section-7.6
https://rfc-editor.org/rfc/rfc7950#section-7.6
https://rfc-editor.org/rfc/rfc7950#section-7.7
https://rfc-editor.org/rfc/rfc7950#section-7.7
https://rfc-editor.org/rfc/rfc7950#section-7.8
https://rfc-editor.org/rfc/rfc7950#section-7.8

simpleArrayProperty definition in Figure 45 and Figure 46.

Otherwise, if the items are of compound-type the sdfProperty becomes

a list node in YANG. The child nodes of the list node are equivalent

to the entries of the properties quality in the compound-type, as

illustrated in Figure 45 and Figure 46 through the

compoundArrayProperty definition. List nodes that represent

configuration data, that means data that is writable, must specify

at least one of its descendant leaf nodes as a key identifier. In

SDF definitions that use the data qualities, such as sdfProperties,

the writable quality is set to true by default. Therefore, the key

statement of the list node is set to the first descendant leaf node

of the list by default by the converter to comply with this rule.

For round trips, this work-around is noted through the sdf-spec

extension.

 "sdfObject": {

 "ExampleObject": {

 "sdfProperty": {

 "simpleProperty": { "type": "string" },

 "compoundProperty": {

 "type": "object",

 "properties": {

 "A": { "type": "string" },

 "B": { "type": "string" }

 }

 },

 "simpleArrayProperty": {

 "type": "array",

 "items": { "type": "string" }

 },

 "compoundArrayProperty": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "A": { "type": "string" },

 "B": { "type": "string" }

 }

 }

 }

 }

 }

 }

Figure 45: SdfObject with an sdfProperty definition

¶

 container ExampleObject {

 helper:sdf-spec "sdfObject";

 list compoundArrayProperty {

 key "A";

 leaf A { type string; }

 leaf B { type string; }

 }

 container compoundProperty {

 leaf A { type string; }

 leaf B { type string; }

 }

 leaf-list simpleArrayProperty { type string; }

 leaf simpleProperty { type string; }

 }

Figure 46: YANG conversion of the sdfObject from the last figure

4.9. SdfAction Quality

SDF: Sections 2.2.3 and 5.3 (sdfAction) of [I-D.ietf-asdf-sdf]

YANG:

Section 7.14 (rpc) of [RFC7950]

Section 7.15 (action) of [RFC7950]

To represent operations that can be invoked in a model the sdfAction

class is used. Since operations can have input and output data the

sdfAction class is equipped with the sdfInputData and sdfOutputData

qualities that can both make use of the data qualities and the

common qualities described in Section 4.6 and Section 4.5. An

sdfAction can also define its own set of data types in the form of

sdfData definitions. Whether an sdfAction is converted to an rpc

node (which can only occur at the top-level of a module) or an

action node (which is always tied to a container node) depends on

its location inside the SDF model. SdfActions that are not part of

an sdfObject but can be found independently at the top of an SDF

model are converted to rpc nodes. All other sdfActions occurring

inside an sdfObject become action nodes inside the YANG container

equivalent to the sdfObject, as illustrated in Figure 47 and Figure

48 . The sdfInputData and sdfOutputData of an sdfAction are

converted like sdfProperties (see Section 4.8) and added as the

input and output node of the YANG RPC/action respectively.

* ¶

* ¶

- ¶

- ¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-2.2.3
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.3
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.3
https://rfc-editor.org/rfc/rfc7950#section-7.14
https://rfc-editor.org/rfc/rfc7950#section-7.14
https://rfc-editor.org/rfc/rfc7950#section-7.15
https://rfc-editor.org/rfc/rfc7950#section-7.15

 "sdfObject": {

 "ExampleObject": {

 "sdfAction": {

 "printString": {

 "sdfInputData": {

 "type": "object",

 "properties": {

 "content": { "type": "string" },

 "colour": { "type": "string" }

 }

 },

 "sdfOutputData": {

 "type": "object",

 "properties": {

 "success": { "type": "boolean" }

 }

 }

 }

 }

 }

 }

Figure 47: SdfObject definition that contains an sdfAction definition

 container ExampleObject {

 helper:sdf-spec "sdfObject";

 action printString {

 input {

 leaf colour { type string; }

 leaf content { type string; }

 }

 output {

 leaf success { type boolean; }

 }

 }

 }

Figure 48: YANG conversion of the sdfObject from the last figure

4.10. SdfEvent Quality

SDF: Sections 2.2.4 and 5.4 (sdfEvent) of [I-D.ietf-asdf-sdf]

YANG: Section 7.16 (notification) of [RFC7950]

The purpose of the sdfEvent class is to model signals that inform

about occurrences or events in an sdfObject. To represent the

emitted output data, sdfEvents can make use of the sdfOutputData

quality which in turn uses the data qualities. An sdfEvent is

* ¶

* ¶

https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-2.2.4
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.4
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-08#section-5.4
https://rfc-editor.org/rfc/rfc7950#section-7.16
https://rfc-editor.org/rfc/rfc7950#section-7.16

converted to a notification node with one child node representing

the sdfOutputData definition. The sdfOutputData definition is

converted like an sdfProperty (see Section 4.8). Figure 49 and

Figure 50 contain the SDF and YANG representations of a warning

notification which communicates the device and reason of the

warning.

 "sdfEvent": {

 "warning": {

 "sdfOutputData": {

 "type": "object",

 "properties": {

 "warningDevice": { "type": "string" },

 "warningReason": { "type": "string" }

 }

 }

 }

 }

Figure 49: SdfEvent definition

 notification warning {

 leaf warningDevice { type string; }

 leaf warningReason { type string; }

 }

Figure 50: YANG conversion of the sdfEvent from the last figure

5. Challenges

Since conversion between SDF and YANG is not always trivial this

section takes a look at the various challenges that arose in the

process of finding an adequate mapping for each of the language's

features to one another.

5.1. Differences in Expressiveness of SDF and YANG

SDF and YANG differ in their expressiveness in different areas.

Compared to the other format, both are stronger in some areas and

weaker in others.

Areas in which YANG is more expressive are regular expressions,

operations, some of the built-in types (bits and empty) and the

retrospective augmentation of existing definitions. In YANG,

multiple regular expressions to be matched can be defined and they

can also be labeled as invert-match expressions. Both features are

difficult to express in SDF as of now. Furthermore, YANG and SDF use

slightly different regular expression languages. YANG uses a regular

expression language as defined by W3C Schema while SDF adopts

¶

¶

¶

ECMAscript regular expressions. Operations in YANG can be defined on

their own or with an affiliation to a YANG container. This

affiliation is not always trivial to represent in SDF. The YANG

built-in types bits and empty do not have equivalents in SDF. The

semantics of those types can, however, easily be mapped to SDF. A

YANG statement whose semantics cannot be fully mapped to SDF is the

augment statement. The augmentation can be applied and then

converted but cannot be represented as a retrospective addition to

an SDF definition or model. Another Language feature of YANG that

SDF does not offer is the option to place constraints on valid data

via XPath expressions and the option to make sections of the model

conditional with the feature statement. YANG, furthermore, puts no

constraints on the value of its units statement, whereas SDF does

only allow SenML unit names in the unit quality.

SDF offers more possibilities to define default and constant values,

the latter especially in conjunction with minimum and maximum

values. YANG uses a single statement, the range statement, for

constant, minimum and maximum values. Although there can be multiple

values or ranges in one range statement that are interpreted as

alternatives they all need to be disjoint. This imposes a strict

limit on what can be expressed through the statement. An example for

a conversion where this is a problem would be an sdfData definition

with values for the minimum and maximum qualities but also a given

constant value that fits inside the given minimum and maximum range,

like the example in Figure 51. Such a definition could be converted

to a YANG typedef with a range that states the minimum and maximum

value as one range and the constant as an alternative, like the

example conversion in Figure 52. This example does not validate in

YANG because the range alternatives are not disjoint. This problem

is solved through use of the union built-in type. Furthermore,

labeling definitions as readable, observable and nullable, as

possible in SDF, is foreign to YANG. SDF is also more expressive in

the way it labels definitions that must obligatorily occur in model

instances. Basically all definitions can be labeled as such through

the sdfRequired and required qualities. In YANG, only leaf, choice,

anydata and anyxml nodes can be marked with the mandatory statement

directly. Container, list and leaf-list nodes can only be made

mandatory indirectly and there is no general mechanism in YANG for

all kinds of nodes.

¶

¶

 "sdfData": {

 "someValue": {

 "type": "integer",

 "minimum": 1,

 "maximum": 5,

 "const": 3

 }

 }

Figure 51: SdfData definition with the qualities minimum, maximum and

const

 typedef someValue {

 type int32;

 range "1 .. 5 | 3" // invalid in YANG

 }

Figure 52: YANG conversion of the SDF definition in the last figure

5.2. Round Trips

One of the bigger issues in building the converter is the

facilitation of round trips, i.e. converting a model from one format

to the other and in a next step back to the original. This issue is

tightly linked to the differences in expressiveness between the two

formats which makes mapping between them non-injective and thus non-

traceable without additional measures.

To be able to track the origins of an SDF element after conversion

from YANG, currently, a so-called \textit{conversion note} is added

to the description of the element. The note specifies a statement

and optionally an argument to the statement. An example for a note

stating that the original argument to the type statement was bits

is: !Conversion note: type bits!. This approach is not able to

preserve all information from the YANG module without exceptions

since sub-statements cannot be specified. It is, however, sufficient

in the majority of cases.

This issue was also discussed in one of the meetings of the ASDF

working group. The possibility to introduce a new mechanism for

round trips was suggested. Instead of overloading the SDF file with

information that adds no functionality, the possibility to preserve

information from the original model in a separate mapping file for

each model was proposed. Mapping files for SDF models could contain

selectors that assign additional information to the selected SDF

element or element group. No decision has been made yet on the

definite structure of such mapping files. Therefore, some

requirements from the perspective of the SDF/YANG converter are

listed here. Generally speaking, the information attached to an SDF

¶

¶

element should have at least the same information content in the

mapping file as in the previously mentioned conversion note, that is

a statement and optionally an argument. To also cater to statements

with further sub-statements, nesting should be possible, that is

defining further statements as arguments should be possible. It is

also necessary to be able to specify multiple statements to attach

to a selected SDF elements. Another solution to round trips with

mapping files would be to reference the associated YANG element of

the selected SDF element. This way, all information would be

preserved. Round trips would be easy because the original YANG

definition would stay attached to the converted SDF definition.

Opposing to that, if the SDF conversion of the YANG model is used to

be converted further into other languages, the supplementary

information of the original YANG element would still have to be

extracted. This defeats the purpose of SDF to reduce the number of

necessary mappings between languages. Thus, to attach statements

with arguments to SDF definitions in mapping files is the better

solution, in our opinion.

To preserve the original SDF language element after conversion to

YANG a new sdf-spec extension is defined in YANG. The extension

states the original SDF quality and optionally an argument,

similarly to the conversion note used to preserve information from

YANG.

The eventuality that round trips occur in model conversion makes

building the converter significantly more complex because all

features of the target format have to be accounted for. Features of

the target format that would otherwise not be used for conversion

must now be considered in the case of a round trip.

5.3. Type References

Both SDF and YANG offer the possibility to reference predefined

types. SDF uses only a single quality for this purpose (sdfRef)

whereas YANG has several statements that are all used in different

referencing contexts (leafref, identityref, type, uses). The way

the uses statement and the sdfRef quality are converted regularly

leads to additional containers in YANG or additional properties

(when using the compound-type) in SDF that make instances of the

same model in SDF and YANG in-equivalent and complicate round trips.

If no additional elements are inserted, information, for example the

name of an element, is lost.

Both the uses statement and the sdfRef quality embed the content of

the referenced expression where they are located. Issues arise

because YANG provides only groupings to be embedded via the uses

statement. Groupings are the non-declaration-equivalent to

containers. There is no non-declaration-equivalent to YANG lists,

¶

¶

¶

¶

however. This means that list definitions in YANG need to be

packaged in a grouping. If such a grouping with a single list inside

is transcribed from YANG to SDF there will be an extra layer that

looks redundant but otherwise does no harm. For the reasons stated

above, an sdfData definition of type array with items of compound-

type is converted to a list node inside a grouping in YANG. Problems

arise when said sdfData definition is embedded via sdfRef because

this cannot be converted directly to YANG. Such a scenario is

illustrated in Figure 53 and Figure 54. The sdfData definition menu

is converted to the YANG list menu inside a grouping menu.

Referencing the menu via sdfRef in the sdfProperty definitions

menu_english and menu_german is equivalent to copying the qualities

of the menu there. In the YANG conversion the containers menu_enlish

and menu_german both use the grouping menu. This means the menu list

from said grouping is copied into the containers. The containers are

necessary to preserve the names menu_english and menu_german and

also because there cannot be two sibling uses nodes with the same

target grouping (because no two sibling nodes must have the same

name).

Another issue with the mapping of type references is the

accessibility of elements. Only typedefs and groupings that appear

on the top-level of the tree can be reused globally. If these nodes

appear within a sub-tree they are only available in the scope of the

sub-tree. Since there is no such restriction in SDF, mapping sdfData

definitions directly would cause accessibility problems in the

resulting YANG module. Thus, mapped sdfData definitions have to be

moved to the top-level. In YANG it is furthermore assumed that every

type of node in the tree is addressable, while SDF focuses on

sdfProperties, sdfActions and sdfEvents as addressable affordances.

¶

¶

 ; [...]

 "sdfData": {

 "dish": {

 "type": "object",

 "properties": {

 "name": { "type": "string" },

 "price": { "type": "number" }

 }

 },

 "menu": {

 "type": "array",

 "items": { "sdfRef": "#/sdfData/dish" }

 }

 },

 "sdfObject": {

 "restaurant" : {

 "sdfProperty": {

 "menu_english": { "sdfRef": "#/sdfData/menu" },

 "menu_german": { "sdfRef": "#/sdfData/menu" },

 "dish_of_the_day": { "sdfRef": "#/sdfData/dish" }

 }

 }

 }

 }

Figure 53: SDF model with type definitions of types object and array

 module restaurant {

 // [...]

 grouping dish {

 leaf name { type string; }

 leaf price {

 type decimal64 { fraction-digits 6; }

 }

 }

 grouping menu {

 list menu {

 key "name";

 uses dish;

 }

 }

 container restaurant {

 container dish_of_the_day { uses dish; }

 container menu_english { uses menu; }

 container menu_german { uses menu; }

 }

 }

Figure 54: YANG conversion of the SDF model in the last figure

[I-D.ietf-asdf-sdf]

[RFC7950]

[LIBYANG]

[SDF-YANG-CONVERTER]

[SDF-YANG-CONVERTER-IMPL]

6. Implementation Considerations

An implementation of an initial converter between SDF and YANG can

be found at [SDF-YANG-CONVERTER]; the source code can be found at

[SDF-YANG-CONVERTER-IMPL].

7. IANA Considerations

This document makes no requests of IANA.

8. Security considerations

The security considerations of [RFC7950] and [I-D.ietf-asdf-sdf]

apply.

9. References

9.1. Normative References

Koster, M. and C. Bormann, "Semantic Definition

Format (SDF) for Data and Interactions of Things", Work

in Progress, Internet-Draft, draft-ietf-asdf-sdf-08, 25

October 2021, <https://www.ietf.org/archive/id/draft-

ietf-asdf-sdf-08.txt>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/info/rfc7950>.

9.2. Informative References

Vasko, M., Sedlák, D., and more contributors, "libyang",

<https://github.com/CESNET/libyang>.

Kiesewalter, J., "SDF YANG converter

playground", n.d., <sdf-yang-converter.org>.

Kiesewalter, J., "SDF YANG converter",

n.d., <https://github.com/jkiesewalter/sdf-yang-

converter>.

Acknowledgements

TBD.

Authors' Addresses

Jana Kiesewalter

Universität Bremen

¶

¶

¶

¶

https://www.ietf.org/archive/id/draft-ietf-asdf-sdf-08.txt
https://www.ietf.org/archive/id/draft-ietf-asdf-sdf-08.txt
https://www.rfc-editor.org/info/rfc7950
https://github.com/CESNET/libyang
https://datatracker.ietf.org/sdf-yang-converter.org
https://github.com/jkiesewalter/sdf-yang-converter
https://github.com/jkiesewalter/sdf-yang-converter

Email: jankie@uni-bremen.de

Carsten Bormann (editor)

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63921

Email: cabo@tzi.org

mailto:jankie@uni-bremen.de
tel:+49-421-218-63921
mailto:cabo@tzi.org

	Mapping between YANG and SDF
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Pairing SDF and YANG features
	3. Mapping from YANG to SDF
	3.1. Module
	3.2. Submodule
	3.3. Container Statement
	3.4. Leaf Statement
	3.5. Leaf-List Statement
	3.6. List Statement
	3.7. Grouping Statement
	3.8. Uses Statement
	3.9. Choice Statement
	3.10. RPC Statement
	3.11. Action Statement
	3.12. Notification Statement
	3.13. Augment Statement
	3.14. Anydata and Anyxml Statements
	3.15. Type Statement
	3.16. String Built-In Type
	3.17. Decimal64 Built-In Type
	3.18. Integer Built-In Types
	3.19. Boolean Built-In Type
	3.20. Binary Built-In Type
	3.21. Enumeration Built-In Type
	3.22. Bits Built-In Type
	3.23. Union Built-In Type
	3.24. Leafref and Identityref Built-In Types
	3.25. Empty Built-In Type
	3.26. Instance-Identifier Built-In Type
	3.27. Typedef Statement
	3.28. Identity Statement
	3.29. Config Statement
	3.30. Status Statement
	3.31. Reference Statement
	3.32. When and Must Statements
	3.33. Extension Statement

	4. Mapping from SDF to YANG
	4.1. Information Block
	4.2. Namespace Section
	4.3. SdfThing Quality
	4.4. SdfObject Quality
	4.5. Common Qualities
	4.6. Data Qualities
	4.7. SdfData Quality
	4.8. SdfProperty Quality
	4.9. SdfAction Quality
	4.10. SdfEvent Quality

	5. Challenges
	5.1. Differences in Expressiveness of SDF and YANG
	5.2. Round Trips
	5.3. Type References

	6. Implementation Considerations
	7. IANA Considerations
	8. Security considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Acknowledgements
	Authors' Addresses

