
Network Working Group K. Inamdar
Internet-Draft S. Narayanan
Intended status: Standards Track C. Jennings
Expires: March 13, 2020 Cisco Systems
 September 10, 2019

Automatic Peering for SIP Trunks
draft-kinamdar-dispatch-sip-audo-peer-00

Abstract

 This draft specifies a configuration workflow to enable enterprise
 Session Initiation Protocol (SIP) networks to solicit the capability
 set of a SIP service provider network. The capability set can
 subsequently be used to configure features and services on the
 enterprise edge element, such as a Session Border Controller (SBC),
 to ensure smooth peering between enterprise and service provider
 networks.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 13, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Inamdar, et al. Expires March 13, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft SIP Auto Peer September 2019

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Conventions and Terminology 3
3. Reference Architecture 3
4. Configuration Workflow 5
5. Overview of Operations 6
6. HTTP Transport . 7
6.1. HTTP Methods . 7
6.2. Integrity and Confidentiality 7
6.3. Authenticated Client Identity 7
6.4. Encoding the Request 8
6.5. Generating the Response 8
6.6. Identifying the Request Target 9

7. State Deltas . 12
8. Encoding the Service Provider Capability Set 12
9. Data Model for Capability Set 12
9.1. Tree Diagram . 12
9.2. YANG Model . 14
9.3. Node Definitions . 19
9.4. Extending the Capability Set 25

10. Example Capability Set Document Encoding 26
10.1. JSON Capability Set Document 26
10.2. XML Capability Set Document 28

11. Example Exchange . 29
12. Security Considerations 32
13. Acknowledgments . 33
14. References . 33
14.1. Normative References 33
14.2. Informative References 33

 Authors' Addresses . 35

1. Introduction

 The deployment of a Session Initiation Protocol (SIP)-based
 infrastructure in enterprise and service provider communication
 networks is increasing at a rapid pace. Consequently, direct IP
 peering between enterprise and service provider networks is quickly
 replacing traditional methods of interconnection between enterprise
 and service provider networks.

 Currently published standards provide a strong foundation over which
 direct IP peering can be realized. However, given the sheer number
 of these standards, it is often not clear which behavioral subsets,

Inamdar, et al. Expires March 13, 2020 [Page 2]

Internet-Draft SIP Auto Peer September 2019

 extensions to baseline protocols and operating principles ought to be
 implemented by service provider and enterprise networks to ensure
 successful peering.

 The SIP Connect technical recommendations aim to solve this problem
 by providing a master reference that promotes seamless peering
 between enterprise and service provider SIP networks. However,
 despite the extensive set of implementation rules and operating
 guidelines, interoperability issues between service provider and
 enterprise networks persist. This is in large part because service
 providers and equipment manufacturers aren't required to enforce the
 guidelines of the technical specifications and have a fair degree of
 freedom to deviate from them. Consequently, enterprise
 administrators usually undertake a fairly rigorous regimen of
 testing, analysis and troubleshooting to arrive at a configuration
 block that ensures seamless service provider peering.

 Another set of interoperability problems arise when enterprise
 administrators are required to translate a set of technical
 recommendations from service providers to configuration blocks across
 one or more devices in the enterprise, which is usually an error
 prone exercise. Additionally, such technical recommendations might
 not be nuanced enough to intuitively allow the generation of specific
 configuration blocks.

 This draft introduces a mechanism using which an enterprise network
 can solicit a detailed capability set from a SIP service provider;
 the detailed capability set can subsequently be used by automaton or
 an administrator to generate configuration blocks across one or more
 devices within the enterprise to ensure successful service provider
 peering.

2. Conventions and Terminology

 The The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
 NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in [RFC2119]

3. Reference Architecture

 Figure 1 illustrates a reference architecture that may be deployed to
 support the mechanism described in this document. The enterprise
 network consists of a SIP-PBX, media endpoints and a Session Border
 Controller. It may also include additional components such as
 application servers for voicemail, recording, fax etc. At a high
 level, the service provider consists of a SIP signaling entity (SP-
 SSE), a media entity and a HTTP(S) server.

https://datatracker.ietf.org/doc/html/rfc2119

Inamdar, et al. Expires March 13, 2020 [Page 3]

Internet-Draft SIP Auto Peer September 2019

 +---+
 | +---------------+ +-----------------------+ |
 | | | | | | | | | | | |
 | | +----------+ | | +-------+ | |
 | | | Cap | | HTTPS | | | | |
 | | | Server |<-|---------|-->| | | |
 | | | | | | | | +-----+ | |
 | | +----------+ | | | | | SIP | | |
 | | | | | |<->| PBX | | |
 | | | | | | +-----+ | |
 | | +----------+ | | | SBC | | |
 | | | | | SIP | | | | |
 | | | SP - SSE |<-|---------|-->| | +-----+ | |
 | | | | | | | |<->| M.E.| | |
 | | +----------+ | | | | | | | |
 | | | | | | +-----+ | |
 | | +----------+ | SRTP | | | | |
 | | | Media |<-|---------|-->+-------+ | |
 | | +----------+ | | | |
 | +---------------+ +-----------------------+ |
| |
 +---+

 Figure 1: Reference Architecture

 This draft makes use of the following terminology:

 o Enterprise Network: A communications network infrastructure
 deployed by an enterprise which interconnects with the service
 provider network over SIP. The enterprise network could include
 devices such as application servers, endpoints, call agents and
 edge devices among others.

 o Edge Device: A device that is the last hop in the enterprise
 network and that is the transit point for traffic entering and
 leaving the enterprise. An edge device is typically a back-to-
 back user agent (B2BUA) such as a Session Border Controller (SBC).

 o Service Provider Network: A communications network infrastructure
 deployed by service providers. In the context of this draft, the
 service provider network is accessible over SIP for the
 establishment, modification and termination of calls and
 accessible over HTTP(S) for the transfer of the capability set
 document. The service provider network is also referred to as a
 SIP Service Provider (SSP) or Internet Telephony Service Provider
 (ITSP) network. These networks typically interconnect with other
 service provider networks over SIP or ISDN.

Inamdar, et al. Expires March 13, 2020 [Page 4]

Internet-Draft SIP Auto Peer September 2019

 o Call Control: Call Control within a telephony networks refers to
 software that is responsible for delivering its core
 functionality. Call control not only provides the basic
 functionality of setting up, sustaining and terminating calls, but
 also provides the necessary control and logic required for
 additional services within the telephony network.

 o Capability Server: A server hosted in the service provider
 network, such that this server is the target for capability set
 document requests from the enterprise network.

 o Capability Set: This specification uses the term capability set
 (or capability set document) to refer collectively to a set of
 characteristics within the service provider network, which when
 communicated to the enterprise network allows it to obtain
 sufficient information required to peer successfully with the
 service provider network.

4. Configuration Workflow

 A workflow that facilitates an enterprise network to solicit the
 capability set of a SIP service provider ought to take into account
 the following considerations:

 o The configuration workflow must be based on a protocol or a set of
 protocols commonly used between enterprise and service provider
 telephony networks.

 o The configuration workflow must be flexible enough to allow the
 service provider network to dynamically offload different
 capability sets to different enterprise networks based on the
 identity of the enterprise network.

 o Capability set documents obtained as a result of the configuration
 workflow must be conducive to easy parsing by automaton.
 Subsequently, automaton may be used for generation of appropriate
 configuration blocks.

 Taking the above considerations into account, this document proposes
 a Hypertext Transfer Protocol (HTTP)-based workflow using which the
 enterprise network can solicit and ultimately obtain the service
 provider capability set. The enterprise network creates a well
 formed HTTPS GET request to solicit the service provider capability
 set. Subsequently, the HTTPS response from the SIP service provider
 includes the capability set. The capability set is encoded in either
 XML or JSON, thus ensuring that the response can be easily parsed by
 automaton.

Inamdar, et al. Expires March 13, 2020 [Page 5]

Internet-Draft SIP Auto Peer September 2019

 There are alternative mechanisms using which the SIP service provider
 can offload its capability set. For example, the Session Initiation
 Protocol (SIP) can be extended to define a new event package
 [RFC6665], such that the enterprise network can establish a SIP
 subscription with the service provider for its capability set; the
 SIP service provider can subsequently use the SIP NOTIFY request to
 communicate its capability set or any state deltas to its baseline
 capability set. This mechanism is likely to result in a significant
 amount of operational complexity. For example, not only would this
 workflow require enterprise and service provider equipment
 manufacturers to upgrade their software stacks, but it would also
 create a significant amount of ambiguity in terms of which device in
 the service provider network handles subscriptions and generates
 notifications. Yet another example of an alternative mechanism would
 be for service providers and enterprise equipment manufacturers to
 agree on YANG models [RFC6020] that enable configuration to be pushed
 over NETCONF [RFC6241] to enterprise networks from a centralized
 source hosted in service provider networks. The presence of
 proprietary software logic for call and media handling in enterprise
 devices would preclude the generation of a "one-size-fits-all" YANG
 model. Additionally, service provider networks pushing configuration
 to enterprises devices might lead to the loss of implementation
 autonomy on the part of the enterprise network.

5. Overview of Operations

 To solicit the capability set of the SIP service provider, the edge
 element in the enterprise network generates a well-formed HTTPS GET
 request. There are two reasons why it makes sense for the enterprise
 edge element to generate the HTTPs request:

 1. Edge elements are devices that normalize any mismatches between
 the enterprise and service provider networks in the media and
 signaling planes. As a result, when the capability set is
 received from the SIP service provider network, the edge element
 can generate appropriate configuration blocks (possibly across
 multiple devices) to enable smooth IP peering.
 2. Given that edge elements are configured to "talk" to networks
 external to the enterprise, the complexity in terms of NAT
 traversal and firewall configuration would be minimal.

 The HTTPs GET request is targeted at a capability server that is
 managed by the SIP service provider such that this server processes,
 and on successfully processing the request, includes the capability
 set document in the response. The capability set document is
 constructed according the guidelines of the YANG model described in
 this draft. The capability set document included in a successful
 response is formatted in either XML or JSON. The formatting depends

https://datatracker.ietf.org/doc/html/rfc6665
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6241

Inamdar, et al. Expires March 13, 2020 [Page 6]

Internet-Draft SIP Auto Peer September 2019

 on the value of the "Accept" header field of the HTTP GET request.
 More details about the formatting of the HTTP request and response
 are provided in Section 6

 Figure 1 provides a reference architecture in which this workflow may
 be implemented. The architecture depicted in Figure 1 consists of an
 enterprise telephony network and a SIP service provider network, such
 that the enterprise network attempts to provision SIP trunking
 services for the first time. For the sake of simplicity, the
 enterprise and service provider networks are decomposed into their
 core constituent elements.

6. HTTP Transport

 This section describes the use of HTTP as a transport protocol for
 the peering workflow. This workflow is based on HTTP version 1.1

6.1. HTTP Methods

 The workflow defined in this document leverages the HTTP GET method
 and its corresponding response(s) to request for and subsequently
 obtain the service provider capability set document. The HTTP POST
 method and its corresponding response(s) is also used for client
 authentication.

 To ensure the smooth operation of this workflow, this draft enforces
 certain controls (not to be confused with HTTP controls as defined in
 [RFC7231] on the HTTP client and server. These controls as they
 relate to formatting, operational guidelines, security concerns and
 more, are detailed in subsequent sections of this draft.

6.2. Integrity and Confidentiality

 Peering requests and responses are defined over HTTP. However, due
 to the sensitive nature of information transmitted between client and
 server, it is required to secure HTTP using Transport Layer Security.
 The enterprise edge element and capability server MUST be compliant
 to [RFC7235]. The enterprise edge element and capability server MUST
 support the use of the https uri scheme as defined in [RFC7230].

6.3. Authenticated Client Identity

 The configuration workflow and corresponding YANG model described in
 this draft allow for smooth IP peering between enterprise and SIP
 service provider networks by encoding the essential session and media
 characteristics. It is NOT RECOMMENDED to encode information that is
 sensitive in nature. It is only required for the client (enterprise
 edge element) to authenticate the SIP service provider. If however,

https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7230

Inamdar, et al. Expires March 13, 2020 [Page 7]

Internet-Draft SIP Auto Peer September 2019

 there is a need for the SIP service provider to authenticate the
 enterprise edge element, client authentication mechanisms based on
 OAuth 2.0 token are RECOMMENDED. The specifics of how the client
 obtains such tokens is outside the scope of this draft. Section 11
 provides an example of how clients may be authenticated using OAuth
 2.0 tokens.

6.4. Encoding the Request

 The edge element in the enterprise network generates a HTTPS GET
 request such that the request-target is obtained using the procedure
 outlined in section 6.6 The MIME types for the capability set
 document defined in this draft are "application/peering-info+json"
 and "application/peering-info+xml". Accordingly, the Accept header
 field value MUST be restricted only to these MIME types. It is
 possible that the edge element supports responses formatted in both
 JSON and XML. In such situations, the edge element might generate a
 HTTPS GET request such that the Accept header field includes both
 MIME types along with the corresponding "qvalue" for each MIME type.
 For implementations that require client authentication, the bearer
 access token acquired by the client (see section 6.3) MUST be
 presented to the capability server to the obtain the capability set
 document. The bearer token is presented in the "Authorization"
 header field of the GET request as specified in Section 2.1 of
 [RFC6750].

 The generated HTTPS GET request MUST NOT use the "Expect" and "Range"
 header fields. The requests also MUST NOT use any conditional
 request.

6.5. Generating the Response

 Capability servers include the capability set documents in the body
 of a successful response. Capability set documents MUST be formatted
 in XML or JSON. For requests that are incorrectly formatted, the
 capability server SHOULD generate a "400 Bad Request" response. If
 the client (enterprise edge element) includes any other MIME types in
 Accept header field other than "application/peering-info+json" or
 "application/peering-info+xml", the capability set MUST reject the
 request with a "406 Not Acceptable" response.

 The capability server can respond to client requests with redirect
 responses, specifically, the server can respond with the following
 redirect responses:

 1. 301 Moved Temporarily

 2. 302 Found

https://datatracker.ietf.org/doc/html/rfc6750#section-2.1
https://datatracker.ietf.org/doc/html/rfc6750#section-2.1

Inamdar, et al. Expires March 13, 2020 [Page 8]

Internet-Draft SIP Auto Peer September 2019

 3. 307 Temporary Redirect

 The server SHOULD include the Location header field in such
 responses.

 For requests that carry an invalid bearer token in the Authorization
 header field, the capability server SHOULD respond with a HTTP 401
 status code.

6.6. Identifying the Request Target

 HTTPS GET requests from enterprise edge elements MUST carry a valid
 request-target. The enterprise edge element might obtain the URL of
 the resource hosted on the capability server in one of two ways:

 1. Manual Configuration
 2. Using the WebFinger Protocol

 The complete HTTPS URLs to be used when authenticating the enterprise
 edge element (optional) and obtaining the SIP service provider
 capability set can be obtained from the SIP service provider
 beforehand and entered into the edge element manually via some
 interface - for example, a CLI or GUI.

 However, if the resource URL is unknown to the administrator (and by
 extension of that to the edge element), the WebFinger protocol
 [RFC7033] may be leveraged. From the perspective of this draft,
 three link relation types (rel) are defined, namely:

 1. Capability Server: The base URL of the capability server hosting
 the capability set document.
 2. Authorization Endpoint: The URL of the authorization endpoint to
 be used for OAuth 2.0
 3. Token Endpoint: The URL of the token endpoint to be used for
 OAuth 2.0

 The corresponding link relation type values are as follows:

 1. Capability Server: "<http://sipserviceprovider/capserver">
 2. Authorization Endpoint: "<http://sipserviceprovider/auth">
 3. Token Endpoint: "<http://sipserviceprovider/token">

 If an enterprise edge element attempts to discover the URL of the
 endpoints hosted in the ssp1.example.com domain, it issues the
 following request (line wraps are for display purposes only)

https://datatracker.ietf.org/doc/html/rfc7033

Inamdar, et al. Expires March 13, 2020 [Page 9]

Internet-Draft SIP Auto Peer September 2019

 GET /.well-known/webfinger?
 resource=http%3A%2F%2Fssp1.example.com
 &rel=http%3A%2f%2fsipserviceprovider%2fcapserver
 &rel=http%3A%2f%2fsipserviceprovider%2auth
 &rel= http%3A%2f%2fsipserviceprovider%2token
 HTTP/1.1
 Host: ssp1.example.com

 The response to the above request might be as follows:

 HTTP/1.1 200 OK
 Access-Control-Allow-Origin: *
 Content-Type: application/jrd+json
 {
 "subject" : "http://ssp1.example.com",
 "links" :
 [
 {
 "rel" : "http://sipserviceprovider/capserver",
 "href" : "https://capserver.ssp1.com"
 },
 {
 "rel" : "http://sipserviceprovider/auth",
 "href" : "https://ssp1.com/authorize"
 },
 {
 "rel" : "http://sipserviceprovider/token",
 "href" : "https://ssp1.com/token"
 }
]
 }

 SIP service providers MUST support the "https" URI and "acct" URI
 [link] schemes in WebFinger queries. The "acct" URI scheme might be
 used in the WebFinger query, if the enterprise adminsitrator is
 provided with a username by the SIP service provider. The SIP
 service provider might provide a unique username for each SIP trunk
 purchased by the enterprise network or a single username that is
 applicable to all the trunks purchased by the enterprise network.
 This draft does not require SIP service providers or enterprise
 networks to favor one URI scheme over the other; rather, the choice
 of which scheme to use is left to the discretion of the SIP service
 provider. The security considerations of using the "acct" URI is
 provided in section 5 of [RFC7565].

 The base URL of the capability server returned in the WebFinger
 response SHOULD not contain a path or query component. Once the base

https://datatracker.ietf.org/doc/html/rfc7565#section-5

Inamdar, et al. Expires March 13, 2020 [Page 10]

Internet-Draft SIP Auto Peer September 2019

 URL is obtained, the enterprise edge element builds on the base URL
 to identify the capability set document on the capability server.
 The general format for identifying resources on a capability server
 is as follows:

 <scheme> /<baseURL>/<path>?<query>

 scheme: Is always HTTPS in the context of this draft.

 baseURL: The base URL of the capability server discovered as a result
 of the WebFinger query.

 path: The path expression identifying the capability set document on
 the capability server. The path expression MUST be set to the static
 string of "capdoc".

 query: A query string identifying a specific representation of the
 capability set document. The format of the query string is in the
 form of a "name=value" pair. This draft defines the following
 optional query parameter:

 trunkid: A parameter uniquely identifying the SIP trunk for which the
 capability set document is sought.

 The "trunkid" is useful in situations in which an enterprise SIP
 network has multiple SIP trunks with the SIP service provider, such
 that parameters for such trunks vary, perhaps because of the
 geographical distribution of these sites. The value of the "trunkid"
 parameter is generated by the SIP service provider and communicated
 to the enterprise SIP network by some out-of-band mechanism, for
 example, it may be provided in an email to the enterprise
 administrator after the trunk is purchased. It is RECOMMENDED that
 SIP service providers generate unique trunk identifiers across
 enterprise networks.

 It is RECOMMENDED that SIP service provider networks support the
 "trunkid" query parameter. SIP service providers expose varying
 capability sets to different enterprise SIP telephony networks.
 Using the "trunkid" query parameter not only helps the SIP service
 provider capability server to uniquely identify the trunk/enterprise/
 edge element for which the capability set document is being request,
 but also, it is helpful in generating unique URL strings for
 capability set documents. These unique URL strings are helpful in
 HTTP content caching.

Inamdar, et al. Expires March 13, 2020 [Page 11]

Internet-Draft SIP Auto Peer September 2019

7. State Deltas

 Given that the service provider capability set is largely expected to
 remain static, the work needed to implement an asynchronous push
 mechanism to encode minor changes in the capability set document
 (state deltas) is not commensurate with the benefits. Rather,
 enterprise edge elements can poll capability servers at pre-defined
 intervals to obtain the full capability set document. It is
 RECOMMENDED that capability servers are polled every 24 hours.

8. Encoding the Service Provider Capability Set

 In the context of this draft, the capability set of a service
 provider refers collectively to a set of characteristics which when
 communicated to an enterprise network, provides it with sufficient
 information to directly peer with the service provider network. The
 capability set document is not designed to encode extremely granular
 details of all features, services, and protocol extensions that are
 supported by the service provider network. For example, it is
 sufficient to encode that the service provider uses T.38 relay for
 faxing, it is not required to know the value of the
 "T38FaxFillBitRemoval" parameter.

 The parameters within the capability set document represent a wide
 array of characteristics, such that these characteristics
 collectively disseminate sufficient information to enable direct IP
 peering between enterprise and service provider networks. The
 various parameters represented in the capability set are chosen based
 on existing practises and common problem sets typically seen between
 enterprise and service provider SIP networks.

9. Data Model for Capability Set

 This section defines a YANG module for encoding the service provider
 capability set. Section 9.1 provides the tree diagram, which is
 followed by a description of the various nodes within the module
 defined in this draft.

9.1. Tree Diagram

 This section provides a tree diagram [RFC8340] for the "ietf-
 capability-set" module. The interpretation of the symbols appearing
 in the tree diagram is as follows:

 o Brackets "[" and "]" enclose list keys.

 o Abbreviations before data node names: "rw" means configuration
 (read-write), and "ro" means state data (read-only).

https://datatracker.ietf.org/doc/html/rfc8340

Inamdar, et al. Expires March 13, 2020 [Page 12]

Internet-Draft SIP Auto Peer September 2019

 o Symbols after data node names: "?" means an optional node, "!"
 means a presence container, and "*" denotes a list and leaf-list.

 o Parentheses enclose choice and case nodes, and case nodes are also
 marked with a colon (":").

 o Ellipsis ("...") stands for contents of subtrees that are not
 shown.

 The data model for the peering capability document has the following
 structure:

 module: ietf-sip-auto-peering
 +--rw peering-info
 +--rw variant string
 +--rw transport-info
 | +--rw transport? enumeration
 | +--rw registrar* host-port
 | +--rw registrarRealm? string
 | +--rw callControl* host-port
 | +--rw dns* inet:ip-address
 | +--rw outboundProxy? host-port
 +--rw call-specs
 | +--rw earlyMedia? boolean
 | +--rw signalingForking? boolean
 | +--rw supportedMethods? string
 +--rw media
 | +--rw mediaTypeAudio
 | | +--rw mediaFormat* string
 | +--rw fax
 | | +--rw protocol* enumeration
 | +--rw rtp
 | | +--rw RTPTrigger? boolean
 | | +--rw symmetricRTP? boolean
 | +--rw rtcp
 | +--rw symmetricRTCP? boolean
 | +--rw RTCPfeedback? boolean
 +--rw dtmf
 | +--rw payloadNumber? int8
 | +--rw iteration? boolean
 +--rw security
 | +--rw signaling
 | | +--rw type? string
 | | +--rw version? string
 | +--rw mediaSecurity
 | +--rw keyManagement? string
 +--rw extensions? string

Inamdar, et al. Expires March 13, 2020 [Page 13]

Internet-Draft SIP Auto Peer September 2019

9.2. YANG Model

 This section defines the YANG module for the peering capability set
 document. It imports modules (ietf-yang-types and ietf-inet-types)
 from [RFC6991].

 module ietf-sip-auto-peering {
 namespace "urn:ietf:params:xml:ns:ietf-sip-auto-peering";
 prefix "peering";

 description
 "Data model for transmitting peering parameters from SP to Enterprise";

 revision 2019-05-06 {
 description "Initial revision of peering-response doc.";
 }

 import ietf-inet-types {
 prefix "inet";
 }

 typedef ipv4-address-port {
 type string {
 pattern '(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
 + '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])'
 + ':^()([1-9]|[1-5]?[0-9]{2,4}|6[1-4][0-9]{3}|65[1-4][0-9]{2}|
655[1-2][0-9]|6553[1-5])$';
 }
 description "The ipv4-address-port type represents an IPv4 address in
 dotted-quad notation followed by a port number.";
 }

 typedef ipv6-address-port {
 type string {
 pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
 + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
 + '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
 + '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
 + ':^()([1-9]|[1-5]?[0-9]{2,4}|6[1-4][0-9]{3}|65[1-4][0-9]{2}|
655[1-2][0-9]|6553[1-5])$';
 pattern
 '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
 + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)'
 + ':^()([1-9]|[1-5]?[0-9]{2,4}|6[1-4][0-9]{3}|65[1-4][0-9]{2}|
655[1-2][0-9]|6553[1-5])$';
 }
 description
 "The ipv6-address type represents an IPv6 address in full,

https://datatracker.ietf.org/doc/html/rfc6991

 mixed, shortened, and shortened-mixed notation followed by a port
number.";
 }

Inamdar, et al. Expires March 13, 2020 [Page 14]

Internet-Draft SIP Auto Peer September 2019

 typedef ip-address-port {
 type union {
 type ipv4-address-port;
 type ipv6-address-port;
 }
 description
 "The ip-address-port type represents an IP address:port number
 and is IP version neutral.";
 }

 typedef domain-name-port {
 type string {
 pattern
 '((([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.)*'
 + '([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.?)'
 + '|\.'
 + ':^()([1-9]|[1-5]?[0-9]{2,4}|6[1-4][0-9]{3}|65[1-4][0-9]{2}|
655[1-2][0-9]|6553[1-5])$';
 length "1..258";
 }
 description
 "The domain-name-port type represents a DNS domain name followed by a
port number.
 The name SHOULD be fully qualified whenever possible.";
 }

 typedef host-port {
 type union {
 type ip-address-port;
 type domain-name-port;
 }
 description
 "The host type represents either an IP address or a DNS
 domain name followed by a port number.";
 }

 container peering-info {
 leaf variant {
 type string;
 mandatory true;
 description "Variant of peering-response document";
 }

 container transport-info {
 leaf transport {
 type enumeration {
 enum "TCP";
 enum "TLS";

 enum "UDP";
 enum "TCP;TLS";

Inamdar, et al. Expires March 13, 2020 [Page 15]

Internet-Draft SIP Auto Peer September 2019

 enum "TCP;TLS;UDP";
 enum "TCP;UDP";
 }
 description "Transport Protocol(s) used in SIP communication";
 }

 leaf-list registrar {
 type host-port;
 max-elements 3;
 description "List of service provider registrar servers";
 }

 leaf registrarRealm {
 type string;
 description "Realm for REGISTER requests carrying credentials";
 }

 leaf-list callControl {
 type host-port;
 max-elements 3;
 description "List of service provider call control servers";
 }

 leaf-list dns {
 type inet:ip-address;
 max-elements 2;
 description "IP address of the DNS Server(s) hosted by the service
provider";
 }

 leaf outboundProxy {
 type host-port;
 description "SIP Outbound Proxy";
 }
 }

 container call-specs {
 leaf earlyMedia {
 type boolean;
 description "Flag indicating whether the service provider is
expected
 to deliver early media.";
 }

 leaf signalingForking {
 type boolean;
 description "Flag indicating whether the service provider is
capable

 of forking incoming calls ";
 }

Inamdar, et al. Expires March 13, 2020 [Page 16]

Internet-Draft SIP Auto Peer September 2019

 leaf supportedMethods {
 type string;
 description "Leaf/Leaf List indicating the different SIP methods
 support by the service provider.";
 }
 }

 container media {
 container mediaTypeAudio {
 leaf-list mediaFormat {
 type string;
 description "Leaf List indicating the audio media formats
supported.";
 }
 }

 container fax {
 leaf-list protocol {
 type enumeration {
 enum "pass-through";
 enum "t38";
 }
 max-elements 2;
 description "Leaf List indicating the different fax protocols
 supported by the service provider.";
 }
 }

 container rtp {
 leaf RTPTrigger {
 type boolean;
 description "Flag indicating whether the service provider expects
to
 receive the first media packet.";
 }

 leaf symmetricRTP {
 type boolean;
 description "Flag indicating whether the service provider expects
 symmetric RTP defined in [@RFC4961]";
 }
 }

 container rtcp {
 leaf symmetricRTCP {
 type boolean;
 description " Flag indicating whether the service provider
expects

https://datatracker.ietf.org/doc/html/rfc4961

 symmetric RTP defined in [@RFC4961].";
 }

Inamdar, et al. Expires March 13, 2020 [Page 17]

https://datatracker.ietf.org/doc/html/rfc4961

Internet-Draft SIP Auto Peer September 2019

 leaf RTCPfeedback {
 type boolean;
 description "Flag Indicating support for RTP profile extension
for
 RTCP-based feedback, as defined in [@RFC4585]";
 }
 }
 }

 container dtmf {
 leaf payloadNumber {
 type int8 {
 range "96..127";
 }
 description "Leaf that indicates the payload number(s) supported by
 the service provider for DTMF relay via Named-Telephony-Events";
 }

 leaf iteration {
 type boolean;
 description "Flag identifying whether the service provider supports
 NTE DTMF relay using the procedures of [@RFC2833] or [@RFC4733] .";
 }
 }

 container security {
 container signaling {
 leaf type {
 type string {
 pattern "TLS";
 }
 description "Type of signaling security supported.";
 }

 leaf version {
 type string {
 pattern "([1-9]\.[0-9])(;[1-9]\.[0-9])?|(NULL)";
 }
 description "Indicates TLS version for SIP signaling";
 }
 }

 container mediaSecurity {
 leaf keyManagement {
 type string {
 pattern "(SDES(;DTLS-SRTP,version=[1-9]\.[0-9](,[1-9]\.
[0-9])?)?)|(DTLS-SRTP,version=[1-9]\.[0-9](,[1-9]\.[0-9])?)|(NULL)";
 }

https://datatracker.ietf.org/doc/html/rfc4585
https://datatracker.ietf.org/doc/html/rfc2833
https://datatracker.ietf.org/doc/html/rfc4733

 description "Leaf that identifies the key management methods
 supported by the service provider for SRTP.";

Inamdar, et al. Expires March 13, 2020 [Page 18]

Internet-Draft SIP Auto Peer September 2019

 }
 }
 }

 leaf extensions {
 type string;
 description "Lists the various SIP extensions supported by SP";
 }
 }
 }

9.3. Node Definitions

 This sub-sections provides the definition and encoding rules of the
 various nodes of the YANG module defined in section 9.2

 o *capability-set*: This node serves as a container for all the
 other nodes in the YANG module; the capability-set node is akin to
 the root element of an XML schema.

 o *variant*: This node identifies the version number of the
 capability set document. This draft defines the parameters for
 variant 1.0; future specifications might define a richer parameter
 set, in which case the variant can be changed to 2.0, 3.0 and so
 on. Future extensions to the capability set document MUST also
 ensure that the corresponding YANG module is defined.

 o *transport-info*: The transport-info node is a container that
 encapsulates transport characteristics of SIP sessions between
 enterprise and service provider networks.

 o *transport*: A leaf node that enumerates the different Transport
 Layer protocols supported by the SIP service provider. Valid
 transport layer protocols include: UDP, TCP, TLS or a combination
 of them (with the exception of TLS and UDP).

 o *registrar*: A leaf-list that specifies the transport address of
 one or more registrar servers in the service provider network.
 The transport address of the registrar can be provided using a
 combination of a valid IP address and port number, or a subdomain
 of the SIP service provider network, or the fully qualified domain
 name (FQDN) of the SIP service provider network. If the transport
 address of a registrar is specified using either a subdomain or a
 fully qualified domain name, the DNS element needs to be populated
 with one or more valid DNS server IP addresses.

 o *callControl*: A leaf-list that specifies the transport address of
 the call server(s) in the service provider network. The

Inamdar, et al. Expires March 13, 2020 [Page 19]

Internet-Draft SIP Auto Peer September 2019

 enterprise network MUST use an applicable transport protocol in
 conjunction with the call control server(s) transport address when
 transmitting call setup requests. The transport address of a call
 server(s) within the service provider network can be specified
 using a combination of a valid IP address and port number, or a
 subdomain of the SIP service provider network, or a fully
 qualified domain name of the SIP service provider network. If the
 transport address of a call control server(s) is specified using
 either a subdomain or a fully qualified domain name, the DNS
 element MUST be populated with one or more valid DNS server IP
 addresses. The transport address specified in this element can
 also serve as the target for non-call requests such as SIP
 OPTIONS.

 o *dns*: A leaf list that encodes the IP address of one or more DNS
 servers hosted by the SIP service provider. If the enterprise
 network is unaware of the IP address, port number, and transport
 protocol of servers within the service provider network (for
 example, the registrar and call control server), it MUST use DNS
 NAPTR and SRV. Alternatively, if the enterprise network has the
 fully qualified domain name of the SIP service provider network,
 it MUST use DNS to resolve the said FQDN to an IP address. The
 dns element encodes the IP address of one or more DNS servers
 hosted in the service provider network. If however, either the
 registrar or callControl elements or both are populated with a
 valid IP address and port pair, the dns element MUST be set to the
 quadruple octet of 0.0.0.0.

 o *outboundProxy*: A leaf list that specifies the transport address
 of one or more outbound proxies. The transport address can be
 specified by using a combination of an IP address and a port
 number, a subdomain of the SIP service provider network, or a
 fully qualified domain name and port number of the SIP service
 provider network. If the outbound-proxy sub-element is populated
 with a valid transport address, it represents the default
 destination for all outbound SIP requests and therefore, the
 registrar and callControl elements MUST be populated with the
 quadruple octet of 0.0.0.0.

 o *call-specs*: A container that encapsulates information about call
 specifications, restrictions and additional handling criteria for
 SIP calls between the enterprise and service provider network.

 o *earlyMedia*: A leaf that specifies whether the service provider
 network is expected to deliver in-band announcements/tones before
 call connect. The P-Early-Media header field can be used to
 indicate pre-connect delivery of tones and announcements on a per-
 call basis. However, given that signalling and media could

Inamdar, et al. Expires March 13, 2020 [Page 20]

Internet-Draft SIP Auto Peer September 2019

 traverse a large number of intermediaries with varying
 capabilities (in terms of handling of the P-Early-Media header
 field) within the enterprise, such devices can be appropriately
 configured for media cut through if it is known before-hand that
 early media is expected for some or all of the outbound calls.
 This element is a Boolean type, where a value of 1/true signifies
 that the service provider is capable of early media. A value of
 0/false signifies that the service provider is not expected to
 generate early media.

 o *signalingForking*: A leaf that specifies whether outbound call
 requests from the enterprise might be forked on the service
 provider network leading to multiple early dialogs. This
 information would be useful to the enterprise network in
 appropriately handling multiple early dialogs reliably and in
 enforcing local policy. This element is a Boolen type, where a
 value of 1/true signifies that the service provider network can
 potentially fork outbound call requests from the enterprise. A
 value of 0/false indicates that the service provider will not fork
 outbound call requests.

 o *supportedMethods*: A leaf node that specifies the various SIP
 methods supported by the SIP service provider. The list of
 supported methods help to appropriately configuration various
 devices within the enterprise network. For example, if the
 service provider enumerates support for the OPTIONS method, the
 enterprise network could periodically send OPTIONS requests as a
 keep-alive mechanism.

 o *media*: A container that is used to collectively encapsulate the
 characteristics of UDP-based audio streams. A future
 extension to this draft may extend the media container to describe
 other media types. The media container is also used to
 encapsulate basic information about Real-Time Transport Protocol
 (RTP) and Real-Time Transport Control Protocol (RTCP) from the
 perspective of the service provider network.

 o *mediaTypeAudio*: A container for the mediaFormat leaf-list. This
 container collectively encapsulates the various audio media
 formats supported by the SIP service provider.

 o *mediaFormat*: A leaf-list encoding the various audio media
 formats supported by the SIP service provider. The relative
 ordering of different media format leaf nodes from left to right
 indicates preference from the perspective of the service provider.
 Each mediaFormat node begins with the encoding name of the media
 format, which is the same encoding name as used in the "RTP/AVP"
 and "RTP/SAVP" profiles. The encoding name is followed by

Inamdar, et al. Expires March 13, 2020 [Page 21]

Internet-Draft SIP Auto Peer September 2019

 required and optional parameters for the given media format as
 specified when the media format is registered [RFC4855]. Given
 that the parameters of media formats can vary from one
 communication session to another, for example, across two separate
 communication sessions, the packetization time (ptime) used for
 the PCMU media format might vary from 10 to 30 ms, the parameters
 included in the format element MUST be the ones that are expected
 to be invariant from the perspective of the service provider.
 Providing information about supported media formats and their
 respective parameters, allows enterprise networks to configure the
 media plane characteristics of various devices such as endpoints
 and middleboxes. The encoding name, one or more required
 parameters, one or more optional parameters are all separated by a
 semicolon. The formatting of a given media format parameter, MUST
 follow the formatting rules as specified for that media format.

 o *fax*: A container that encapsulates the fax protocol(s) supported
 by the SIP service provider. The fax container encloses a leaf-
 list (named protocol) that enumerates whether the service provider
 supports t38 relay, protocol-based fax passthrough or both. The
 relative ordering of leaf nodes within the leaf lists indicates
 preference.

 o *rtp*: A container that encapsulates generic characteristics of
 RTP sessions between the enterprise and service provider network.
 This node is a container for the "RTPTrigger" and "SymmetricRTP"
 leaf nodes.

 o *RTPTrigger*: A leaf node indicating whether the SIP service
 provider network always expects the enterprise network to send the
 first RTP packet for an established communication session. This
 information is useful in scenarios such as "hairpinned" calls, in
 which the caller and callee are on the service provider network
 and because of sub-optimal media routing, an enterprise device
 such as an SBC is retained in the media path. Based on the
 encoding of this node, it is possible to configure enterprise
 devices such as SBCs to start streaming media (possibly filled
 with silence payloads) toward the address:port tuples provided by
 caller and callee. This node is a Boolean type. A value of 1/
 true indicates that the service provider expects the enterprise
 network to send the first RTP packet, whereas a value of 0/false
 indicates that the service provider network does not require the
 enterprise network to send the first media packet. While the
 practise of preserving the enterprise network in a hairpinned call
 flow is fairly common, it is RECOMMENDED that SIP service
 providers avoid this practise. In the context of a hairpinned
 call, the enterprise device retained in the call flow can easily
 eavesdrop on the conversation between the offnet parties.

https://datatracker.ietf.org/doc/html/rfc4855

Inamdar, et al. Expires March 13, 2020 [Page 22]

Internet-Draft SIP Auto Peer September 2019

 o *symmetricRTP*: A leaf node indicating whether the SIP service
 provider expects the enterprise network to use symmetric RTP as
 defined in [RFC4961]. Uncovering this expectation is useful in
 scenarios where "latching" [RFC3762] is implemented in the service
 provider network. This node is a Boolean type, a value of 1/true
 indicates that the service provider expects the enterprise network
 to use symmetric RTP, whereas a value of 0/false indicates that
 the enterprise network can use asymmetric RTP.

 o *rtcp*: A container that encapsulates generic characteristics of
 RTCP sessions between the enterprise and service provider network.
 This node is a container for the "RTCPFeedback" and
 "SymmetricRTCP" leaf nodes.

 o *RTCPFeedback*: A leaf node that indicates whether the SIP service
 provider supports the RTP profile extension for RTCP-based
 feedback [RFC4585]. Media sessions spanning enterprise and
 service provider networks, are rarely made to flow directly
 between the caller and callee, rather, it is often the case that
 media traffic flows through network intermediaries such as SBCs.
 As a result, RTCP traffic from the service provider network is
 intercepted by these intermediaries, which in turn can either pass
 across RTCP traffic unmodified or modify RTCP traffic before it is
 forwarded to the endpoint in the enterprise network. Modification
 of RTCP traffic would be required, for example, if the
 intermediary has performed media payload transformation operations
 such as transcoding or transrating. In a similar vein, for the
 RTCP-based feedback mechanism as defined in [RFC4585] to be truly
 effective, intermediaries MUST ensure that feedback messages are
 passed reliably and with the correct formatting to enterprise
 endpoints. This might require additional configuration and
 considerations that need to be dealt with at the time of
 provisioning the intermediary device. This node is a Boolean
 type, a value of 1/true indicates that the service provider
 supports the RTP profile extension for RTP-based feedback and a
 value of 0/false indicates that the service provider does not
 support the RTP profile extension for RTP-based feedback.

 o *symmetricRTCP*: A leaf node indicating whether the SIP service
 provider expects the enterprise network to use symmetric RTCP as
 defined in [RFC4961]. This node is a Boolean type, a value of 1
 indicates that the service provider expects symmetric RTCP
 reports, whereas a value of 0 indicates that the enterprise can
 use asymmetric RTCP.

 o *dtmf*: A container that describes the various aspects of DTMF
 relay via RTP Named Telephony Events. The dtmf container allows

https://datatracker.ietf.org/doc/html/rfc4961
https://datatracker.ietf.org/doc/html/rfc3762
https://datatracker.ietf.org/doc/html/rfc4585
https://datatracker.ietf.org/doc/html/rfc4585
https://datatracker.ietf.org/doc/html/rfc4961

Inamdar, et al. Expires March 13, 2020 [Page 23]

Internet-Draft SIP Auto Peer September 2019

 SIP service providers to specify two facets of DTMF relay via
 Named Telephony Events:

 1. The payload type number using the payloadNumber leaf node.
 2. Support for [RFC2833] or [RFC4733] using the iteration leaf node.

 In the context of named telephony events, senders and receivers may
 negotiate asymmetric payload type numbers. For example, the sender
 might advertise payload type number 97 and the receiver might
 advertise payload type number 101. In such instances, it is either
 required for middleboxes to interwork payload type numbers or allow
 the endpoints to send and receive asymmetric payload numbers. The
 behaviour of middleboxes in this context is largely dependent on
 endpoint capabilities or on service provider constraints. Therefore,
 the payloadNumber leaf node can be used to determine middlebox
 configuration before-hand.

 [RFC4733]iterates over [RFC2833] by introducing certain changes in
 the way NTE events are transmitted. SIP service providers can
 indicate support for [RFC4733] by setting the iteration flag to 1 or
 indicating support for [RFC2833] by setting the iteration flag to 0.

 o *security*: A container that encapsulates characteristics about
 encrypting signalling streams between the enterprise and SIP
 service provider networks.

 o *signaling*: A container that encapsulates the type of security
 protocol for the SIP communication between the enterprise SBC and
 the service provider.

 o *type*: A leaf node that specifies the protocol used for
 protecting SIP signalling messages between the enterprise and
 service provider network. The value of the type leaf node is only
 defined for Transport Layer Security (TLS). Accordingly, if TLS
 is allowed for SIP sessions between the enterprise and service
 provider network, the type leaf node is set to the string "tls".

 o *version*: A leaf node that specifies the version(s) of TLS
 supported in decimal format. If multiple versions of TLS are
 supported, they MUST be separated by semi-colons. If the service
 provide does not support TLS for protecting SIP sessions, the
 signalling element is set to the string "NULL".

 o *mediaSecurity*: A container that describes the various
 characteristics of securing media streams between enterprise and
 service provider networks.

https://datatracker.ietf.org/doc/html/rfc2833
https://datatracker.ietf.org/doc/html/rfc4733
https://datatracker.ietf.org/doc/html/rfc4733
https://datatracker.ietf.org/doc/html/rfc2833
https://datatracker.ietf.org/doc/html/rfc4733
https://datatracker.ietf.org/doc/html/rfc2833

Inamdar, et al. Expires March 13, 2020 [Page 24]

Internet-Draft SIP Auto Peer September 2019

 o *keyManagement*: A leaf node that specifies the key management
 method used by the service provider. Possible values of this node
 include: "SDES" and "DTLS-SRTP". A value of "SDES" signifies that
 the SIP service provider uses the methods defined in [RFC4568] for
 the purpose of key management. A value of "DTLS-SRTP" signifies
 that the SIP service provider uses the methods defined in
 [RFC5764] for the purpose of key management. If the value of this
 leaf node is set to "DTLS-SRTP", the various versions of DTLS
 supported by the SIP service provider MUST be encoded as per the
 formatting rules of Section 9.2. If the service provider does not
 support media security, the keyManagement node MUST be set to
 "NULL".

 o *extensions*: A leaf node that is a semicolon separated list of
 all possible SIP option tags supported by the service provider
 network. These extensions MUST be referenced using name
 registered under IANA. If the service provider network does not
 support any extensions to baseline SIP, the extensions node MUST
 be set to "NULL".

9.4. Extending the Capability Set

 There are situations in which equipment manufactures or service
 providers would benefit from extending the YANG module defined in
 this draft. For example, service providers could extend the YANG
 module to include information that further simplifies direct IP
 peering. Such information could include: trunk group identifiers,
 direct-inward-dial (DID) number ranges allocated to the enterprise,
 customer/enterprise account numbers, service provider support
 numbers, among others.

 Extension of the module can be achieved by importing the module
 defined in this draft. An example is provided below:

 Consider a new YANG module "vendorA" specified for VendorA's
 enterprise SBC. The "vendorA-config" YANG module is configured as
 follows:

https://datatracker.ietf.org/doc/html/rfc4568
https://datatracker.ietf.org/doc/html/rfc5764

Inamdar, et al. Expires March 13, 2020 [Page 25]

Internet-Draft SIP Auto Peer September 2019

 module vendorA-config {
 namespace "urn:ietf:params:xml:ns:yang:vendorA-config";
 prefix "vendorA";

 description
 "Data model for configuring VendorA Enterprise SBC";

 revision 2020-05-06 {
 description "Initial revision of VendorA Enterprise SBC configuration
data model";
 }

 import ietf-peering {
 prefix "peering";
 }

 augment "/peering:peering-info" {
 container vendorAConfig {
 leaf vendorAConfigParam1 {
 type int32;
 description "vendorA configuration parameter 1 (SBC Device ID)";
 }

 leaf vendorAConfigParam2 {
 type string;
 description "vendorA configuration parameter 2 (SBC Device
name)";
 }
 description "Container for vendorA SBC configuration";
 }
 }
 }

 In the example above, a custom module named "vendorA-config" uses the
 "augment" statement as defined in Section 4.2.8 of [RFC7950] to
 extend the module defined in this draft.

10. Example Capability Set Document Encoding

 This section provides examples of how capability set documents that
 leverage the YANG module defined in this document can be encoded over
 JSON or XML.

10.1. JSON Capability Set Document

https://datatracker.ietf.org/doc/html/rfc7950#section-4.2.8

Inamdar, et al. Expires March 13, 2020 [Page 26]

Internet-Draft SIP Auto Peer September 2019

 {
 "peering-info:variant": "1.0",
 "transport-info": {
 "transport": "TCP;TLS;UDP",
 "registrar": ["registrar1.voip.example.com:5060",
"registrar2.voip.example.com:5060"],
 "registrarRealm": "voip.example.com",
 "callControl": ["callServer1.voip.example.com:5060",
"192.168.12.25:5065"],
 "dns": [8.8.8.8, 208.67.222.222],
 "outboundProxy": "0.0.0.0"
 },
 "call-specs": {
 "earlyMedia": "true",
 "signalingForking": "false",
 "supportedMethods":
"INVITE;OPTIONS;BYE;CANCEL;ACK;PRACK;SUBSCRIBE;NOTIFY;REGISTER"
 },
 "media": {
 "mediaTypeAudio": {
 "mediaFormat":
["PCMU;rate=8000;ptime=20","G729;rate=8000;annexb=yes","G722;rate=8000;bitrate=56k,
64k"]
 },
 "fax": {
 "protocol": ["pass-through", "t38"]
 },
 "rtp": {
 "RTPTrigger": "false",
 "symmetricRTP": "true"
 },
 "rtcp": {
 "symmetricRTCP": "true",
 "RTCPFeedback": "true"
 }
 },
 "dtmf": {
 "payloadNumber": "101",
 "iteration": "0"
 },
 "security": {
 "signaling": {
 "type": "TLS",
 "version": "1.0;1.2"
 },
 "mediaSecurity": {
 "keyManagement": "SDES;DTLS-SRTP,version=1.2"
 }

 },
 "extensions": "timer;rel100;gin;path"
 }

Inamdar, et al. Expires March 13, 2020 [Page 27]

Internet-Draft SIP Auto Peer September 2019

10.2. XML Capability Set Document

 <peering-info xmlns="urn:ietf:params:xml:ns:yang:ietf-peering"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:ietf:params:xml:ns:yang:ietf-peering ietf-
peering.xsd">
 <variant>1.0</variant>
 <transport-info>
 <transport>TCP;TLS;UDP</transport>
 <registrar>registrar1.voip.example.com:5060</registrar>
 <registrar>registrar2.voip.example.com:5060</registrar>
 <registrarRealm>voip.example.com</registrarRealm>
 <callControl>callServer1.voip.example.com:5060</callControl>
 <callControl>192.168.12.25:5065</callControl>
 <dns>8.8.8.8</dns>
 <dns>208.67.222.222</dns>
 <outboundProxy>0.0.0.0</outboundProxy>
 </transport-info>
 <call-specs>
 <earlyMedia>true</earlyMedia>
 <signalingForking>false</signalingForking>

<supportedMethods>INVITE;OPTIONS;BYE;CANCEL;ACK;PRACK;SUBSCRIBE;NOTIFY;REGISTER</
supportedMethods>
 </call-specs>
 <media>
 <mediaTypeAudio>
 <mediaFormat>PCMU;rate=8000;ptime=20</mediaFormat>
 <mediaFormat> G729;rate=8000;annexb=yes</mediaFormat>
 <mediaFormat>G722;rate=8000;bitrate=56k,64k</mediaFormat>
 </mediaTypeAudio>
 <fax>
 <protocol>pass-through</protocol>
 <protocol>t38</protocol>
 </fax>
 <rtp>
 <RTPTrigger>true</RTPTrigger>
 <symmetricRTP>true</symmetricRTP>
 </rtp>
 <rtcp>
 <symmetricRTCP>true</symmetricRTCP>
 <RTCPFeedback>true</RTCPFeedback>
 </rtcp>
 </media>
 <dtmf>
 <payloadNumber>101</payloadNumber>
 <iteration>0</iteration>
 </dtmf>

 <security>
 <signaling>
 <type>TLS</type>

Inamdar, et al. Expires March 13, 2020 [Page 28]

Internet-Draft SIP Auto Peer September 2019

 <version>1.0;1.2</version>
 </signaling>
 <mediaSecurity>
 <keyManagement>SDES;DTLS-SRTP,version=1.2</keyManagement>
 </mediaSecurity>
 </security>
 <extensions>timer;rel100;gin;path</extensions>
 </peering-response>

11. Example Exchange

 This section depicts an example of the configuration flow that
 ultimately results in the enterprise edge element obtaining the
 capability set document from the SIP service provider.

 Assuming the enterprise edge element isn't pre-configured with the
 request target for the capability set document and is required to
 authenticate with the SIP service provider capability server, the
 following sequence of events are put into motion to obtain the
 capability set document:

 The enterprise edge element generates a WebFinger query to discover
 endpoints hosted in the ssp1.example.com domain (line wraps are for
 display purposes only)

 GET /.well-known/webfinger?
 resource=http%3A%2F%2Fssp1.example.com
 &rel=http%3A%2f%2fsipserviceprovider%2fcapserver
 &rel=http%3A%2f%2fsipserviceprovider%2auth
 &rel= http%3A%2f%2fsipserviceprovider%2token
 HTTP/1.1
 Host: ssp1.example.com

 The resulting WebFinger response, contains the URLs of the capability
 server, the OAuth 2.0 authorization endpoint and OAuth 2.0 token
 endpoint.

Inamdar, et al. Expires March 13, 2020 [Page 29]

Internet-Draft SIP Auto Peer September 2019

 HTTP/1.1 200 OK
 Access-Control-Allow-Origin: *
 Content-Type: application/jrd+json
 {
 "subject" : "http://ssp1.example.com",
 "links" :
 [
 {
 "rel" : "http://sipserviceprovider/capserver",
 "href" : "https://capserver.ssp1.com"
 },
 {
 "rel" : "http://sipserviceprovider/auth",
 "href" : "https://ssp1.com/authorize"
 },
 {
 "rel" : "http://sipserviceprovider/token",
 "href" : "https://ssp1.com/token"
 },
]
 }

The endpoint URLs returned in the WebFinger response are stored by the
edge element and referenced when required. Then, the administrator logs
into the GUI of the edge element and initiates the download of the
service provider capability set (perhaps by clicking on a button). This
triggers the edge element to redirect the administrator to the OAuth 2.0
authorization endpoint (discovered via WebFinger). Once the
administrator is authenticated and provides authorization, flow is
redirected to the callback URL of the edge element application. The edge
element then contacts the OAuth 2.0 token endpoint (discovered via
WebFinger) to authenticate itself and obtain access and refresh tokens.
Accordingly, the edge element mints a JWT bearer token to authenticate
itself with the token endpoint and obtain an access and refresh token.
Below is an example of client authentication using a JWT during the
presentation of an authorization code grant for an access token request
(line wraps are for display purposes only).

Inamdar, et al. Expires March 13, 2020 [Page 30]

Internet-Draft SIP Auto Peer September 2019

 POST /token HTTP/1.1
 Host: ssp1.com
 Content-Type: application/x-www-form-urlencoded

 grant_type=authorization_code&
 code=n0esc3NRze7LTCu7iYzS6a5acc3f0ogp4&
 client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3A
 client-assertion-type%3Ajwt-bearer&
 client_assertion=eyJhbGciOiJSUzI1NiIsImtpZCI6IjIyIn0.
 eyJpc3Mi[...omitted for brevity...].
 cC4hiUPo[...omitted for brevity...]

 If the request is acceptable to the token endpoint, an access token and
 a refresh token is provided in the response. For example:

 HTTP/1.1 200 OK
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token":"sF_9.B5f-4.1JqM",
 "token_type":"Bearer",
 "expires_in":86400,
 "refresh_token":"hGzv3JOkF0XG5Qx2TlKWIA"
 }

 The obtained bearer access token can subsequently be used to obtain the
 capability set document for the capability server. The edge element
 generates a HTTPS GET request with the bearer token included in the
 Authorization header field.

 GET //capdoc?trunkid=trunkent1456 HTTP/1.1
 Host: capserver.ssp1.com
 Authorization: Bearer mF_9.B5f-4.1JqM
 Accept:application/peering-info+xml

 The capability set document is obtained in the body of the response and
 is encoded in XML.

Inamdar, et al. Expires March 13, 2020 [Page 31]

Internet-Draft SIP Auto Peer September 2019

 HTTP/1.1 200 OK
 Content-Type: application/peering-info+xml
 Content-Length: nnn

 <peering-info>
 ...
 </peering-info>

12. Security Considerations

 Capability set documents have a significant bearing on the quality of
 the peering relationship between an enterprise and service provider
 network. These documents can be modified by an attacker to
 drastically impact the quality of communication sessions between
 enterprise and service provider networks. Additionally, capability
 set documents contain parameters that may be considered sensitive
 from the perspective of the SIP service provider. For example, the
 YANG model defined in this document might be extended by SIP service
 providers to include account sensitive information such as the
 username and password to used when generating an MD5 response to
 401/407 SIP challenges.

 To ensure the problems discussed in the previous paragraph are
 accounted for, the following considerations MUST be taken into
 account:

 o Integrity and Confidentiality

 Request and responses for the capability set documents are defined
 over HTTP. However, due to the sensitive nature of information
 transmitted between client and server, it is required to secure HTTP
 using Transport Layer Security. The enterprise edge element and
 capability server MUST be compliant to [RFC7235]. The enterprise
 edge element and capability server MUST support the use of the https
 uri scheme as defined in [RFC7230].

 o Authenticated Client Identity

 While this draft does not enforce client authentication, there are
 situations in which client need to authenticated by SIP service
 providers before they are provided capability set documents. In such
 situations client MUST be authenticated using the procedures outlined
 in section 6.3 of this draft.

 o The "trunkid" parameter

https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7230

Inamdar, et al. Expires March 13, 2020 [Page 32]

Internet-Draft SIP Auto Peer September 2019

 It is RECOMMENDED that enterprise edge elements use the "trunkid"
 parameter in query strings when requesting for the capability set
 documents. The value of "trunkid" parameter is generated by the SIP
 service provider and provided to the administrator via some out-of-
 band mechanism. SIP service providers MUST ensure that value of the
 "trunkid" parameters does not inadvertently communicate sensitive
 information to an attacker such as a username or password credential.

 In addition to the considerations listed above, all the security
 considerations that are part of the WebFinger and OAuth 2.0
 specifications are applicable to this draft.

13. Acknowledgments

 TBD

14. References

14.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
RFC 6991, DOI 10.17487/RFC6991, July 2013,

 <https://www.rfc-editor.org/info/rfc6991>.

14.2. Informative References

 [RFC2833] Schulzrinne, H. and S. Petrack, "RTP Payload for DTMF
 Digits, Telephony Tones and Telephony Signals", RFC 2833,
 DOI 10.17487/RFC2833, May 2000,
 <https://www.rfc-editor.org/info/rfc2833>.

 [RFC3762] Levin, O., "Telephone Number Mapping (ENUM) Service
 Registration for H.323", RFC 3762, DOI 10.17487/RFC3762,
 April 2004, <https://www.rfc-editor.org/info/rfc3762>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://datatracker.ietf.org/doc/html/rfc6991
https://www.rfc-editor.org/info/rfc6991
https://datatracker.ietf.org/doc/html/rfc2833
https://www.rfc-editor.org/info/rfc2833
https://datatracker.ietf.org/doc/html/rfc3762
https://www.rfc-editor.org/info/rfc3762

Inamdar, et al. Expires March 13, 2020 [Page 33]

Internet-Draft SIP Auto Peer September 2019

 [RFC4568] Andreasen, F., Baugher, M., and D. Wing, "Session
 Description Protocol (SDP) Security Descriptions for Media
 Streams", RFC 4568, DOI 10.17487/RFC4568, July 2006,
 <https://www.rfc-editor.org/info/rfc4568>.

 [RFC4585] Ott, J., Wenger, S., Sato, N., Burmeister, C., and J. Rey,
 "Extended RTP Profile for Real-time Transport Control
 Protocol (RTCP)-Based Feedback (RTP/AVPF)", RFC 4585,
 DOI 10.17487/RFC4585, July 2006,
 <https://www.rfc-editor.org/info/rfc4585>.

 [RFC4733] Schulzrinne, H. and T. Taylor, "RTP Payload for DTMF
 Digits, Telephony Tones, and Telephony Signals", RFC 4733,
 DOI 10.17487/RFC4733, December 2006,
 <https://www.rfc-editor.org/info/rfc4733>.

 [RFC4855] Casner, S., "Media Type Registration of RTP Payload
 Formats", RFC 4855, DOI 10.17487/RFC4855, February 2007,
 <https://www.rfc-editor.org/info/rfc4855>.

 [RFC4961] Wing, D., "Symmetric RTP / RTP Control Protocol (RTCP)",
BCP 131, RFC 4961, DOI 10.17487/RFC4961, July 2007,

 <https://www.rfc-editor.org/info/rfc4961>.

 [RFC5764] McGrew, D. and E. Rescorla, "Datagram Transport Layer
 Security (DTLS) Extension to Establish Keys for the Secure
 Real-time Transport Protocol (SRTP)", RFC 5764,
 DOI 10.17487/RFC5764, May 2010,
 <https://www.rfc-editor.org/info/rfc5764>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6665] Roach, A., "SIP-Specific Event Notification", RFC 6665,
 DOI 10.17487/RFC6665, July 2012,
 <https://www.rfc-editor.org/info/rfc6665>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <https://www.rfc-editor.org/info/rfc6750>.

 [RFC7033] Jones, P., Salgueiro, G., Jones, M., and J. Smarr,
 "WebFinger", RFC 7033, DOI 10.17487/RFC7033, September
 2013, <https://www.rfc-editor.org/info/rfc7033>.

https://datatracker.ietf.org/doc/html/rfc4568
https://www.rfc-editor.org/info/rfc4568
https://datatracker.ietf.org/doc/html/rfc4585
https://www.rfc-editor.org/info/rfc4585
https://datatracker.ietf.org/doc/html/rfc4733
https://www.rfc-editor.org/info/rfc4733
https://datatracker.ietf.org/doc/html/rfc4855
https://www.rfc-editor.org/info/rfc4855
https://datatracker.ietf.org/doc/html/bcp131
https://datatracker.ietf.org/doc/html/rfc4961
https://www.rfc-editor.org/info/rfc4961
https://datatracker.ietf.org/doc/html/rfc5764
https://www.rfc-editor.org/info/rfc5764
https://datatracker.ietf.org/doc/html/rfc6241
https://www.rfc-editor.org/info/rfc6241
https://datatracker.ietf.org/doc/html/rfc6665
https://www.rfc-editor.org/info/rfc6665
https://datatracker.ietf.org/doc/html/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://datatracker.ietf.org/doc/html/rfc7033
https://www.rfc-editor.org/info/rfc7033

Inamdar, et al. Expires March 13, 2020 [Page 34]

Internet-Draft SIP Auto Peer September 2019

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <https://www.rfc-editor.org/info/rfc7235>.

 [RFC7565] Saint-Andre, P., "The 'acct' URI Scheme", RFC 7565,
 DOI 10.17487/RFC7565, May 2015,
 <https://www.rfc-editor.org/info/rfc7565>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

 <https://www.rfc-editor.org/info/rfc8340>.

Authors' Addresses

 Kaustubh Inamdar
 Cisco Systems

 Email: kinamdar@cisco.com

 Sreekanth Narayanan
 Cisco Systems

 Email: sreenara@cisco.com

 Cullen Jennings
 Cisco Systems

 Email: fluffy@iii.ca

https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7235
https://www.rfc-editor.org/info/rfc7235
https://datatracker.ietf.org/doc/html/rfc7565
https://www.rfc-editor.org/info/rfc7565
https://datatracker.ietf.org/doc/html/rfc7950
https://www.rfc-editor.org/info/rfc7950
https://datatracker.ietf.org/doc/html/bcp215
https://datatracker.ietf.org/doc/html/rfc8340
https://www.rfc-editor.org/info/rfc8340

Inamdar, et al. Expires March 13, 2020 [Page 35]

