
Workgroup: webtrans

Internet-Draft:

draft-kinnear-webtransport-http2-00

Published: 9 March 2020

Intended Status: Standards Track

Expires: 10 September 2020

Authors: A. Frindell

Facebook Inc.

E. Kinnear

Apple Inc.

T. Pauly

Apple Inc.

V. Vasiliev

Google

G. Xie

Facebook Inc.

WebTransport using HTTP/2

Abstract

WebTransport is a protocol framework that enables clients

constrained by the Web security model to communicate with a remote

server using a secure multiplexed transport. This document describes

Http2Transport, a WebTransport protocol that is based on HTTP/2 and

provides support for bidirectional streams multiplexed within the

same HTTP/2 connection.

Note to Readers

Discussion of this draft takes place on the WebTransport mailing

list (webtransport@ietf.org), which is archived at <https://

mailarchive.ietf.org/arch/search/?email_list=webtransport>.

The repository tracking the issues for this draft can be found at

<https://github.com/erickinnear/draft-http-transport/issues>. The

web API draft corresponding to this document can be found at

<https://wicg.github.io/web-transport/>.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 September 2020.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Conventions and Definitions

3. Http2Transport Overview

3.1. WebTransport Connect Streams

3.2. WebTransport Streams

3.3. Negotiation

3.4. The SETTINGS_ENABLE_WEBTRANSPORT SETTINGS parameter

3.5. The WTHEADERS Frame

3.6. Initiating the Extended CONNECT Handshake

3.7. Examples

4. Using WebTransport Streams

4.1. Stream States

4.2. Interaction with HTTP/2 Features

4.3. Intermediaries

4.4. Session Termination

5. Security Considerations

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

6. IANA Considerations

6.1. HTTP/2 Frame Type Registry

6.2. HTTP/2 Settings Registry

6.3. HTTP/2 Error Code Registry

6.4. Upgrade Token Registration

7. References

7.1. Normative References

7.2. Informative References

Acknowledgments

Authors' Addresses

1. Introduction

HTTP/2 [RFC7540] transports HTTP messages via a framing layer that

includes many optimizations designed to make communication more

efficient between clients and servers. These include multiplexing of

multiple streams on a single underlying transport connection, flow

control, priorities, header compression, and exchange of

configuration information between endpoints.

Currently, the only mechanism in HTTP/2 for server to client

communication is server push. That is, servers can initiate

unidirectional push promised streams to clients, but clients cannot

respond to them; they can only accept them or discard them.

Additionally, intermediaries along the path may have different

server push policies and may not forward push promised streams to

the downstream client. This best effort mechanism is not sufficient

to reliably deliver messages from servers to clients, limiting

server to client use-cases such as chat messages or notifications.

Several techniques have been developed to workaround these

limitations: long polling [RFC6202], WebSocket [RFC8441], and

tunneling using the CONNECT method. All of these approaches layer an

application protocol on top of HTTP/2, using HTTP/2 streams as

transport connections. This layering defeats the optimizations

provided by HTTP/2. For example, application metadata is

encapsulated in DATA frames rather than HEADERS frames, bypassing

the advantages of HPACK header compression. Further, application

data might be framed multiple times at different protocol layers,

reducing the wire efficiency of the protocol.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

This document defines Http2Transport, a mechanism for multiplexing

non-request/response streams with HTTP/2 in a manner that conforms

with the WebTransport protocol framework [I-D.vvv-webtransport-

overview]. Using the mechanism described, multiple Http2Transport

instances can be multiplexed simultaneously with regular HTTP

traffic on the same HTTP/2 connection.

Section 8.3 of [RFC7540] defines the HTTP CONNECT method for HTTP/2,

which converts an HTTP/2 stream into a tunnel for arbitrary data.

[RFC8441] describes the use of the extended CONNECT method to

negotiate the use of the WebSocket Protocol [RFC6455] on an HTTP/2

stream. Http2Transport uses the extended CONNECT handshake to allow

WebTransport endpoints to multiplex arbitrary data streams on HTTP/2

connections.

In this draft, a new HTTP/2 frame is introduced which carries

structured metadata like the HEADERS and PUSH_PROMISE frames, but

without the constraints of the request/response state machine and

semantics.

The WebTransport over HTTP/2 extension:

Enables bidirectional and symmetric communication over HTTP/2.

After a WebTransport session is established, a server can

initiate a WebTransport stream to the client at any time, and

the client can respond to server-initiated streams.

Allows WebTransport streams to take advantage of HTTP/2

features such as header compression, prioritization and flow-

control.

Provides a mechanism for intermediaries to route server

initiated messages to the correct client.

Allows clients and servers to group streams and route them

together.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document follows terminology defined in Section 1.2 of [I-

D.vvv-webtransport-overview]. Note that this document distinguishes

between a WebTransport server and an HTTP/2 server. An HTTP/2 server

is the server that terminates HTTP/2 connections; a WebTransport

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

¶

server is an application that accepts WebTransport sessions, which

can be accessed via an HTTP/2 server.

3. Http2Transport Overview

3.1. WebTransport Connect Streams

After negotiating the use of this extension, clients initiate one or

more WebTransport Connect Streams to a Http2Transport Server.

Http2Transport servers are identified by a pair of authority value

and path value (defined in [RFC3986] Sections 3.2 and 3.3

respectively). The client uses the extended CONNECT method with a

:protocol token "webtransport" to establish a WebTransport Connect

Stream. This stream is only used to establish a WebTransport session

and is not intended for data exchange.

3.2. WebTransport Streams

Following the establishment of a WebTransport Connect stream, either

the client or the server can initiate a WebTransport Stream by

sending the WTHEADERS frame, defined in Section 3.5. This frame

references an open WebTransport Connect stream which is used by any

intermediaries to correctly forward the stream to the destination

endpoint. The only frames allowed on WebTransport Streams are

WTHEADERS, CONTINUATION, DATA and any negotiated extension frames.

3.3. Negotiation

Clients negotiate the use of WebTransport ove HTTP/2 using both the

SETTINGS frame and one or more extended CONNECT requests as defined

in [RFC8441].

Use of the extended CONNECT method extension requires the

SETTINGS_ENABLE_CONNECT_PROTOCOL parameter to be received by a

client prior to its use. An endpoint that supports receiving the

extended CONNECT method SHOULD send this setting with a value of 1.

The extended CONNECT method extension uses the :protocol psuedo-

header field to negotiate the protocol that will be used on a given

stream in an HTTP/2 connection. This document registers a new token,

"webtransport", in the "Hypertext Transfer Protocol (HTTP) Upgrade

Token Registry" established by [RFC7230] and located at https://

www.iana.org/assignments/http-upgrade-tokens/.

This token is used in the :protocol psuedo-header field to indicate

that the endpoint wishes to use the WebTransport protocol on the new

stream.

¶

¶

¶

¶

¶

¶

¶

https://www.iana.org/assignments/http-upgrade-tokens/
https://www.iana.org/assignments/http-upgrade-tokens/

3.4. The SETTINGS_ENABLE_WEBTRANSPORT SETTINGS parameter

As described in Section 5.5 of [RFC7540], SETTINGS parameters allow

endpoints to negotiate use of protocol extensions that would

otherwise generate protocol errors.

This document introduces a new SETTINGS parameter,

SETTINGS_ENABLE_WEBTRANSPORT, which MUST have a value of 0 or 1.

Once a SETTINGS_ENABLE_WEBTRANSPORT parameter has been sent with a

value of 1, an endpoint MUST NOT send the parameter with a value of

0.

Upon receipt of SETTINGS_ENABLE_WEBTRANSPORT with a value of 1, an

endpoint MAY use the WTHEADERS frame type defined in this document.

An endpoint that supports receiving the WTHEADERS as part of the

WebTransport protocol SHOULD send this setting with a value of 1.

3.5. The WTHEADERS Frame

A new HTTP/2 frame called WTHEADERS is introduced for establishing

streams in a bidirectional manner. A stream opened by a WTHEADERS

frame is referred to as a WebTransport Stream, and it MAY be

continued by CONTINUATION and DATA frames. WebTransport Streams can

be initiated by either clients or servers via a WTHEADERS frame that

refers to the corresponding WebTransport Connect Stream on which the

WebTransport protocol was negotiated.

The WTHEADERS frame (type=0xfb) has all the fields and frame header

flags defined by HEADERS frame in HEADERS [RFC7540], Section 6.2.

The WTHEADERS frame has one extra field, Connect Stream ID.

WTHEADERS frames can be sent on a stream in the "idle", "open", or

"half-closed (remote)" state, see Section 4.1.

Like HEADERS, the CONTINUATION frame (type=0x9) is used to continue

a sequence of header block fragments, if the headers do not fit into

one WTHEADERS frame.

The WTHEADERS frame is shown in Figure 1.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Figure 1: WTHEADERS Frame Format

The Connect Stream specified in a WTHEADERS frame MUST be an open

stream negotiated via the extended CONNECT protocol with a :protocol

value of "webtransport".

The recipient MUST respond with a connection error of type

WTHEADERS_STREAM_ERROR if the specified WebTransport Connect Stream

does not exist, is not a stream established via extended CONNECT to

use the "webtransport" protocol, or if it is in the closed or half-

closed (remote) stream state. This allows WebTransport Streams to

participate in header compression and flow control.

3.6. Initiating the Extended CONNECT Handshake

An endpoint that wishes to establish a WebTransport session over an

HTTP/2 stream follows the extended CONNECT handshake procedure

defined in [RFC8441], specifying "webtransport" for the :protocol

psuedo-header field.

The :scheme and :path psuedo-headers are required by [RFC6455]. The

scheme of the target URI MUST be set to "https" for all :protocol

values. The path is used to identify the specific WebTransport

server instance for negotiation and MAY be set to "/" (an empty path

component).

Implementations should note that the Origin, Sec-WebSocket-Version,

Sec-WebSocket-Protocol, and Sec-WebSocket-Extensions header fields

are not required to be included in the CONNECT request and response

header fields, since this handshake mechanism is not being used to

negotiate a WebSocket connection.

If the response to the extended CONNECT request indicates success of

the handshake, then all further data sent or received on the new

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+---------------+

|Pad Length? (8)|

+-+-------------+---+

|E| Stream Dependency? (31) |

+-+-------------+---+

| Weight? (8) |

+-+-------------+---+

|R| Connect Stream ID (31) |

+-+---+

| Header Block Fragment (*) ...

+---+

| Padding (*) ...

+---+

¶

¶

¶

¶

¶

HTTP/2 stream is considered to be that of the WebTransport protocol

and follows the semantics defined by that protocol. If the response

indicates failure of the handshake, any WebTransport Streams that

reference the WebTransport Connect Stream that failed to establish

MUST also be reset.

3.7. Examples

An example of negotiating a WebTransport Stream on an HTTP/2

connection follows. This example is intended to closely follow the

example in Section 5.1 of [RFC8441] to help illustrate the

differences defined in this document.

¶

¶

An example of the server initiating a WebTransport Stream follows.

The only difference here is the endpoint that sends the first

WTHEADERS frame.

[[From Client]] [[From Server]]

SETTINGS

SETTINGS_ENABLE_CONNECT_[..] = 1

SETTINGS_ENABLE_WEBTRANSPORT = 1

 SETTINGS

 SETTINGS_ENABLE_CONNECT_[..] = 1

 SETTINGS_ENABLE_WEBTRANSPORT = 1

HEADERS + END_HEADERS

+ STREAM_ID = 3

:method = CONNECT

:protocol = webtransport

:scheme = https

:path = /

:authority = server.example.com

 HEADERS + END_HEADERS

 + STREAM_ID = 3

 :status = 200

WTHEADERS + END_HEADERS

+ STREAM_ID = 5

+ CONNECT_STREAM = 3

:method = GET

:scheme = https

:path = /

:authority = server.example.com

 WTHEADERS + END_HEADERS

 + STREAM_ID = 5

 + CONNECT_STREAM = 3

 :status = 200

DATA + STREAM_ID = 5

WebTransport Data

 DATA + STREAM_ID = 5 + END_STREAM

 WebTransport Data

DATA + STREAM_ID = 5 + END_STREAM

WebTransport Data

¶

¶

4. Using WebTransport Streams

Once the extended CONNECT handshake has completed and a WebTransport

connect stream has been established, WTHEADERS frames can be sent

that reference that stream in the Connect Stream ID field to

establish WebTransport Streams. WebTransport Connect Streams are

[[From Client]] [[From Server]]

SETTINGS

SETTINGS_ENABLE_CONNECT_[..] = 1

SETTINGS_ENABLE_WEBTRANSPORT = 1

 SETTINGS

 SETTINGS_ENABLE_CONNECT_[..] = 1

 SETTINGS_ENABLE_WEBTRANSPORT = 1

HEADERS + END_HEADERS

+ STREAM_ID = 3

:method = CONNECT

:protocol = webtransport

:scheme = https

:path = /

:authority = server.example.com

 HEADERS + END_HEADERS

 + STREAM_ID = 3

 :status = 200

 WTHEADERS + END_HEADERS

 + STREAM_ID = 2

 + CONNECT_STREAM = 3

 :method = GET

 :scheme = https

 :path = /

 :authority = client.example.com

WTHEADERS + END_HEADERS

+ STREAM_ID = 2

+ CONNECT_STREAM = 3

:status = 200

 DATA + STREAM_ID = 2

 WebTransport Data

DATA + STREAM_ID = 2 + END_STREAM

WebTransport Data

 DATA + STREAM_ID = 2 + END_STREAM

 WebTransport Data

¶

intended for exchanging metadata only and are RECOMMENDED to be long

lived streams. Once a WebTransport Connect Stream is closed, all

routing information it carries is lost, and subsequent WebTransport

Streams cannot be created with WTHEADERS frames until the client

completes another extended CONNECT handshake to establish a new

WebTransport Connect Stream.

In contrast, WebTransport Streams established with WTHEADERS frames

can be opened at any time by either endpoint and therefore need not

remain open beyond their immediate usage as part of the WebTransport

protocol.

An endpoint MUST NOT send DATA frames with a non-zero payload length

on a WebTransport Connect Stream beyond the completion of the

extended CONNECT handshake. If data is received by an endpoint on a

WebTransport Connect Stream, it MUST reset that stream with a new

error code, PROHIBITED_WT_CONNECT_DATA, indicating that additional

data is prohibited on the Connect Stream when using "webtransport"

as the :protocol value.

4.1. Stream States

WebTransport Connect Streams are regular HTTP/2 streams that follow

the stream lifecycle descirbed in Section 5.1 of [RFC7540].

WebTransport Streams established with the WTHEADERS frame also

follow the same lifecycle as regular HTTP/2 streams, but have an

additional dependency on the Connect Stream that they reference via

their Connect Stream ID.

If the corresponding Connect Stream is reset, endpoints MUST reset

the WebTransport Streams associated with that Connect Stream. If the

Connect Stream is closed gracefully, endpoints SHOULD allow any

existing WebTransport Streams to complete normally, however the

Connect Stream SHOULD remain open while communication is expected to

continue.

Endpoints SHOULD take measures to prevent a peer or intermediary

from timing out the Connect Stream while its associated WebTransport

Streams are expected to remain open. For example, an endpoint might

choose to refresh a timeout on a Connect Stream any time a

corresponding timeout is refreshed on a corresponding WebTransport

Stream, such as when any data is sent or received on that

WebTransport Stream.

An endpoint MUST NOT initiate new WebTransport Streams that

reference a Connect Stream that is in the closed or half closed

(remote) state. Endpoints process new WebTransport Streams only when

the associated Connect Stream is in the open or half closed (local)

state.

¶

¶

¶

¶

¶

¶

¶

4.2. Interaction with HTTP/2 Features

WebTransport Streams are extended HTTP/2 streams, and all of the

standard HTTP/2 features for streams still apply to WebTransport

Streams. For example, WebTransport Streams are counted against the

concurrent stream limit, which is defined in Section 5.1.2 of

[RFC7540]. The connection level and stream level flow control

principles are still valid for WebTransport Streams. Prioritizing

the WebTransport Streams across different Connect Stream groupings

does not make sense because they belong to different services.

Note that while HTTP/2 Stream IDs are used by WebTransport Streams

to refer to their corresponding WebTransport Connect Streams, the

Stream IDs themselves are an implementation detail and SHOULD NOT be

vended to clients via a WebTransport API.

4.3. Intermediaries

WebTransport Connect Streams, and their corresponding WebTransport

Streams, can be independently routed by intermediaries on the

network path. The main purpose for a WebTransport Connect Stream is

to facilitate imtermediary traversal by WebTransport Streams.

Any segment on which SETTINGS_ENABLE_WEBTRANSPORT has been

negotiated MUST route all WebTransport Streams established by

WTHEADERS frames on the same connection as their corresponding

WebTransport Connect Streams.

If an intermediary cannot route WebTransport Streams on a subsequent

segment of the path, it can fail the extended CONNECT handshake and

prevent a WebTransport Connect Stream from being established for a

given endpoint. In the event that additional WebTransport Streams

reference that WebTransport Connect Stream, they will also be reset.

An example of such routing, for both client-initiated and server-

initiated WebTransport streams, is shown in Figure 2 and in Figure

3. Note that "webtransport" is specified as the :protocol being

negotiated by the CONNECT frame on both segments, and the

corresponding stream is referenced by the Connect Stream ID field in

the WTHEADERS frames.

Figure 2: A client initiates a WebTransport Stream to a server.

¶

¶

¶

¶

¶

¶

+--------+ CONNECT (5) +---------+ CONNECT (1) +--------+

| client |>--------------->| proxy |>---------------->| server |

+--------+ +---------+ +--------+

 v ^ v ^

 | WTHEADERS(7, CS=5) | | WTHEADERS(3, CS=1) |

 +------------------------+ +------------------------+

Figure 3: A server initiates a WebTransport Stream to a client.

4.4. Session Termination

An Http2Transport session is terminated when either endpoint closes

the stream associated with the CONNECT request that initiated the

session. Upon learning about the session being terminated, both

endpoints MUST stop sending new frames on the WebTransport Connect

Stream associated with the CONNECT request and reset all

WebTransport Streams associated with the session.

5. Security Considerations

WebTransport Streams established by the CONNECT handshake and the

WTHEADERS frame are expected to be protected with a TLS connection.

They inherit the security properties of this cryptographic context,

as well as the security properties of client-server communication

via HTTP/2 as described in [RFC7540].

The security considerations of [RFC8441] Section 8 and [RFC7540]

Section 10, and Section 10.5.2 especially, apply to this use of the

CONNECT method.

Http2Transport requires explicit opt-in through the use of an HTTP/2

SETTINGS parameter, avoiding potential protocol confusion attacks by

ensuring the HTTP/2 server explicitly supports the WebTransport

protocol. It also requires the use of the Origin header, providing

the server with the ability to deny access to Web-based clients that

do not originate from a trusted origin.

Just like HTTP/2 itself, Http2Transport pools traffic to different

origins within a single connection. Different origins imply

different trust domains, meaning that the implementations have to

treat each transport as potentially hostile towards others on the

same connection. One potential attack is a resource exhaustion

attack: since all of the transports share both congestion control

and flow control context, a single client aggressively using up

those resources can cause other transports to stall. The user agent

thus SHOULD implement a fairness scheme that ensures that each

WebTransport session within a connection is allocated a reasonable

share of controlled resources, both when sending data and opening

new streams.

+--------+ CONNECT (5) +---------+ CONNECT (1) +--------+

| client |>--------------->| proxy |>---------------->| server |

+--------+ +---------+ +--------+

 ^ v ^ v

 | WTHEADERS(4, CS=5) | | WTHEADERS(2, CS=1) |

 +------------------------+ +------------------------+

¶

¶

¶

¶

¶

Frame Type:

Code:

Specification:

Code:

Name:

Initial Value:

Specification:

Name:

Code:

Description:

Specification:

Name:

Code:

6. IANA Considerations

This document adds an entry to the "HTTP/2 Frame Type" registry, the

"HTTP/2 Settings" registry, and the "HTTP/2 Error Code" registry,

all defined in [RFC7540]. It also registers an HTTP upgrade token in

the registry established by [RFC7230].

6.1. HTTP/2 Frame Type Registry

The following entry is added to the "HTTP/2 Frame Type" registry

established by Section 11.2 of [RFC7540].

WTHEADERS

0xFB

RFC Editor: Please fill in this value with the RFC

number for this document

6.2. HTTP/2 Settings Registry

The following entry is added to the "HTTP/2 Settings" registry that

was established by Section 11.3 of [RFC7540].

0xFB

SETTINGS_ENABLE_WEBTRANSPORT

0

RFC Editor: Please fill in this value with the RFC

number for this document

6.3. HTTP/2 Error Code Registry

The following entries are added to the "HTTP/2 Error Code" registry

that was established by Section 11.2 of [RFC7540].

WTHEADERS_STREAM_ERROR

0xFB

Invalid use of WTHEADERS frame

RFC Editor: Please fill in this value with the RFC

number for this document

PROHIBITED_WT_CONNECT_DATA

0xFC

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Description:

Specification:

Value:

Description:

Reference:

[RFC2119]

[RFC3986]

[RFC6455]

[RFC7230]

[RFC7540]

Prohibited data sent on WebTransport Connect Stream

RFC Editor: Please fill in this value with the RFC

number for this document

6.4. Upgrade Token Registration

The following entry is added to the "Hypertext Transfer Protocol

(HTTP) Upgrade Token Registry" registry established by [RFC7230].

webtransport

WebTransport over HTTP

Expected Version Tokens:

RFC Editor: Please fill in this value with the RFC

number for this document and [I-D.vvv-webtransport-http3]

7. References

7.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Fette, I. and A. Melnikov, "The WebSocket Protocol", RFC

6455, DOI 10.17487/RFC6455, December 2011, <https://

www.rfc-editor.org/info/rfc6455>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/info/rfc7230>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc6455
https://www.rfc-editor.org/info/rfc6455
https://www.rfc-editor.org/info/rfc7230

[RFC8174]

[RFC8441]

[I-D.vvv-webtransport-http3]

[I-D.vvv-webtransport-overview]

[RFC6202]

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

info/rfc7540>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

McManus, P., "Bootstrapping WebSockets with HTTP/2", RFC

8441, DOI 10.17487/RFC8441, September 2018, <https://

www.rfc-editor.org/info/rfc8441>.

7.2. Informative References

Vasiliev, V., "WebTransport over HTTP/3", Work in

Progress, Internet-Draft, draft-vvv-webtransport-

http3-01, 3 November 2019, <http://www.ietf.org/internet-

drafts/draft-vvv-webtransport-http3-01.txt>.

Vasiliev, V., "The WebTransport Protocol Framework", Work

in Progress, Internet-Draft, draft-vvv-webtransport-

overview-01, 3 November 2019, <http://www.ietf.org/

internet-drafts/draft-vvv-webtransport-overview-01.txt>.

Loreto, S., Saint-Andre, P., Salsano, S., and G. Wilkins,

"Known Issues and Best Practices for the Use of Long

Polling and Streaming in Bidirectional HTTP", RFC 6202,

DOI 10.17487/RFC6202, April 2011, <https://www.rfc-

editor.org/info/rfc6202>.

Acknowledgments

Thanks to Anthony Chivetta, Joshua Otto, and Valentin Pistol for

their contributions in the design and implementation of this work.

Authors' Addresses

Alan Frindell

Facebook Inc.

Email: afrind@fb.com

Eric Kinnear

Apple Inc.

One Apple Park Way

Cupertino, California 95014,

United States of America

Email: ekinnear@apple.com

¶

https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8441
https://www.rfc-editor.org/info/rfc8441
http://www.ietf.org/internet-drafts/draft-vvv-webtransport-http3-01.txt
http://www.ietf.org/internet-drafts/draft-vvv-webtransport-http3-01.txt
http://www.ietf.org/internet-drafts/draft-vvv-webtransport-overview-01.txt
http://www.ietf.org/internet-drafts/draft-vvv-webtransport-overview-01.txt
https://www.rfc-editor.org/info/rfc6202
https://www.rfc-editor.org/info/rfc6202
mailto:afrind@fb.com
mailto:ekinnear@apple.com

Tommy Pauly

Apple Inc.

One Apple Park Way

Cupertino, California 95014,

United States of America

Email: tpauly@apple.com

Victor Vasiliev

Google

Email: vasilvv@google.com

Guowu Xie

Facebook Inc.

Email: woo@fb.com

mailto:tpauly@apple.com
mailto:vasilvv@google.com
mailto:woo@fb.com

	WebTransport using HTTP/2
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. Http2Transport Overview
	3.1. WebTransport Connect Streams
	3.2. WebTransport Streams
	3.3. Negotiation
	3.4. The SETTINGS_ENABLE_WEBTRANSPORT SETTINGS parameter
	3.5. The WTHEADERS Frame
	3.6. Initiating the Extended CONNECT Handshake
	3.7. Examples

	4. Using WebTransport Streams
	4.1. Stream States
	4.2. Interaction with HTTP/2 Features
	4.3. Intermediaries
	4.4. Session Termination

	5. Security Considerations
	6. IANA Considerations
	6.1. HTTP/2 Frame Type Registry
	6.2. HTTP/2 Settings Registry
	6.3. HTTP/2 Error Code Registry
	6.4. Upgrade Token Registration

	7. References
	7.1. Normative References
	7.2. Informative References

	Acknowledgments
	Authors' Addresses

