
Internet Engineering Task Force R. Kisteleki
Internet-Draft RIPE NCC
Intended status: Informational December 7, 2013
Expires: June 10, 2014

Password Storage Using Public Key Encryption
draft-kistel-encrypted-password-storage-00

Abstract

 Current password storage methods predominantly use cryptographic hash
 functions in order to avoid storing users' passwords in clear text.
 Unfortunately, recent advancements in hardware design (notably GPUs)
 allow an attacker to try millions or even billions of password
 guesses per second which makes "decryption" of simple passwords
 feasible in short amounts of time.

 This document describes a password storage scheme that incorporates
 public key encryption in order to slow down password verification.
 Since public key algorithms are several orders of magnitude slower
 than hash functions, the result makes it much harder for an attacker
 to discover users' passwords from the stored, encrypted format.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 10, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Kisteleki Expires June 10, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft Encrypted Password Storage December 2013

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Problem Description 2
1.2. Requirements Language 3

2. Algorithm Description . 3
3. Algorithm Properties . 4
4. Security Considerations 4
5. Acknowledgements . 5
6. Normative References . 5

 Author's Address . 5

1. Introduction

1.1. Problem Description

 The vast majority of information services use usernames and passwords
 in order to authenticate users of the service. Instead of storing
 these passwords in clear text form, the best current practice
 involves adding some entropy ("salt") to the password,
 cryptographically hashing the result, and storing the resulting
 value, as well as the input salt, in the password database.

 If an attacker gets hold of this database (via breaking into a system
 and copying the password database, or using an application bug to
 reveal it in some other way), they can apply massive amounts of
 offline CPU/GPU power, use rainbow tables, etc. to find out the
 original passwords. Modern hardware can be used to apply brute force
 and execute staggering amounts of password tries in short amounts of
 time. One can also use precomputed values (rainbow tables) to speed
 up the process even further.

 One of the reasons for why this can be successful is that the hashing
 algorithm can be implemented in hardware -- one can do millions-
 billions of password tries per second on a current GPU. Current
 practices (for example PKBDF2 [PKBDF2]) try to address this by
 applying multiple rounds of hashing in order to slow down this
 mechanism. But in practice the number of rounds is mostly set to a
 default of 100 or 1000 or such, so precomputing tables is still
 feasible.

http://trustee.ietf.org/license-info

Kisteleki Expires June 10, 2014 [Page 2]

Internet-Draft Encrypted Password Storage December 2013

 One solution to this problem is to incorporate a "known slow", one
 way algorithm into the mix, thereby making it more difficult for an
 attacker to do large amount of tries too quickly. Preferably the
 algorithm should have no generally and cheaply available hardware
 implementation. Also, it should be a generally known and widely
 implemented algorithm. For example, RSA public key encryption could
 be used.

1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Algorithm Description

 The proposed method stores user passwords as follows:

 1. Pick a suitable hash function (e.g. SHA-256) and public key size
 (e.g. 2048 bits).

 2. Generate a public-private key pair, but keep only the public key
 part and destroy the private key immediately.

 3. In order to store a password, create the hash over the
 concatenation of the salt and the password, then encrypt it with
 the public key generated above. The result is hashed again,
 which results in a limited size output. The pseudocode for the
 storage algorithm is therefore:

 output = hash(rsa_encrypt(hash(salt+password), public_key))

 4. When verifying the password, the same algorithm is applied to the
 input; then the result is compared with the stored value as
 usual.

 During the encryption step, OAEP or PKCS1 v1.5 padding cannot be used
 because they are not deterministic in terms of output, which means
 comparison of stored vs. recomputed would be impossible. Therefore
 the RSA encryption should be applied without using a padding scheme.
 The salted hash given as the input to the RSA encryption provides
 sufficient randomness for this particular purpose.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Kisteleki Expires June 10, 2014 [Page 3]

Internet-Draft Encrypted Password Storage December 2013

3. Algorithm Properties

 It is reasonable to assume that if an attacker gets hold of the
 password file, they will also obtain a copy of the corresponding
 public key. In this case, every password guess attempt still
 requires an RSA encryption operation, which makes it considerably
 slower to compute passwords using a brute force approach.

 It is believed to be computationally infeasible to reveal passwords
 in case of an attacker getting hold of the password file but not the
 public key.

 The key space provided by asymmetric algorithm used makes it
 infeasible to maintain and use rainbow tables for the decryption of
 the passwords (the same password and salt results in a different
 encoded form because the use of different public keys).

 Use of this method also slows down the password verification for the
 regular login use case; the size of the asymmetric key used affects
 the performance of both the benevolent and rogue use cases. It is
 therefore RECOMMENDED for the operator to choose the key size based
 on the expected and peak password verification (login) rate. Even
 small key sizes can introduce significant complexity for an attacker
 while not affecting the regular password verification times too much.

 The operator MAY choose to use multiple public keys at the same time.
 For example, the operator can choose to use a new key of the same --
 or even different -- size from a certain point in time for storage of
 newly created passwords, while older passwords can still be verified
 using the previous key material. As long as all the used public keys
 used are accessible to the operator, this makes is possible to
 migrate passwords to be encrypted by the new key over time.

 In addition to the algorithm description and salt used, each stored
 encrypted password SHOULD be accompanied by a reference to the public
 key used during the encryption process. For example, using the "$"
 character as the delimiter the format can be:

 <algorithm-id>$<pub-key-id>$<salt>$<encrypted-password>

4. Security Considerations

 If the public key used to encrypt the passwords is no longer
 available, then no passwords can be verified any more. Therefore the
 operator MUST ensure that the public key used in this method is
 available at all times.

Kisteleki Expires June 10, 2014 [Page 4]

Internet-Draft Encrypted Password Storage December 2013

 The private part of the used RSA key SHOULD be destroyed immediately
 after generation.

5. Acknowledgements

 The author would like to thank Richard Barnes and Stephen Kent for
 their feedback during the preparation of this draft.

6. Normative References

 [PKBDF2] Wikipedia, "PBKDF2", 2013,
 <http://en.wikipedia.org/wiki/PBKDF2>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

Author's Address

 Robert Kisteleki
 RIPE NCC
 Amsterdam
 NL

 Email: robert@ripe.net

http://en.wikipedia.org/wiki/PBKDF2
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Kisteleki Expires June 10, 2014 [Page 5]

