
Internet Engineering Task Force E. Kline
Internet-Draft Google Japan KK
Intended status: Informational November 01, 2015
Expires: May 04, 2016

Multiple Provisioning Domains API Requirements
draft-kline-mif-mpvd-api-reqs-00

Abstract

RFC 7556 [RFC7556] provides the essential conceptual guidance an API
 designer would need to support use of PvDs. This document aims to
 capture the requirements for an API that can be used by applications
 that would be considered "advanced", according to section 6.3 [1] of

RFC 7556 [RFC7556]. The "basic" [2] and "intermediate" [3] API
 support levels can in principle be implemented by means of layers
 wrapping the advanced API.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 04, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Kline Expires May 04, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7556
https://datatracker.ietf.org/doc/html/rfc7556
https://datatracker.ietf.org/doc/html/rfc7556
https://datatracker.ietf.org/doc/html/rfc7556
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft MPvD API Requirements November 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Requirements Language 3

2. High level requirements 3
2.1. Requirements for an API 3
2.2. Requirements for supporting operating systems 5
2.2.1. Source address selection 5
2.2.2. Route isolation 6
2.2.3. Automatic PvD metadata marking 6
2.2.4. Additional system and library support 7

3. Conceptual PvDs . 7
3.1. The 'default' PvD . 7
3.2. The 'unspecified' PvD 8
3.3. The 'null' PvD . 8
3.4. The 'loopback' PvD 8

4. Requirements for new API functionality 9
4.1. Learning PvD availability 9

 4.2. Learning network configuration information comprising a
 PvD . 9

4.3. Scoping functionality to a specific PvD 10
4.4. Explicit versus Implicit PvDs 10
4.5. Policy restrictions 11
4.6. Programmatic reference implementation considerations . . 11

5. Existing networking APIs 12
5.1. Updating existing APIs 12
5.2. Requirements for name resolution APIs 12

6. Acknowledgements . 13
7. IANA Considerations . 13
8. Security Considerations 13
9. References . 13
9.1. Normative References 13
9.2. Informative References 14

 Author's Address . 14

1. Introduction

RFC 7556 [RFC7556] provides the essential conceptual guidance an API
 designer would need to support use of PvDs. This document aims to
 capture the requirements for an API that can be used by applications
 that would be considered "advanced", according to section 6.3 [4] of

RFC 7556 [RFC7556]. The "basic" [5] and "intermediate" [6] API
 support levels can in principle be implemented by means of layers
 wrapping the advanced API.

https://datatracker.ietf.org/doc/html/rfc7556
https://datatracker.ietf.org/doc/html/rfc7556
https://datatracker.ietf.org/doc/html/rfc7556
https://datatracker.ietf.org/doc/html/rfc7556

Kline Expires May 04, 2016 [Page 2]

Internet-Draft MPvD API Requirements November 2015

 This document also attempts to make some of the API implementation
 requirements more concrete by discussion and example.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. High level requirements

 As described in section 2 [7] of RFC 7556 [RFC7556], a Provisioning
 Domain ("PvD") is fundamentally a "consistent set of network
 configuration information." This includes information like:

 o the list of participating interfaces

 o IPv4 and IPv6 addresses

 o IPv4 and IPv6 routes: both default routes and more specifics (such
 as may be learned via RFC 4191 [RFC4191] Route Information Options
 ("RIOs"))

 o DNS nameservers, search path, et cetera

 o HTTP proxy configuration

 and undoubtedly many more configuration elements yet to be specified
 (like metering hints, transmission medium and speed, captive portal
 URL, et cetera).

 This configuration information as a whole may not be able to be
 learned atomically, may need to be synthesized from multiple sources
 including administrative provisioning, and cannot be presumed to be
 unchanging over the lifetime of a node's association with a given
 PvD.

 In order for an application to make consistent use [8] of a given
 PvD's network configuration several requirements are placed upon the
 API itself and the host operating system providing the API.

2.1. Requirements for an API

 At the highest level, the requirements for an API that enables
 applications to make sophisticated use of multiple PvDs amount to
 providing mechanisms by which they can:

 R1 observe accessible PvDs

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7556
https://datatracker.ietf.org/doc/html/rfc7556
https://datatracker.ietf.org/doc/html/rfc4191
https://datatracker.ietf.org/doc/html/rfc4191

Kline Expires May 04, 2016 [Page 3]

Internet-Draft MPvD API Requirements November 2015

 It MUST be possible for an application to be informed of the set
 of all PvDs it can currently access, and to be informed of
 changes to this set.

 R2 observe configuration elements of an accessible PvD

 It MUST be possible to learn requested configuration information
 of any accessible PvD, and to be informed of any changes to the
 configuration information comprising an accessible PvD.

 R3 scope networking functionality to a specified PvD

 For every existing API function that interacts with the node's
 networking stack, be it at a relatively high level like
 getaddrinfo() [9] or at the level of something like Sockets API's
 sendmsg(), there MUST be a means by which an application can
 specify the PvD within which networking operations are to be
 restricted.

 R4 use one and only specified scope per networking functionality
 invocation

 For every unique invocation of a networking API function, there
 MUST only be one specified PvD to which networking functionality
 is to be restricted. At any given point in an application's
 lifetime there MAY be several encapsulating layers of unspecified
 PvDs (Section 3.2) through which the implementation must
 progressively search to find a specified PvD, but ultimately a
 networking function MUST use one and only one PvD for its
 operations, even if that PvD is a "null PvD" (Section 3.3).

 R5 make consistent use of programmatic references to PvDs

 For uniformity and simplicity, every PvD-aware API functional
 element SHOULD use (as return values of function calls, function
 arguments, et cetera) the same programmatic reference for PvDs,
 e.g. a construct containing a PvD identifier [10] or some
 equivalent shorthand reference token (see Section 4.6 for a
 discussion of implementation considerations). Regardless of the
 implementation strategy chosen, a given programmatic reference
 MUST remain constant over the lifetime of the node's continuous
 attachment to the PvD to which it refers (until a disconnection
 or disassociation event occurs). Additionally, references MAY
 change with successive re-associations to the same PvD whereas
 PvD identifiers, by definition, will not.

 It is important to note that there is always a provisioning domain
 within which networking functionality is scoped. For simply-

Kline Expires May 04, 2016 [Page 4]

Internet-Draft MPvD API Requirements November 2015

 connected hosts this may be the implicit PvD [11] created by a single
 networking interface connected to a traditional, shared LAN segment.
 For multihomed hosts the "default provisioning domain" is likely a
 matter of policy, but MAY be a "null" PvD, i.e. one completely devoid
 of networking configuration information (no addresses, no routes, et
 cetera). See Section 3 for further discussion.

 The utility of such an API (allowing applications to learn of and
 control the scope of networking functionality) suggests that the
 Provisioning Domain is perhaps a more useful operational definition
 for the original IPv6 concept of a "site-local scope" than the ill-
 fated [RFC3879], "ill-defined concept" [12] of a site. It also
 suggests one possible way by which operating system support for a
 PvD-aware API might be implemented.

2.2. Requirements for supporting operating systems

 The multiple PvD model of host behaviour is perhaps closer to the
 Strong End System Model than the Weak End System Model characterized
 in RFC 1122 [RFC1122] section 3.3.4.2 [13], but owing to its
 recognition of a many-to-many relationship between interfaces and
 PvDs should be considered a unique model unto itself.

 In the PvD-aware End System Model, the "two key requirement issues
 related to multihoming" are restated as:

 a. A host MAY silently discard an incoming datagram whose
 destination address does not correspond to any PvD associated
 with the physical (or virtual) interface through which it is
 received.

 b. A host MUST restrict itself to sending (non-source-routed) IP
 datagrams only through the physical (or virtual) interfaces that
 correspond to the PvD associated with the IP source address of
 the datagrams.

 In order to support a PvD-aware application's use of multiple PVDs,
 several additional requirements must be met by the host operating
 system, especially when performing functions on behalf of
 applications or when no direct application intervention is possible,
 as discussed in the following sections.

2.2.1. Source address selection

https://datatracker.ietf.org/doc/html/rfc3879
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122#section-3.3.4.2

Kline Expires May 04, 2016 [Page 5]

Internet-Draft MPvD API Requirements November 2015

 Whenever a source address is to be selected on behalf of an
 application it is essential for consistent use that only source
 addresses belonging to the specified PvD be used a candidate set.
 (See RFC 6418 [RFC6418] section 3.5 [14] for references to issues
 arising from poor source address selection.)

 For nodes following the PvD-aware End System Model, RFC 6724
[RFC6724] section 4 [15] is amended as follows:

 R6 The candidate source addresses MUST be restricted to the set of
 unicast addresses associated with the concurrently specified PvD.

 Additionally, source address selection policies from PvDs other
 than the concurrently specified PvD MUST NOT be applied.

2.2.2. Route isolation

 Whenever a routing lookup for a given destination is to be performed,
 it is essential that only routes belonging to the currently specified
 PvD be consulted. Applications and libraries that use the inherent
 routing reachability check (and subsequent source address selection)
 performed during something like the Sockets API connect() call on a
 UDP socket to learn reachability information cheaply cannot function
 correctly otherwise. RFC 6418 [RFC6418] section 4.2 [16] contains
 more discussion and references to issues arising from insufficiently
 isolated routing information.

 For nodes following the PvD-aware End System Model:

 R7 The set of routes consulted for any routing decision MUST be
 restricted to the routes associated with the concurrently
 specified PvD.

2.2.3. Automatic PvD metadata marking

 In many cases, an application can examine a source address or the
 destination address of a received datagram and use that address's
 association with a given PvD to learn, for example, the PvD with
 which an incoming connection may be associated. It may, however, be
 impossible for an application to make this determination on its own
 if, for example, an incoming TCP connection is destined to a RFC 1918
 [RFC1918] address that happens to be configured in multiple PvDs at
 the same time. In such circumstances, the supporting operating
 system will need to provide additional assistance.

 For nodes following the PvD-aware End System Model:

https://datatracker.ietf.org/doc/html/rfc6418
https://datatracker.ietf.org/doc/html/rfc6418#section-3.5
https://datatracker.ietf.org/doc/html/rfc6724
https://datatracker.ietf.org/doc/html/rfc6724#section-4
https://datatracker.ietf.org/doc/html/rfc6418
https://datatracker.ietf.org/doc/html/rfc6418#section-4.2
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc1918

Kline Expires May 04, 2016 [Page 6]

Internet-Draft MPvD API Requirements November 2015

 R8 When performing networking functionality on behalf of an
 application, the supporting operating system MUST record and make
 available to the application either (1) all the information the
 application might need to make a determination of the applicable
 PvD on its own or (2) the API's PvD programmatic reference
 directly.

 A supporting operating system SHOULD record and make available
 the API's PvD programmatic reference; other approaches invite
 ambiguity among applications' interpretation of available
 information.

2.2.4. Additional system and library support

 Frequently, operating systems have several additional supporting
 libraries and services for more advance networking functionality.
 Using the system's own PvD API, and fulfilling the above
 requirements, it should be possible to extend these services to
 provide correct per-PvD isolation of information and enable
 consistent application use of PvDs.

3. Conceptual PvDs

3.1. The 'default' PvD

 Because there is always one specified provisioning domain to which an
 individual invocation of networking functionality is restricted
 (Section 2.1) there must necessarily exist a system "default PvD".
 This provisioning domain is the one which networking functionality
 MUST use when no other specified PvD can be determined.

 Using the system's default PvD enables support of basic [17] uses of
 the PvD API (i.e. backward compatibility for unmodified
 applications).

 The operating system MAY change the default PvD accordingly to
 policy. It is expected that nodes will use a variety of information,
 coupled with administrative policy, to promote one of any number of
 concurrently available PvDs to be the system's default PvD.

 R9 A PvD-aware API implementation MUST include a mechanism for
 applications to learn the programmatic reference to the system's
 concurrent default PvD.

 R10 A PvD-aware API implementation SHOULD contain a mechanism
 enabling an application to be notified of changes to the
 concurrent default PvD in a comparatively efficient manner (i.e.
 more efficient than polling).

Kline Expires May 04, 2016 [Page 7]

Internet-Draft MPvD API Requirements November 2015

3.2. The 'unspecified' PvD

 An application may at some times wish to be specific about which PvD
 should be used for networking operations and at other times may
 prefer to defer the choice of specific PvD to one specified elsewhere
 (including the system default PvD).

 For example, if an application has specified the PvD to be used for
 all functions called by its process and child processes
 (Section 4.3), it may indicate that certain invocations should
 instead use the system default PvD by using a programmatic reference
 to the "unspecified PvD".

 R11 API implementors MUST reserve a programmatic reference to
 represent an "unspecified PvD": an indication that the
 application defers the selection of a specific PvD.

 R12 When invoked without a specific PvD, or with a programmatic
 reference to the "unspecified PvD", networking functionality MUST
 find a specific PvD to be used by examining the successive
 encapsulating layers of possible specificity supported by the API
 (Section 4.3), e.g. look first for a "fiber-specific default"
 PvD, then a "thread-specific default" PvD, a "process-specific
 default" PvD, and ultimately use the system's default PvD if no
 other specified PvD can be found.

3.3. The 'null' PvD

 If there are no PvDs accessible to an application, whether as a
 matter of policy (insufficient privileges) (Section 4.5) or as a
 matter of natural circumstance (the node is not connected to any
 network), the construct of a 'null' PvD may be useful to ensure
 networking functions fail (and fail quickly).

 R13 API implementors MAY reserve a programmatic reference to
 represent a "null PvD": an unchanging provisioning domain devoid
 of any and all networking configuration information.

 It is possible for operating systems to enforce that only PvD-aware
 applications may function normally by administratively configuring
 the default PvD to be the "null PvD".

3.4. The 'loopback' PvD

 TBD: is it useful to have a "loopback" PvD, i.e. one consisting
 solely of all addresses configured on the node and all locally
 delivered routes?

Kline Expires May 04, 2016 [Page 8]

Internet-Draft MPvD API Requirements November 2015

4. Requirements for new API functionality

4.1. Learning PvD availability

 R14 A PvD-aware API MUST implement a mechanism whereby an application
 can receive a set of the API's PvD programmatic references
 representing the complete set of PvDs (both explicit [18] and
 implicit [19]) with which the node is currently associated.

 R15 A PvD-aware API implementation SHOULD contain a mechanism
 enabling an application to be notified of changes in the above
 set of actively associated PvDs in a comparatively efficient
 manner (i.e. more efficient than polling).

 In may also be of use to applications to receive notifications of
 pending changes to the set of currently connected PvDs. For example,
 if it is known that a connection to a PvD is scheduled to be
 terminated shortly, an application may be able to take some
 appropriate action (migrate connections to another PvD, send
 notifications, et cetera).

4.2. Learning network configuration information comprising a PvD

 R16 A PvD-aware API MUST include a mechanism whereby by an
 application, using the API's PvD programmatic reference, can
 receive elements of the network configuration information that
 comprise a PvD. At a minimum, this mechanism MUST be capable of
 answering queries for:

 * the PvD identifier

 * all participating interfaces

 * all IPv4 and all non-deprecated IPv6 addresses

 * all configured DNS nameservers

 A PvD's network configuration information is neither guaranteed to be
 learned atomically nor is it guaranteed to be static. Addresses,
 routes, and even DNS nameservers and participating interfaces may
 each change over the lifetime of the node's association to a given
 PvD. Timely notification of such changes may be of particular
 importance to some applications.

Kline Expires May 04, 2016 [Page 9]

Internet-Draft MPvD API Requirements November 2015

 R17 A PvD-aware API implementation SHOULD contain a mechanism
 enabling an application to be notified of changes in the
 networking configuration information comprising a PvD in a
 comparatively efficient manner (i.e. more efficient than
 polling).

 R18 A network configuration query API implementation SHOULD take
 extensibility into account, to support querying for configuration
 information not yet conceived of with minimal adverse impact to
 applications.

4.3. Scoping functionality to a specific PvD

 R19 A PvD-aware API implementation MUST include a mechanism for an
 application to specify the programmatic reference of the PvD to
 which all networking functionality MUST be restricted when not
 otherwise explicitly specified (a configurable, application-
 specific "default PvD").

 R20 The API implementation MUST support setting such a "default PvD"
 for an application's entire process (and by extension its child
 processes). Additionally, the API SHOULD support an application
 setting a "default PvD" at every granularity of "programming
 parallelization", i.e. not only per-process, but also per-thread,
 per-fiber, et cetera. At every supported layer of granularity,
 if no PvD reference has been set the next coarser layer's setting
 MUST be consulted (up to and including the system's default PvD)
 when identifying the specified PvD to be used.

 R21 For every degree of granularity at which an application may
 specify a "default PvD" there MUST exist a corresponding
 mechanism to retrieve any concurrently specified implementation-
 specific PvD programmatic reference. If no PvD has been
 specified for at the granularity of a given query, the
 "unspecified PvD" must be returned.

 With access to this functionality it is possible to start non-PvD-
 aware applications within a single PvD context with no adverse
 impact. Furthermore, with judicious use of a sufficiently granular
 API, existing general purpose networking APIs can be wrapped to
 appear PvD-aware.

4.4. Explicit versus Implicit PvDs

Kline Expires May 04, 2016 [Page 10]

Internet-Draft MPvD API Requirements November 2015

 R22 Because programmatic references to PvDs are returned for both
 explicit and implicit PvDs, the MPvD API implementation MUST be
 equally applicable and useful for any valid type of PvD; it MUST
 NOT be necessary for a PvD-aware application to distinguish
 between explicit and implicit PvDs to function properly.

4.5. Policy restrictions

 This document does not make recommendations about policies governing
 the use of any or all elements of a PvD API, save only to note that
 some restrictions on use may be deemed necessary or appropriate.

 R23 A PvD API implementation MAY implement policy controls whereby
 access to PvD availability information, configuration elements,
 and/or explicit scoping requests is variously permitted or denied
 to certain applications.

4.6. Programmatic reference implementation considerations

 PvD identifiers may be of a length or form not easily handled
 directly in some programming environments, and unauthenticated PvD
 identifiers are assumed to be only probabilistically unique [20]. As
 such, API implementations should consider using some alternative
 programmatic reference (a node-specific "handle" or "token"), which
 is fully under the control of the operating system, to identify an
 instance of a single provisioning domain's network configuration
 information.

 Even though a PvD identifier may uniquely correspond to, say, a
 network operator, there is no guarantee that the configuration
 information (delegated prefixes, configured IP addresses, and so on)
 will be the same with every successive association to the same PvD
 identifier. An implementation may elect to change the value of the
 programmatic reference to a given PvD identifier for each temporally
 distinct association. Doing so presents some advantages worth
 considering:

 Collisions in the PvD identifier space will inherently be treated
 as distinct by applications not concerned solely with identifiers.

 Changing the value of a reference can disabuse application writers
 of inappropriately caching configuration information from one
 association instance to another.

 Whether two PvDs are "identical" is perhaps better left to
 applications to decide since "PvD equivalence" for a given
 application may alternatively be determined by successfully
 accessing some restricted resource.

Kline Expires May 04, 2016 [Page 11]

Internet-Draft MPvD API Requirements November 2015

 This document makes no specific requirement on the type of
 programmatic reference used by the API.

5. Existing networking APIs

5.1. Updating existing APIs

 From the perspective of a PvD-aware operating system, all previously
 existing non-PvD-enabled networking functionality had historically
 been executed within the context of a single, implicit provisioning
 domain. A sufficiently granular API to specify which PvD is to be
 used to scope subsequent networking functionality (Section 4.3) can
 be used to wrap non-PvD-aware APIs, giving them this new PvD-aware
 capability. However,

 R24 Operating system implementors SHOULD consider updating existing
 networking APIs to take or return programmatic references to PvDs
 directly.

 This may mean creating new functions with an additional PvD
 programmatic reference argument, adding a PvD programmatic reference
 field to an existing structure or class that is itself an argument or
 return type, or finding other means by which to use a programmatic
 reference with minimal or no disruption to existing applications or
 libraries.

5.2. Requirements for name resolution APIs

RFC 3493 [RFC3493] getaddrinfo() [21] and getnameinfo() [22] APIs
 deserve explicit discussion. Previously stated requirements make it
 clear that it MUST be possible for an application to perform normal
 name resolution constrained to the DNS configuration within a
 specified PVD. This MUST be possible using at least the techniques
 of Section 4.3.

 The following additional requirements are places on PvD-aware
 implementations of these functions:

 R25 All DNS protocol communications with a PvD's nameservers MUST be
 restricted to use only source addresses and routes associated
 with the PvD.

https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc3493

Kline Expires May 04, 2016 [Page 12]

Internet-Draft MPvD API Requirements November 2015

 R26 If getaddrinfo() is called with the AI_ADDRCONFIG flag specified,
 IPv4 addresses shall be returned only if an IPv4 address is
 configured within the specified provisioning domain and IPv6
 addresses shall be returned only if an IPv6 address is configured
 within the specified provision domain. The loopback address is
 (still) not considered for this case as valid as a configured
 address.

6. Acknowledgements

 The core concepts presented in this document were developed during
 the Android multinetworking effort by Lorenzo Colitti, Robert
 Greenwalt, Paul Jensen, and Sreeram Ramachandran.

 Additional thanks to the coffee shops of Tokyo.

7. IANA Considerations

 This memo includes no request to IANA.

8. Security Considerations

 An important new security impact of a PvD-aware API is that it
 becomes much simpler (by design) to write a well-functioning
 application to create a bridging data path between two PvDs that
 would not otherwise have been so easily connected.

 For some operating systems, existing APIs already make this bridging
 possible, though some functionality like DNS resolution may have been
 difficult to implement. Indeed, the very aim of an MPvD API is to
 make implementing a PvD-aware application simple and to make its
 functioning more "correct" ("first class" support for such
 functionality).

 Operating system implementations have several points of potential
 policy control including:

 o use of certain PvDs MAY be restricted by policy (e.g. only
 approved users, groups, or applications might be permitted
 access), and/or

 o use of more than one PvD (or the MPvD API itself) MAY be similarly
 restricted.

9. References

9.1. Normative References

Kline Expires May 04, 2016 [Page 13]

Internet-Draft MPvD API Requirements November 2015

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, DOI 10.17487/

RFC1122, October 1989,
 <http://www.rfc-editor.org/info/rfc1122>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
 Stevens, "Basic Socket Interface Extensions for IPv6", RFC

3493, DOI 10.17487/RFC3493, February 2003,
 <http://www.rfc-editor.org/info/rfc3493>.

 [RFC6724] Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown,
 "Default Address Selection for Internet Protocol Version 6
 (IPv6)", RFC 6724, DOI 10.17487/RFC6724, September 2012,
 <http://www.rfc-editor.org/info/rfc6724>.

 [RFC7556] Anipko, D., Ed., "Multiple Provisioning Domain
 Architecture", RFC 7556, DOI 10.17487/RFC7556, June 2015,
 <http://www.rfc-editor.org/info/rfc7556>.

9.2. Informative References

 [RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and
 E. Lear, "Address Allocation for Private Internets", BCP

5, RFC 1918, February 1996.

 [RFC3879] Huitema, C. and B. Carpenter, "Deprecating Site Local
 Addresses", RFC 3879, DOI 10.17487/RFC3879, September
 2004, <http://www.rfc-editor.org/info/rfc3879>.

 [RFC4191] Draves, R. and D. Thaler, "Default Router Preferences and
 More-Specific Routes", RFC 4191, DOI 10.17487/RFC4191,
 November 2005, <http://www.rfc-editor.org/info/rfc4191>.

 [RFC6418] Blanchet, M. and P. Seite, "Multiple Interfaces and
 Provisioning Domains Problem Statement", RFC 6418, DOI
 10.17487/RFC6418, November 2011,
 <http://www.rfc-editor.org/info/rfc6418>.

Author's Address

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
http://www.rfc-editor.org/info/rfc1122
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc3493
http://www.rfc-editor.org/info/rfc3493
https://datatracker.ietf.org/doc/html/rfc6724
http://www.rfc-editor.org/info/rfc6724
https://datatracker.ietf.org/doc/html/rfc7556
http://www.rfc-editor.org/info/rfc7556
https://datatracker.ietf.org/doc/html/bcp5
https://datatracker.ietf.org/doc/html/bcp5
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc3879
http://www.rfc-editor.org/info/rfc3879
https://datatracker.ietf.org/doc/html/rfc4191
http://www.rfc-editor.org/info/rfc4191
https://datatracker.ietf.org/doc/html/rfc6418
http://www.rfc-editor.org/info/rfc6418

Kline Expires May 04, 2016 [Page 14]

Internet-Draft MPvD API Requirements November 2015

 Erik Kline
 Google Japan KK
 6-10-1 Roppongi
 Mori Tower, 44th floor
 Minato, Tokyo 106-6126
 JP

 Email: ek@google.com

Kline Expires May 04, 2016 [Page 15]

