
Workgroup: Network Working Group

Internet-Draft:

draft-koch-openpgp-webkey-service-14

Published: 13 May 2022

Intended Status: Informational

Expires: 14 November 2022

Authors: W. Koch

GnuPG e.V.

OpenPGP Web Key Directory

Abstract

This specification describes a service to locate OpenPGP keys by

mail address using a Web service and the HTTPS protocol. It also

provides a method for secure communication between the key owner and

the mail provider to publish and revoke the public key.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 November 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Notational Conventions

3. Web Key Directory

3.1. Key Discovery

4. Web Key Directory Update Protocol

4.1. The Submission Address

4.2. The Submission Mail

4.3. The Confirmation Request

4.4. The Confirmation Response

4.5. Policy Flags

5. Security Considerations

6. IANA Considerations

6.1. Well-Known URI

7. Acknowledgments

8. Normative References

Appendix A. Sample Protocol Run

A.1. Sample Keys

A.2. Sample Messages

Appendix B. Changes Since -13

Author's Address

1. Introduction

This memo describes a method to associate OpenPGP keys with a mail

address and how to look them up using a web service with a well-

known URI. In addition a mail based protocol is given to allow a

client to setup such an association and to maintain it.

2. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

3. Web Key Directory

A major use case for OpenPGP is the encryption of mail. A common

difficulty of sending encrypted mails to a new communication partner

is to find the appropriate public key of the recipient. Unless an

off-channel key exchange has been done, there are no easy ways to

discover the required key. The common practice is to search the

network of public key servers for a key matching the recipient's

mail address. This practise bears the problem that the keyservers

are not able to give a positive confirmation that a key actually

belongs to the mail addresses given in the key. Further, there are

often several keys matching a mail address and thus one needs to

pick a key on good luck. This is clearly not a secure way to setup

¶

¶

an end-to-end encryption. Even if the need for a trusted key for an

initial mail message is relinquished, a non-authenticated key may be

a wrong one and the actual recipient would receive a mail which she

can't decrypt, due to the use of a wrong key.

Methods to overcome this problem are

sending an initial unencrypted message with the public key

attached,

using the OpenPGP DANE protocol to lookup the recipients key via

the DNS.

The first method has the obvious problems of not even trying to

encrypt the initial mail, an extra mail round-trip, and problems

with unattended key discovery.

The latter method works fine but requires that mail providers need

to set up a separate DNS resolver to provide the key. The

administration of a DNS zone is often not in the hands of small mail

installations. Thus an update of the DNS resource records needs to

be delegated to the ISP running the DNS service. Further, DNS

lookups are not encrypted and missing all confidentially. Even if

the participating MUAs are using STARTTLS to encrypt the mail

exchange, a DNS lookup for the key unnecessarily identifies the

local-part of the recipients mail address to any passive

eavesdroppers.

This memo specified a new method for key discovery using an

encrypted https connection.

3.1. Key Discovery

Although URIs are able to encode all kind of characters,

straightforward implementations of a key directory may want to store

the local-part of a mail address directly in the file system. This

forbids the use of certain characters in the local-part. To allow

for such an implementation method the URI uses an encoded form of

the local-part which can be directly mapped to a file name.

OpenPGP defines its User IDs, and thus the mail address, as UTF-8

strings. To help with the common pattern of using capitalized names

(e.g. "Joe.Doe@example.org") for mail addresses, and under the

premise that almost all MTAs treat the local-part case-insensitive

and that the domain-part is required to be compared case-insensitive

anyway, all upper-case ASCII characters in a User ID are mapped to

lowercase. Non-ASCII characters are not changed.

The so mapped local-part is hashed using the SHA-1 algorithm. The

resulting 160 bit digest is encoded using the Z-Base-32 method as

¶

¶

*

¶

*

¶

¶

¶

¶

¶

¶

described in [RFC6189], section 5.1.6. The resulting string has a

fixed length of 32 octets.

There are two variants on how to form the request URI: The advanced

and the direct method. Implementations MUST first try the advanced

method. Only if an address for the required sub-domain does not

exist, they SHOULD fall back to the direct method. A non-responding

server does not mean that the fall back should be carried out.

The advanced method requires that a sub-domain with the fixed name

openpgpkey is created and queried. The URI is constructed by

concatenating these items:

The scheme https://,

the string openpgpkey,

the domain-part,

the string /.well-known/openpgpkey/,

the domain-part in lowercase,

the string /hu/,

the above constructed 32 octet string,

the unchanged local-part as a parameter with name l using proper

percent escaping.

An example for such an advanced method URI to lookup the key for

Joe.Doe@Example.ORG is:

(line has been wrapped for rendering purposes)

The direct method requires no additional DNS entries and constructs

the URI by concatenating these items:

The scheme https://,

the domain-part,

the string /.well-known/openpgpkey/hu/,

the above constructed 32 octet string,

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

¶

 https://openpgpkey.example.org/.well-known/openpgpkey/

 example.org/hu/iy9q119eutrkn8s1mk4r39qejnbu3n5q?l=Joe.Doe

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

the unchanged local-part as a parameter with name l using proper

percent escaping.

Example for a direct method URI:

(line has been wrapped for rendering purposes)

Sites which do not use the advanced method but employ wildcard DNS

for their sub-domains MUST make sure that the openpgpkey sub-domain

is not subject to the wildcarding. This can be done by inserting an

empty TXT RR for this sub-domain.

The HTTP GET method MUST return the binary representation of the

OpenPGP key for the given mail address. The key needs to carry a

User ID packet ([RFC4880]) with that mail address. Note that the key

may be revoked or expired - it is up to the client to handle such

conditions. To ease distribution of revoked keys, a server may

return revoked keys in addition to a new key. The keys are returned

by a single request as concatenated key blocks.

The server MUST accept the HTTP HEAD method to allow a client to

check for the existence of a key.

The server SHOULD use "application/octet-stream" as the Content-Type

for the data but clients SHOULD also accept any other Content-Type.

The server MUST NOT return an ASCII armored version of the key.

The server MUST serve a Policy Flags file as specified below. That

file is even required if the Web Key Directory Update Protocol is

not supported.

The benefit of the advanced method is its greater flexibility in

setting up the Web Key Directory in environments where more than one

mail domain is hosted. DNS SRV resource records, as used in earlier

specifications of this protocol, posed a problem for implementations

which have only limited access to DNS resolvers. The direct method

is kept for backward compatibility and to allow providing a Web Key

Directory even with without DNS change requirements.

4. Web Key Directory Update Protocol

To put keys into the key directory a protocol to automate the task

is desirable. The protocol defined here is entirely based on mail

and the assumption that a mail provider can securely deliver mail to

the INBOX of a user (e.g. an IMAP folder). Note that the same

protocol may also be used for submitting keys for use with OpenPGP

DANE.

*

¶

¶

 https://example.org/.well-known/openpgpkey/

 hu/iy9q119eutrkn8s1mk4r39qejnbu3n5q?l=Joe.Doe

¶

¶

¶

¶

¶

¶

¶

¶

¶

In the following sections the term "target key" denotes the to be

published key, the term "submission key" the key associated with the

submission-address of the mail provider. The string "WELLKNOWN"

denotes the first part of an URI specific for a domain. In the

examples the domain "example.org" is assumed, thus:

(line has been wrapped for rendering purposes)

or if the sub-domain openpgpkey does not exist (direct method):

We assume that the user already created a key for her mail account

alice@example.org. To install the key at her provider's Web Key

Directory, she performs the following steps:

She retrieves a file which contains one line with the mail

address used to submit the key to the mail provider. See below

for the syntax of that file. For a mail address at the domain

"example.org" the URI of the file is

WELLKNOWN/submission-address

She sends her key using SMTP (or any other transport mechanism)

to the provider using the submission address and key format as

specified by PGP/MIME.

The provider checks that the received key has a User ID which

matches an account name of the provider.

The provider sends an encrypted message containing a nonce and

the fingerprint of the key to the mail account of the user.

Note that a similar scheme is used by the well known caff(1)

tool to help with key signing parties.

A legitimate user will be able to decrypt the message because

she created the key and is in charge of the private key. This

step verifies that the submitted key has actually been created

by the owner of the account.

The user sends the decrypted nonce back to the submission

address as a confirmation that the private key is owned by her

and that the provider may now publish the key. The confirmation

mail to the provider MUST be encrypted using the provider's

public key as retrieved using the key lookup protocol described

above.

¶

 WELLKNOWN := https://openpgpkey.example.org/.well-known/

 openpgpkey/example.org

¶

¶

¶

 WELLKNOWN := https://example.org/.well-known/openpgpkey¶

¶

1.

¶

¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

The provider receives the nonce, matches it with its database

of pending confirmations and then publishes the key. Finally

the provider sends a mail back to the user to notify her of the

publication of her key.

The message data structures used for the above protocol are

specified in detail below.

4.1. The Submission Address

The address of the submission file is

The file consists of exactly one line, terminated by a LF, or the

sequence of CR and LF, with the full mail address to be used for

submission of a key to the mail provider. For example the content of

the file may be

4.2. The Submission Mail

The mail used to submit a key to the mail provider MUST comply to

the PGP/MIME specification ([RFC3156], section 7), which states that

the Content-Type must be "application/pgp-keys", there are no

required or optional parameters, and the body part contains the

ASCII-armored transferable Public Key Packets as defined in

[RFC4880], section 11.1.

The mail provider MUST publish a key capable of signing and

encryption for the submission-address in the Web Key Directory or

via DANE. The key to be published MUST be submitted using a PGP/MIME

encrypted message ([RFC3156], section 4). The message MUST NOT be

signed (because the authenticity of the signing key has not yet been

confirmed). After decryption of the message at the mail provider a

single "application/pgp-keys" part, as specified above, is expected.

4.3. The Confirmation Request

The mail provider sends a confirmation mail in response to a

received key publication request. The message MUST be sent from the

submission-address of the mail provider to the mail address

extracted from the target key. The message needs to be a PGP/MIME

signed message using the submission key of the provider for the

signature. The signed message MUST have two parts:

The first part MUST have "text" as its Content-Type and can be used

to explain the purpose of the mail. For example it may point to this

specification and explain on how to manually perform the protocol.

7.

¶

¶

¶

 WELLKNOWN/submission-address¶

¶

 key-submission-example.org@directory.example.org¶

¶

¶

¶

¶

The second part MUST have a Content-Type of "application/

vnd.gnupg.wkd" and carry an OpenPGP encrypted message in ASCII Armor

format. If the protocol version is unknown or less than 5 the

Content-Type "application/vnd.gnupg.wks" MUST be used for backward

compatibility. The message MUST be encrypted to the target key and

MUST NOT be signed. After decryption a text file in the Web Key data

format must be yielded.

That data format consists of name-value pairs with one name-value

pair per LF or CR+LF terminated line. Empty lines are allowed and

will be ignored by the receiver. A colon is used to terminate a

name.

In a confirmation request the following names MUST be send in the

specified order:

"type": The value must be "confirmation-request".

"sender": This is the mailbox the user is expected to sent the

confirmation response to. The value must match the mailbox part

of the "From:" address of this request. Exactly one address MUST

be given.

"address": The value is the addr-spec part of the target key's

mail address. The value SHOULD match the addr-spec part of the

recipient's address. The value MUST be UTF-8 encoded as required

for an OpenPGP User ID.

"fingerprint": The value is the fingerprint of the target key.

The fingerprint is given in uppercase hex encoding without any

interleaving spaces.

"nonce": The value is a string with a minimum length of 16 octets

and a maximum length of 64 octets. The string must entirely be

made up of random ASCII letters or digits. This nonce will be

sent back to the mail provider as proof that the recipient is the

legitimate owner of the target-key.

The receiver of that message is expected to verify the outer

signature and disregard the entire message if it can't be verified

or has not been signed by the key associated with the submission

address.

After the message has been verified the receiver decrypts the second

part of the signed message, checks that the "fingerprint" matches

the target key, checks that the "address" matches a User ID of the

target key, and checks the other constrains of the request format.

If any constraint is not asserted, or the fingerprint or User ID do

not match the target key, or there is no pending publication

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

*

¶

¶

requests (i.e. a mail recently sent to the submission address), the

user MAY be notified about this fake confirmation attempt.

In other cases the confirmation request is legitimate and the MUA

shall silently send a response as described in the next section.

The rationale for the outer signature used with this request is to

allow early detection of spam mails. This can be done prior to the

decryption step and avoids asking the user to enter a passphrase to

perform the decryption for a non-legitimate message. The use of a

simple encrypted attachment, instead of using PGP/MIME encryption,

is to convey the Content-Type of that attachment in the clear and

also to prevent automatic decryption of that attachment by PGP/MIME

aware clients. The MUA may in fact detect this confirmation request

and present a customized dialog for confirming that request.

4.4. The Confirmation Response

A response to a confirmation request MUST only be send in the

positive case; there is no negative confirmation response. A mail

service provider is expected to cancel a pending key submission

after a suitable time without a confirmation. The mail service

provider SHOULD NOT retry the sending of a confirmation request

after the first request has been send successfully.

The user MUST send the confirmation response from her target mail

address to the "from" address of the confirmation request. The

message MUST be signed and encrypted using the PGP/MIME Combined

format ([RFC3156], section 6.2). The signing key is the target key

and the encryption key is the key associated with the provider's

submission address.

The Content-Type used for the plaintext message MUST match the

Content-Type of the request. The format is the same as described

above for the Confirmation Request. The body must contain four name-

value pairs in this order:

"type": The value must be "confirmation-response".

"sender": The value is the value of the "sender" parameter from

the confirmation request.

"address": The value is the value of the "address" parameter from

the confirmation request.

"nonce": The value is the value of the "nonce" parameter from the

confirmation request.

¶

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

4.5. Policy Flags

For key generation and submission it is useful to tell the client

about certain properties of the mail provider in advance. This can

be done with a file at the URL

A site supporting the Web Key Directory MUST serve this file; it is

sufficient if that file has a zero length. Clients may use this file

to check for Web Key Directory support.

The file contains keywords and optionally values, one per line with

each line terminated by a LF or the sequence of CR and LF. Empty

lines and lines starting with a "#" character are considered comment

lines. A keyword is made up of lowercase letters, digits, hyphens,

or dots. An underscore is allowed as a name space delimiters; see

below. The first character must be a letter. Keywords which are

defined to require a value are directly followed by a colon and then

after optional white space the value. Clients MUST use case-

insensitive matching for the keyword.

Currently defined keywords are:

"mailbox-only": The mail server provider does only accept keys

with only a mailbox in the User ID. In particular User IDs with a

real name in addition to the mailbox will be rejected as invalid.

"dane-only": The mail server provider does not run a Web Key

Directory but only an OpenPGP DANE service. The Web Key Directory

Update protocol is used to update the keys for the DANE service.

"auth-submit": The submission of the mail to the server is done

using an authenticated connection. Thus the submitted key will be

published immediately without any confirmation request.

"protocol-version": This keyword can be used to explicitly claim

the support of a specific version of the Web Key Directory update

protocol. This is in general not needed but implementations may

have workarounds for providers which only support an old protocol

version. If these providers update to a newer version they should

add this keyword so that the implementation can disable the

workaround. The value is an integer corresponding to the

respective draft revision number.

"submission-address": An alternative way to specify the

submission address. The value is the addr-spec part of the

address to send requests to this server. If this keyword is used

in addition to the submission-address file, both MUST have the

same value.

¶

 WELLKNOWN/policy¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

More keywords will be defined in updates to this I-D. There is no

registry except for this document. For experimental use of new

features or for provider specific settings, keywords MUST be

prefixed with a domain name and an underscore.

5. Security Considerations

The use of SHA-1 for the mapping of the local-part to a fixed string

is not a security feature but merely used to map the local-part to a

fixed-sized string made from a well defined set of characters. It is

not intended to conceal information about a mail address.

The domain name part of the mail address is not part of the hash to

avoid problems with internationalized domain names. Instead a

separate URL is required for each domain name.

To make it a bit harder to test for published keys, the server

responsible to serve the WELLKNOWN directory SHOULD NOT create an

index file for that directory or any sub-directory.

The mail provider MUST make sure to publish a key in a way that only

the mail address belonging to the requested user is part of the User

ID packets included in the returned key. Other User ID packets and

their associated binding signatures MUST be removed before

publication. Confirmation requests MUST only be send for such to be

published User ID. It is further recommended that a client filters a

received key or a key send for a publication requests so that only

the specific User ID with the mail address of the provider is

imported or send.

A client MUST NOT accept a HTTP authentication challenge (HTTP code

401) because the information in the Web Key Directory is public and

needs no authentication. Allowing an authentication challenge has

the problem to easily confuse a user with a password prompt and

tricking him into falsely entering the passphrase used to protect

his private key or to login to his mail provider.

The use of DNS SRV records as specified in former revisions of this

document reduces the certainty that a mail address belongs to a

domain. For example an attacker may change the target to a host in a

sub-domain under their control and thus gain full control over all

keys.

6. IANA Considerations

6.1. Well-Known URI

IANA is requested to assign a well-known URI in the "Well-Known

URIs" registry as defined by [RFC8615]:

¶

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC3156]

[RFC4880]

[RFC6189]

[RFC8615]

URI suffix: openpgpkey

Change controller: IETF

Specification document: This

7. Acknowledgments

The author would like to acknowledge the help of the individuals who

kindly voiced their opinions on the GnuPG mailing lists, in

particular, the help of Bernhard Reiter and Guilhem Moulin.

8. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997,

<http://www.rfc-editor.org/rfc/rfc2119.txt>.

Elkins, M., Del Torto, D., Levien, R., and T. Roessler,

"MIME Security with OpenPGP", RFC 3156, August 2001,

<http://www.rfc-editor.org/rfc/rfc3156.txt>.

Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and R.

Thayer, "OpenPGP Message Format", RFC 4880, November

2007, <http://www.rfc-editor.org/rfc/rfc4880.txt>.

Zimmermann, P., Johnston, A., Ed., and J. Callas, "ZRTP:

Media Path Key Agreement for Unicast Secure RTP", RFC

6189, DOI 10.17487/RFC6189, April 2011, <http://www.rfc-

editor.org/info/rfc6189>.

Nottingham, M., "Well-Known Uniform Resource Identifiers

(URIs)", RFC 8615, DOI 10.17487/RFC8615, May 2019,

<https://www.rfc-editor.org/info/rfc8615>.

Appendix A. Sample Protocol Run

The following non-normative example can be used by implementors as

guidance.

Note that GnuPG version 2.1.12 supports the key discovery described

in version -00 of this document (auto-key-locate method "wkd").

Version 2.1.16 can run the protocol described in this document but

is also able to run the protocol version specified by -01. For

backward compatibility this example uses the Content-Type as

required for versions of this protocol prior to -04; if the client

knows that the server support -04 "vnd.gnupg.wkd" should be used.

¶

¶

¶

¶

¶

¶

http://www.rfc-editor.org/rfc/rfc2119.txt
http://www.rfc-editor.org/rfc/rfc3156.txt
http://www.rfc-editor.org/rfc/rfc4880.txt
http://www.rfc-editor.org/info/rfc6189
http://www.rfc-editor.org/info/rfc6189
https://www.rfc-editor.org/info/rfc8615

A.1. Sample Keys

This is the provider's submission key:

This is the target key to be published:

A.2. Sample Messages

The first message triggers the publication requests.

¶

 -----BEGIN PGP PRIVATE KEY BLOCK-----

 lFgEV/TAohYJKwYBBAHaRw8BAQdAB/k9YQfSTI8qQqqK1KimH/BsvzsowWItSQPT

 FP+fOC4AAP46uJ3Snno3Vy+kORye3rf0VvWvuz82voEQLxG6WpfHhREEtBprZXkt

 c3VibWlzc2lvbkBleGFtcGxlLm5ldIh5BBMWCAAhBQJX9MCiAhsDBQsJCAcCBhUI

 CQoLAgQWAgMBAh4BAheAAAoJEKhtNooW0cqEWMUA/0e9XaeptszWC9ZvPg8INL6a

 BvRqPBYGU7PGmuXsxBovAQDyckOykG0UAfHVyN1w4gSK/biMcnqVr857i8/HuvjW

 C5xdBFf0wKISCisGAQQBl1UBBQEBB0Apvaoe4MtSEJ1fpds/4DFl2kXXBpnVji/s

 Wg9btdthNQMBCAcAAP9FJX99T1LEJzBnvBBnc6bimnT6/1OKM9RdO4R0/uVP6BFL

 iGEEGBYIAAkFAlf0wKICGwwACgkQqG02ihbRyoTlGwD9FBr92osjL7HkhhZZ7Z2D

 My3b9zpoZeMjvPg5YPqpdKMA/jhZoHuZCRMBYf7YRFb8aXtuyetDFZYrkjnum+OG

 HFAD

 =Hnwd

 -----END PGP PRIVATE KEY BLOCK-----

¶

¶

 -----BEGIN PGP PRIVATE KEY BLOCK-----

 lFgEV2o9XRYJKwYBBAHaRw8BAQdAZ8zkuQDL9x7rcvvoo6s3iEF1j88Dknd9nZhL

 nTEoBRkAAP94nCZMM4WY2IORXfM6phLGSz3RsHvs/vA1Opaus4+R3BKJtBtwYXRy

 aWNlLmx1bXVtYmFAZXhhbXBsZS5uZXSIeQQTFggAIQUCV2o9XQIbAwULCQgHAgYV

 CAkKCwIEFgIDAQIeAQIXgAAKCRATlWNoKgINCpkNAQDFDcwJUzsxu7aJUiPdpYXj

 4uVarrXakxEE8mGFotWhLAD9GH4rqLDYIE3NKEU0s+Okt4tEIwJaV8H1NNPPPMiK

 3g2cXQRXaj2NEgorBgEEAZdVAQUBAQdAFnnmZc99TuKk5iCq9wmYZUVF2RcXN2Cs

 qAl8iGQQUWsDAQgHAAD/VN/VGmlcwGBPcLTya2hfU4t37nMcFCKdNSXjJ5DFA0AP

 PohhBBgWCAAJBQJXaj2NAhsMAAoJEBOVY2gqAg0Ky4UA/0GmVaXzXemLvv1Xw4yx

 Eaz/KfKKGc4RJ+38fyqUzw8NAQCohQ+ki3I5f84EXLZEiUiLsnVtOn1HNxvND/gW

 TiFZBA==

 =GHi7

 -----END PGP PRIVATE KEY BLOCK-----

¶

¶

The server decrypts this message to

 From: patrice.lumumba@example.net

 To: key-submission@example.net

 Subject: Key publishing request

 MIME-Version: 1.0

 Content-Type: multipart/encrypted;

 protocol="application/pgp-encrypted";

 boundary="=-=01-e8k41e11ob31eefa36wo=-="

 Date: Wed, 05 Oct 2016 10:15:51 +0000

 --=-=01-e8k41e11ob31eefa36wo=-=

 Content-Type: application/pgp-encrypted

 Version: 1

 --=-=01-e8k41e11ob31eefa36wo=-=

 Content-Type: application/octet-stream

 -----BEGIN PGP MESSAGE-----

 hF4DUgLY5tvmW2sSAQdAR1AcqvFpQe/fHRZbf0xcnl9Tb+AtwaX2yZnZXGELGHsw

 1/e3E0JptwM5tpRAVe71ooF8Zq4jl76ZgQKfj/SyjpLJxyoEDy2N5wTQaqW4JtML

 0ukB1vh7dIRDxBJX/LQIJC0wz8o1Q3vjcLJKFFvDb7YrerABpPIzwOAupcgIbQHj

 5m1+2WU5CL8ffyJy2h1jV2X4OnvWF1Sn6J6SVD6DfZpOPRt9TxSemJrN1LJ3lG0N

 ts8AuYmCOeC1H2r5TYyxqkC98JF8+Nvyxd/fwne8IOjK9uixkNMC5H9/ZOH0YWCb

 wBnNB4iXuym4OIPxiLkDymsVF0ww/XrODE9Y259EGmO45VFNrJAX3HFs9/PcMCVk

 n2qMyEkr8LHiXeEPun6Z54RHUPYv2cUkEZ0hhSJ+rtBxkc/5D/cAScCEXRKFSKEF

 jLJAvLK/u/ga5DAzVai+vh6b6Bq+YVPaD9GWMhWj4CgR90p9LULi6S/Hzwhv9Wzf

 8fJoJOaDjyvRDgr09jYLWamxkS9NWxqwy6MXJvxwbNdd5XtqiW4Y4o0Ll1hDJhxR

 ljn/XvotXKwhKN+4QGhIXDVt4Dl4XxS5ptWfVTau8W8DYqDsU2obEcfsirZv53M1

 Q9FCD8CD9+dkBt8VAJekCWVhEltcRHxlrznbk2jxm93xSD2o6gZ5X0VSaSUXyEhm

 J+8F3gyTHGgbq/TgyjFoockWh5EtGgAFuWvmPJCF5PO/UaNeoKwgwSJBu6oTXkHx

 R4nvvMRcj5UgTsKpZ79NiDQukbjG5ScNT5TCUiiZsBXBqBx3fD61EH6cAuh4P3Kr

 iM7PY4fwAHo890Dx+Qlt

 =WIhx

 -----END PGP MESSAGE-----

 --=-=01-e8k41e11ob31eefa36wo=-=--

¶

¶

and returns this confirmation request

 Content-Type: application/pgp-keys

 -----BEGIN PGP PUBLIC KEY BLOCK-----

 mDMEV2o9XRYJKwYBBAHaRw8BAQdAZ8zkuQDL9x7rcvvoo6s3iEF1j88Dknd9nZhL

 nTEoBRm0G3BhdHJpY2UubHVtdW1iYUBleGFtcGxlLm5ldIh5BBMWCAAhBQJXaj1d

 AhsDBQsJCAcCBhUICQoLAgQWAgMBAh4BAheAAAoJEBOVY2gqAg0KmQ0BAMUNzAlT

 OzG7tolSI92lhePi5VqutdqTEQTyYYWi1aEsAP0YfiuosNggTc0oRTSz46S3i0Qj

 AlpXwfU00888yIreDbg4BFdqPY0SCisGAQQBl1UBBQEBB0AWeeZlz31O4qTmIKr3

 CZhlRUXZFxc3YKyoCXyIZBBRawMBCAeIYQQYFggACQUCV2o9jQIbDAAKCRATlWNo

 KgINCsuFAP9BplWl813pi779V8OMsRGs/ynyihnOESft/H8qlM8PDQEAqIUPpIty

 OX/OBFy2RIlIi7J1bTp9RzcbzQ/4Fk4hWQQ=

 =qRfF

 -----END PGP PUBLIC KEY BLOCK-----

¶

¶

 From: key-submission@example.net

 To: patrice.lumumba@example.net

 Subject: Confirm your key publication

 MIME-Version: 1.0

 Content-Type: multipart/encrypted;

 protocol="application/pgp-encrypted";

 boundary="=-=01-wrzqued738dfx4x97u7y=-="

 Date: Wed, 05 Oct 2016 10:16:57 +0000

 --=-=01-wrzqued738dfx4x97u7y=-=

 Content-Type: application/pgp-encrypted

 Version: 1

 --=-=01-wrzqued738dfx4x97u7y=-=

 Content-Type: application/octet-stream

 -----BEGIN PGP MESSAGE-----

 hF4DkYWHjk/NdMASAQdAluQeqhECpU2T0zEyBAEbFzhLkpubN160wjkFCrtUc0Mw

 FwYgM2fp9cvTMdJ/xjkvmAcIEOT4AY/hn1yFQ4z0KG0gCkSac+8mkDylnPdxlXYw

 0sBSAXlbqpVA7eUpFuU2Zs10zbIXxlwe6osR5wUIJut/RCOsYQmfvxC55x8mUX5/

 zgTnNzlMzye5ws4pTgAeQm2x0Yv018L8IZgY5KxwJLBzlss0wLZ45ZcS80hR11Fx

 NCow1fKF8lMnOJxagTEOih807nctz8vT5bR1gx0d7N3LM+th8nAg9/6Ghf1XTpLo

 MzwGW0FtOG7Dg1Uxbw2bjaOuRBeh6IIpmNAw1pmIfnNu7PpoRydU5w1K/R8MT06z

 MKdJ7IW5mVGes9EGnG3e4mjuILvNaZhfYy+a73IhDSaPm3oqdl1Qx7tbNg6lGjn6

 KStCYAcPGPp3m7aWkfsPGThOVRhEXqaFFywfwSVEj1pdIRjDFA==

 =Cdjh

 -----END PGP MESSAGE-----

 --=-=01-wrzqued738dfx4x97u7y=-=--

¶

The client decrypts this PGP/MIME message as

creates this response

and sends it PGP/MIME Combined signed and encrypted to the server

¶

 Content-Type: application/vnd.gnupg.wks

 Content-Transfer-Encoding: 8bit

 type: confirmation-request

 sender: key-submission@example.net

 address: patrice.lumumba@example.net

 fingerprint: B21DEAB4F875FB3DA42F1D1D139563682A020D0A

 nonce: f5pscz57zj6fk11wekk8gx4cmrb659a7

¶

¶

 Content-Type: application/vnd.gnupg.wks

 Content-Transfer-Encoding: 8bit

 type: confirmation-response

 sender: key-submission@example.net

 address: patrice.lumumba@example.net

 nonce: f5pscz57zj6fk11wekk8gx4cmrb659a7

¶

¶

Appendix B. Changes Since -13

Fixed description of the confiration response

Fixed an example to be signed+encrypted

Clarified some inconsistencies

Author's Address

Werner Koch

GnuPG e.V.

Rochusstr. 44

40479 Duesseldorf

Germany

 From: patrice.lumumba@example.net

 To: key-submission@example.net

 Subject: Key publication confirmation

 MIME-Version: 1.0

 Content-Type: multipart/encrypted;

 protocol="application/pgp-encrypted";

 boundary="=-=01-iacqg4og4pqz11a5cg1o=-="

 Date: Wed, 05 Oct 2016 10:18:52 +0000

 --=-=01-iacqg4og4pqz11a5cg1o=-=

 Content-Type: application/pgp-encrypted

 Version: 1

 --=-=01-iacqg4og4pqz11a5cg1o=-=

 Content-Type: application/octet-stream

 -----BEGIN PGP MESSAGE-----

 hF4DUgLY5tvmW2sSAQdAlq98ugycHadQGRe0+055eGUzdQtORR+u5LuJU+oYXHkw

 4V1z0S1QPO9BWixHA62PtjAOShT2xN+1v8T2gq3mdgCEMCHX/Nj6INuu+HXF8o0D

 0sC5AfEwq24oKF/6Q8vb1L/KUzFeitnWBnxS1i9XONlG9FTpSGfBir9szqz3QtMu

 8Sma+X4g/i/rbO5ZtY9v0r+NCh0fY+fMj8Iaqw8IJUcUWcL2oz+GaHU+CIaJWUyk

 suqjw5Zw9WVPQ2nXHZTVOKPk4b8Y8f34GvoqP9ZyVFhZ+/9xcvE3fHOoZKeIK9Yi

 4Bxza2HvWRkkKc48Orf5AjK45Wm/G72m72d/KiYfzBm0W4T5QkVqRnX+vpoQc+bo

 thEE715ma9SnZMcY3fRcPnhjlDxDneB5DD7WNdiz+wZL0OiHW/kT8Eo4/OZnb72M

 t44hd8xB8wbfhz5/zmgmlG4IGGA4MomZyg7G/fo24xaIqkjgnJ1GryWaztNQM6Xx

 34kDLTF1fkjqmMZOtTEFKwC5dzrp1qb7B4ZWsFXC+bSLC5teaRajmOr4T5tXCFV7

 TL0gNBsg/bRBU6wmFDaOaJjleoTsh/7YNJaMsoiMx7NrHe+uVqaEbE4HsWU=

 =tlCO

 -----END PGP MESSAGE-----

 --=-=01-iacqg4og4pqz11a5cg1o=-=--

¶

* ¶

* ¶

* ¶

Email: wk@gnupg.org

URI: https://gnupg.org/verein

mailto:wk@gnupg.org
https://gnupg.org/verein

	OpenPGP Web Key Directory
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Notational Conventions
	3. Web Key Directory
	3.1. Key Discovery

	4. Web Key Directory Update Protocol
	4.1. The Submission Address
	4.2. The Submission Mail
	4.3. The Confirmation Request
	4.4. The Confirmation Response
	4.5. Policy Flags

	5. Security Considerations
	6. IANA Considerations
	6.1. Well-Known URI

	7. Acknowledgments
	8. Normative References
	Appendix A. Sample Protocol Run
	A.1. Sample Keys
	A.2. Sample Messages

	Appendix B. Changes Since -13
	Author's Address

