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Status of this Document

    This document is an Internet-Draft and is in full conformance with
    all provisions of Section 10 of [RFC 2026].  Internet-Drafts are
    working documents of the Internet Engineering Task Force (IETF), its
    areas, and its working groups.  Note that other groups may also
    distribute working documents as Internet-Drafts.

    Internet-Drafts are draft documents valid for a maximum of six
    months and may be updated, replaced, or obsoleted by other documents
    at any time. It is inappropriate to use Internet-Drafts as reference
    material or to cite them other than as "work in progress."

    The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

    The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

                                Abstract

     This document specifies the Datagram Congestion Control
     Protocol (DCCP), which implements a congestion-controlled,
     unreliable flow of datagrams suitable for use by applications
     such as streaming media.
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1.  Introduction

    This document specifies the Datagram Congestion Control Protocol
    (DCCP).  DCCP provides the following features:

    o An unreliable flow of datagrams, with acknowledgements.

    o A reliable handshake for connection setup and teardown.

    o Reliable negotiation of options, including negotiation of a
      suitable congestion control mechanism.

    o Mechanisms allowing a server to avoid holding any state for
      unacknowledged connection attempts or already-finished
      connections.

    o An optional mechanism that allows the sender to know, with high
      reliability, which packets reached the receiver.

    o Congestion control incorporating Explicit Congestion Notification
      (ECN) and the ECN Nonce, as per [RFC 3168] and [WES01].

    o Path MTU discovery, as per [RFC 1191].

    DCCP is intended for applications that require the flow-based
    semantics of TCP, but which do not want TCP's in-order delivery and
    reliability semantics, or which would like different congestion
    control dynamics than TCP.  Similarly, DCCP is intended for
    applications that do not require the features of SCTP [RFC 2960]
    such as sequenced delivery within multiple streams.

    The sort of applications which could make use of DCCP are those
    which have timing constraints on the delivery of data, such that
    reliable in-order delivery, when combined with congestion control,
    is likely to result in some information arriving at the receiver
    after it is no longer of use.  Such applications might include
    streaming media and Internet telephony.

    To date most such applications have used either TCP, with the
    problems described above, or used UDP and implemented their own
    congestion control mechanisms (or no congestion control at all). The
    purpose of DCCP is to provide a standard way to implement congestion
    control and congestion control negotiation for such applications.
    One of the motivations for DCCP is to enable the use of ECN, along
    with conformant end-to-end congestion control, for applications that
    otherwise would be using UDP.  In addition, DCCP implements reliable
    connection setup, teardown, and feature negotiation.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc2960
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    A DCCP connection contains acknowledgement traffic as well as data
    traffic.  Acknowledgements inform a sender whether its packets
    arrived, and whether they were ECN marked. Acks are transmitted as
    reliably as the congestion control mechanism in use requires,
    possibly up to completely reliably.

    Previous drafts of this specification called the protocol DCP, or
    Datagram Control Protocol. The name was changed to make the acronym
    sound less like "TCP".

2.  Design Rationale

    One of the motivations behind the design of DCCP is to make DCCP as
    low-overhead as possible, in terms both of the size of the packet
    header and in terms of the state and CPU overhead required at the
    end hosts.  In particular, DCCP is designed to minimize the state
    maintained by the data sender.  DCCP is intended to be used by
    applications that currently now use UDP without end-to-end
    congestion control.  The desire is for many applications to have
    little reason not to use DCCP instead of UDP, once DCCP is deployed.

    This desire for minimal overhead results in the design decision to
    add only the minimal necessary functionality to DCCP, and to leave
    other functionality such as FEC or semi-reliability to the
    application, to be layered on top of DCCP as desired.  The desire
    for minimal overhead is also one of the reasons to propose DCCP
    instead of just proposing an unreliable version of SCTP for
    applications currently using UDP.

    Mechanisms for multi-homing and mobility are the one area of
    additional functionality that can not necessarily be layered cleanly
    and effectively on top of DCCP.  Thus, the one outstanding design
    decision with DCCP concerns whether to incorporate mechanisms for
    multi-homing and mobility into DCCP itself.

    A second motivation behind the design of DCCP is to allow
    applications to choose an alternative to the current TCP-style
    congestion control that halves the congestion window in response to
    a congestion indication.  Thus, DCCP is designed to allow
    applications to choose between several forms of congestion control.
    The first, TCP-like congestion control, halves the congestion window
    in response to a packet drop or mark, as in TCP.  A second
    alternative, TFRC (TCP-Friendly Rate Control), is a form of
    equation-based congestion control that minimized abrupt changes in
    the sending rate, while maintaining longer-term fairness with TCP.

    In proposing a new transport protocol, it is necessary to justify
    the design decision not to require the use of the Congestion
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    Manager, as well as the design decision to add a new transport
    protocol to the current family of UDP, TCP, and SCTP.  The
    Congestion Manager [RFC3124] allows multiple concurrent streams
    between the same sender and receiver to share congestion control.
    However, the current Congestion Manager can only be used by
    applications that have their own end-to-end feedback about packet
    losses, and this is not the case for many of the applications
    currently using UDP.  In addition, the current Congestion Manager
    does not lend itself to the use of forms of TFRC where the state
    about past packet drops or marks is maintained at the receiver
    rather than at the sender.  In addition, while we would like for
    DCCP to be able to make use of CM where desired by the application,
    we do not see any benefit in making the deployment of DCCP
    contingent on the deployment of CM itself.

3.  Concepts and Terminology

3.1.  Anatomy of a DCCP Connection

    Each DCCP connection runs between two endpoints, which we often name
    DCCP A and DCCP B. Data may pass over the connection in either or
    both directions.  The DCCP connection between DCCP A and DCCP B
    consists of four sets of packets, as follows:

    (1) Data packets from DCCP A to DCCP B.

    (2) Acknowledgements from DCCP B to DCCP A.

    (3) Data packets from DCCP B to DCCP A.

    (4) Acknowledgements from DCCP A to DCCP B.

    We use the following terms to refer to subsets and endpoints of a
    DCCP connection.

    Subflows
        A subflow consists of either data or acknowledgement packets,
        sent in one direction (from DCCP A to DCCP B, say). Each of the
        four sets of packets above is a subflow. (Subflows may overlap
        to some extent, since acknowledgements may be piggybacked on
        data packets.)

    Sequences
        A sequence consists of all packets sent in one direction,
        regardless of whether they are data or acknowledgements. The
        sets 1+4 and 2+3, from above, are each sequences. Each packet on
        a sequence has a different sequence number.

https://datatracker.ietf.org/doc/html/rfc3124
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    Half-connections
        A half-connection consists of the data packets sent in one
        direction, plus the corresponding acknowledgements. The sets 1+2
        and 3+4, from above, are each half-connections. Half-connections
        are named after the direction of data flow, so the A-to-B half-
        connection contains the data packets from A to B and the
        acknowledgements from B to A.

    HC-Sender and HC-Receiver
        In the context of a single half-connection, the HC-Sender is the
        endpoint sending data, while the HC-Receiver is the endpoint
        sending acknowledgements. For example, in the A-to-B half-
        connection, DCCP A is the HC-Sender and DCCP B is the HC-
        Receiver.

3.2.  Congestion Control

    Each half-connection is managed by a congestion control mechanism.
    The endpoints negotiate these mechanisms at connection setup; the
    mechanisms for the two half-connections need not be the same, but
    they must both be TCP-compatible.

    Conformant congestion control mechanisms correspond to single-byte
    congestion control identifiers, or CCIDs. The CCID for a half-
    connection describes how the HC-Sender limits data packet rates in a
    TCP-friendly manner; how it maintains necessary parameters, such as
    congestion windows; how the HC-Receiver sends congestion feedback
    via acknowledgements; and how it manages the acknowledgement rate.

Section 6 introduces the currently allocated CCIDs, which are
    defined in separate profile documents.

3.3.  Connection Initiation and Termination

    Every DCCP connection is actively initiated by one DCCP, which
    connects to a DCCP socket in the passive listening state. We refer
    to the active endpoint as "the client" and the passive endpoint as
    "the server". Most of the DCCP specification is indifferent to
    whether a DCCP is client or server. However, only the server may
    generate a DCCP-CloseReq packet. (A DCCP-CloseReq packet forces the
    receiving DCCP to close the connection and maintain connection state
    for a reasonable time, allowing old packets to clear the network.)
    This means that the client cannot force the server to maintain
    connection state after the connection is closed.

    DCCP does not support TCP-style simultaneous open. In particular, a
    host MUST NOT respond to a DCCP-Request packet with a DCCP-Response
    packet unless the destination port specified in the DCCP-Request
    corresponds to a local socket opened for listening.
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    DCCP also does not support half-open connections. That is, DCCP
    shuts down both half-connections as a unit. However, DCCP SHOULD
    allow applications to declare that they are no longer interested in
    receiving data. This would allow DCCP implementations to streamline
    state for certain half-connections.  See Section 7.8, the Buffer
    Closed Drops option, for more information.

3.4.  Features

    DCCP uses a generic mechanism to negotiate connection properties,
    such as the CCIDs active on the two half-connections. These
    properties are called features. (We reserve the term "option" for a
    collection of bytes in some DCCP header.) A feature name, such as
    "CCID", generally corresponds to two features, one per half-
    connection. For instance, there are two CCIDs per connection. The
    endpoint in charge of a particular feature is called its feature
    location.

    The Change, Prefer, and Confirm options negotiate feature values.
    (These options were formerly called Ask, Choose, and Answer,
    respectively.) Change is sent to a feature location, asking it to
    change its value for the feature. The feature location may respond
    with Prefer, which asks the other endpoint to Change again with
    different values, or it may change the feature value and acknowledge
    the request with Confirm. Retransmissions make feature negotiation
    reliable. Section 5.3 describes these options further.

4.  DCCP Packets

    DCCP has nine different packet types:

    o DCCP-Request

    o DCCP-Response

    o DCCP-Data

    o DCCP-Ack

    o DCCP-DataAck

    o DCCP-CloseReq

    o DCCP-Close

    o DCCP-Reset
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    o DCCP-Move

    Only the first eight types commonly occur. The DCCP-Move packet is
    used to support multihoming and mobility.

    The progress of a typical DCCP connection is as follows.

    (1) The client sends the server a DCCP-Request packet specifying the
        client and server ports, the service that is being requested,
        and any features that are being negotiated, including the CCID
        that the client would like the server to use. The client MAY
        optionally piggyback some data on the DCCP-Request packet---an
        application-level request, say---which the server MAY ignore.

    (2) The server sends the client a DCCP-Response packet indicating
        that it is willing to communicate with the client. The response
        indicates any features and options that the server agrees to,
        whether an application request in the DCCP-request was actually
        passed to the application, and optionally an Init Cookie that
        wraps up all this information and which MUST be returned by the
        client for the connection to complete.

    (3) The client sends the server a DCCP-Ack packet that acknowledges
        the DCCP-Response packet. This acknowledges the server's initial
        sequence number and returns the Init Cookie if there was one in
        the DCCP-Response. It may also continue feature negotiation.

    (4) Next comes zero or more DCCP-Ack exchanges as required to
        finalize feature negotiation. The client may piggyback an
        application-level request on its final ack, producing a DCCP-
        DataAck packet.

    (5) The server and client then exchange DCCP-Data packets, DCCP-Ack
        packets acknowledging that data, and, optionally, DCCP-DataAck
        packets containing piggybacked data and acknowledgements. If the
        client has no data to send, then the server will send DCCP-Data
        and DCCP-DataAck packets, while the client will send DCCP-Acks
        exclusively.

    (6) The server sends a DCCP-CloseReq packet requesting a close.

    (7) The client sends a DCCP-Close packet acknowledging the close.

    (8) The server sends a DCCP-Reset packet and clears its connection
        state.

    (9) The client receives the DCCP-Reset packet and holds state for a
        reasonable interval of time to allow any remaining packets to
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        clear the network.

    An alternative connection closedown sequence is initiated by the
    client:

    (6) The client sends a DCCP-Close packet closing the connection.

    (7) The server sends a DCCP-Reset packet and clears its connection
        state.

    (8) The client receives the DCCP-Reset packet and holds state for a
        reasonable interval of time to allow any remaining packets to
        clear the network.

    This arrangement of setup and teardown handshakes permits the server
    to decline to hold any state until the handshake with the client has
    completed, and ensures that the client must hold the TimeWait state
    at connection closedown.

4.1.  Examples of DCCP Congestion Control

    Before giving the detailed specifications of DCCP, we first give two
    more detailed examples on DCCP congestion control in operation.

4.1.1.  DCCP with TCP-like Congestion Control

    The first example is of a connection where both half-connections use
    TCP-like Congestion Control, specified by CCID 2 [CCID 2 PROFILE].
    In this example, the client sends an application-level request to
    the server, and the server responds with a stream of data packets.
    This example is of a connection using ECN.

    (1) The client sends the DCCP-Request, which includes a Change
        option asking the server to use CCID 2 for the server's data
        packets, and a Prefer option informing the server that the
        client would like to use CCID 2 for the its data packets.

    (2) The server sends a DCCP-Response, including a Confirm option
        indicating that the server agrees to use CCID 2 for its data
        packets, and a Change option indicating that the server agrees
        to the client's suggestion of CCID 2 for the client's data
        packets.

    (3) The client responds with a DCCP-DataAck acknowledging the
        server's initial sequence number, and including a Confirm option
        finalizing the negotiation of the client-to-server CCID, and an
        application-level request for data.  We will not discuss the
        client-to-server half-connection further in this example.
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    (4) The server sends DCCP-Data packets, where the number of packets
        sent is governed by a congestion window cwnd, as in TCP.  The
        details of the congestion window are defined in the profile for
        CCID 2, which is a separate document [CCID 2 PROFILE]. The
        server also sends Ack Ratio feature options specifying the
        number of server data packets to be covered by an Ack packet
        from the client.

        Some of these data packets are DCCP-DataAcks acknowledging
        packets from the client.

    (5) The client sends a DCCP-Ack packet acknowledging the data
        packets for every Ack Ratio data packets transmitted by the
        server.  Each DCCP-Ack packet uses a sequence number and
        contains an Ack Vector, as defined in Section 7 on
        Acknowledgements. These packets also include Confirm options
        answering any Ack Ratio requests from the server.

    (6) The server continues sending DCCP-Data packets as controlled by
        the congestion window.  Upon receiving DCCP-Ack packets, the
        server examines the Ack Vector to learn about marked or dropped
        data packets, and adjusts its congestion window accordingly, as
        described in [CCID 2 PROFILE]. Because this is unreliable
        transfer, the server does not retransmit dropped packets.

    (7) Because DCCP-Ack packets use sequence numbers, the server has
        direct information about the fraction of loss or marked DCCP-Ack
        packets.  The server responds to lost or marked DCCP-Ack packets
        by modifying the Ack Ratio sent to the client, as described in
        [CCID 2 PROFILE]. Under certain conditions, the server must
        acknowledge some of the client's acknowledgements; see Section

7.1 for more information.

    (8) The server estimates round-trip times and calculates a TimeOut
        (TO) value much as the RTO (Retransmit Timeout) is calculated in
        TCP.  Again, the specification for this is in [CCID 2 PROFILE].
        The TO is used to determine when a new DCCP-Data packet can be
        transmitted when the server has been limited by the congestion
        window and no feedback has been received from the client.

    (9) Each DCCP-Data, DCCP-DataAck, and DCCP-Ack packet is sent as
        ECN-Capable, with either the ECT(0) or the ECT(1) codepoint set,
        as described in [WES01]. The client echoes the accumulated ECN
        Nonce for the server's packets along with its Ack Vector
        options.

    (10)
        The DCCP-CloseReq, DCCP-Close, and DCCP-Reset packets to close
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        the connection are as in the example above.

4.1.2.  DCCP with TFRC Congestion Control

    This example is of a connection where both half-connections use TFRC
    Congestion Control, specified by CCID 3 The specification for CCID 3
    is in a separate profile [CCID 3 PROFILE]; the purpose of this
    example is to illustrate the range of uses for DCCP.

    (1) The DCCP-Request and DCCP-Response packets specifying the use of
        CCID 3 and the initial DCCP-DataAck packet are similar to those
        in the TCP-like example above.

    (2) The server sends DCCP-Data packets, where the number of packets
        sent is governed by an allowed transmit rate, as in TFRC.  The
        details of the allowed transmit rate are defined in the profile
        for CCID 3, which is a separate document [CCID 3 PROFILE]. Each
        DCCP-Data packet has a sequence number and a window counter
        option.

        Some of these data packets are DCCP-DataAck packets
        acknowledging packets from the client, but for simplicity we
        will not discuss the half-connection of data from the client to
        the server in this example.

    (3) The receiver sends DCCP-Ack packets at least once per round-trip
        time acknowledging the data packets, unless the server is
        sending at a rate of less than one packet per RTT, as specified
        by CITE CCID3 .  These acknowledgements may be piggybacked on
        data packets, producing DCCP-DataAck packets.  Each DCCP-Ack
        packet uses a sequence number and identifies the most recent
        packet received from the server.  Each DCCP-Ack packet includes
        feedback about the loss event rate calculated by the client, as
        specified by [CCID 3 PROFILE].

    (4) The server continues sending DCCP-Data packets as controlled by
        the allowed transmit rate.  Upon receiving DCCP-Ack packets, the
        server updates its allowed transmit rate as specified by [CCID 3
        PROFILE].

    (5) The server estimates round-trip times and calculates a TimeOut
        (TO) value much as the RTO (Retransmit Timeout) is calculated in
        TCP.  Again, the specification for this is in [CCID 3 PROFILE].

    (6) The use of ECN follows TCP-like Congestion Control, above, and
        is described further in [CCID 3 PROFILE].
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    (7) The DCCP-CloseReq, DCCP-Close, and DCCP-Reset packets to close
        the connection are as in the examples above.

4.2.  DCCP Generic Packet Header

    All DCCP packets begin with a generic DCCP packet header:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |        Source Port            |          Dest Port            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Type  |  Res  |              Sequence Number                  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Data Offset  | # NDP | Cslen |           Checksum            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Source and Destination Ports: 16 bits each
        These fields identify the connection. Packets sent on the other
        sequence switch the source and destination port values.

    Type: 4 bits
        The type field specifies the type of the DCCP message.  The
        following values are defined:

        0   DCCP-Request packet.

        1   DCCP-Response packet.

        2   DCCP-Data packet.

        3   DCCP-Ack packet.

        4   DCCP-DataAck packet.

        5   DCCP-CloseReq packet.

        6   DCCP-Close packet.

        7   DCCP-Reset packet.

        8   DCCP-Move packet.
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    Reserved (Res): 4 bits
        This field is reserved for future expansion. The version of DCCP
        specified here MUST set the field to all zeroes on generated
        packets, and ignore its value on received packets.

    Sequence Number: 24 bits
        The sequence number field is initialized by a DCCP-Request or
        DCCP-Response packet, and increases by one (modulo 16777216)
        with every packet sent. The receiver uses this information to
        determine whether packet losses have occurred. Even packets
        containing no data update the sequence number.  Sequence numbers
        also provide some protection against old and malicious packets.

Section 4.3 discusses sequence number validity.

    Data Offset: 8 bits
        The offset from the start of the DCCP header to the beginning of
        the packet's payload, measured in 32-bit words.

    Number of Non-Data Packets (# NDP): 4 bits
        DCCP sets this field to the number of non-data packets it has
        sent so far on its sequence, modulo 16. A non-data packet is
        simply any packet not containing user data; DCCP-Ack packets are
        the canonical example. When sending a non-data packet, DCCP
        increments the # NDP counter before storing its value in the
        packet header.

        This field can help the receiving DCCP decide whether a lost
        packet contained any user data. (An application may want to know
        when it has lost data. DCCP could report every packet loss as a
        potential data loss, but that would cause false loss reports
        when non-data packets were lost.) For example, say that packet
        10 had # NDP set to 5; packet 11 was lost; and packet 12 had #
        NDP set to 5. Then the receiving DCCP could deduce that packet
        11 contained data, since # NDP did not change. Likewise, if #
        NDP had gone up to 6 (and packets 10 and 12 contained user
        data), then packet 11 must not have contained any data.

    Checksum Length (Cslen): 4 bits
        The checksum length field specifies what parts of the packet are
        covered by the checksum field. The checksum always covers at
        least the DCCP header, DCCP options, and a pseudoheader taken
        from the network-layer header (see below). If the checksum
        length field is zero, that is all the checksum covers. If the
        field is 15, the checksum covers the packet's payload as well,
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        possibly with 8 bits of zero padding on the right to pad the
        payload to an even number of bytes. Values between 1 and 14,
        inclusive, indicate that the checksum additionally covers the
        indicated number of initial 32-bit words of the packet's
        payload, padded on the right with zeros as necessary. Any value
        other than 15 specifies that corruption is acceptable in some or
        all of the DCCP packet's payload, and that partially corrupted
        data packets may be received and counted for congestion control
        purposes.  The meaning of values other than 0 and 15 should be
        considered experimental.

    Checksum: 16 bits
        DCCP uses the TCP/IP checksum algorithm. The checksum field
        equals the 16 bit one's complement of the one's complement sum
        of all 16 bit words in the DCCP header, DCCP options, a
        pseudoheader taken from the network-layer header, and, depending
        on the value of the checksum length field, some or all of the
        payload. When calculating the checksum, the checksum field
        itself is treated as 0. If a packet contains an odd number of
        header and text octets to be checksummed, the last octet is
        padded on the right with zeros to form a 16 bit word for
        checksum purposes. The pad is not transmitted as part of the
        packet.

        The pseudoheader is calculated as for TCP. For IPv4, it is 96
        bits long, and consists of the IPv4 source and destination
        addresses, the IP protocol number for DCCP (padded on the left
        with 8 zero bits), and the DCCP length (the length of the DCCP
        header with options, plus the length of any data); see Section

3.1 of [RFC 793]. For IPv6, it is 320 bits long, and consists of
        the IPv6 source and destination addresses, the DCCP length as a
        32-bit quantity, and the IP protocol number for DCCP (padded on
        the left with 24 zero bits); see Section 8.1 of [RFC 2460].

4.3.  Sequence Number Validity

    DCCP should ignore packets with invalid sequence numbers, which may
    arise if the network delivers a very old packet or an attacker
    attempts to hijack a connection. TCP solves this problem with its
    window. In DCCP, however, the definition of "unreasonable sequence
    number" is complicated because sequence numbers change with each
    packet sent. Thus, a loss event that dropped many consecutive
    packets could cause two DCCPs to get out of sync relative to any
    window.

    DCCP uses Loss Window and Connection Nonce mechanisms to determine
    whether a given packet's sequence number is valid. Each HC-Sender

https://datatracker.ietf.org/doc/html/rfc793#section-3.1
https://datatracker.ietf.org/doc/html/rfc793#section-3.1
https://datatracker.ietf.org/doc/html/rfc2460#section-8.1
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    gives the corresponding HC-Receiver a *loss window width* W; see
Section 5.9. This reflects how many packets the sender expects to be

    in flight. Only the sender can anticipate this number. One good
    guideline is to set it to about 3 or 4 times the maximum number of
    packets the sender expects to send in any round-trip time. Too-small
    values increase the risk of the endpoints getting out sync after
    bursts of loss; too-large values increase the risk of connection
    hijacking. W defaults to 1000. The Connection Nonces are used to get
    back into sync when more than W consecutive packets are lost.

    The HC-Receiver sets up a loss window of W consecutive sequence
    numbers containing GSN, the Greatest Sequence Number it has received
    on any valid packet from the sender. ("Consecutive" and "greatest"
    are measured in circular sequence space. The receiver may center the
    loss window on GSN, or arrange it asymmetrically.) Sequence numbers
    outside this loss window are invalid. Packets with invalid sequence
    numbers are themselves invalid, *unless* their sequence numbers are
    greater than GSN and their acknowledgement numbers are correct
    (within a loss window of the last packets sent from the receiver),
    *or* they include correct Connection Proof (Section 5.4.2).

    The receiving DCCP SHOULD ignore invalid packets---that is, it
    should not pass any enclosed data to the application, update its
    congestion control state, or close the connection. However, the
    receiving DCCP MAY send a DCCP-Ack packet to the sender, as allowed
    by the congestion control mechanism in use. This packet should
    contain the last received valid sequence number and an Identify
    Yourself option (Section 5.4.3). The other DCCP will send a
    Connection Proof option to resync. (Such Identify Yourself packets
    MUST be rate limited.)

    We note that resyncing mechanisms may need further research.

4.4.  DCCP State Diagram

    In this section we present a DCCP state diagram showing how a DCCP
    connection should progress, and the proper responses for packets or
    timeout events in various connection states. The state diagram is
    illustrative; the text should be considered definitive.

                   +-----------------------------------+
                   | Figures omitted from text version |
                   +-----------------------------------+

    All receive events on the diagram represent receipt of valid
    packets. For example, receiving a Reset with a bad Acknowledgement



Kohler/Handley/Floyd/Padhye                      Section 4.4.  [Page 16]



INTERNET-DRAFT           Expires: December 2002                June 2002

    Number should not cause DCCP to transition to the Time-Wait state.
    Furthermore, packets without explicit transitions in the state
    diagram should be treated as invald. DCCP implementations MAY send
    Resets (or Acks, as described above) in response to invalid packets.
    Any such responses MUST be rate-limited.

    The Open state does not signify that a DCCP connection is ready for
    data transfer. In particular, incomplete feature negotiations might
    prevent data transfer. Feature negotiation takes place in parallel
    with the state transitions on this diagram.

    Only the server may take the transition from the OPEN state to the
    SERVER-CLOSE state. (The server is the DCCP endpoint that began in
    the LISTEN state.) Similarly, only the client must transition to
    CLIENT-CLOSE after receiving a CloseReq packet.

4.5.  DCCP-Request Packet Format

    A DCCP connection is initiated by sending a DCCP-Request packet. The
    format of a DCCP request packet is:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    /                      Generic DCCP Header                      /
    /                          (12 octets)                          /
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                         Service Name                          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Options                   |   [padding]   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                             data                              |
    |                              ...                              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    The Service Name field, in combination with the Destination Port,
    identifies the service to which the sender is trying to connect.
    Service Names are 32-bit numbers allocated by the IETF; they are
    meant to correspond to application services and protocols. The host
    operating system MAY force every DCCP socket, both actively and
    passively opened, to specify a Service Name. The connection will
    succeed only if the Destination Port on the receiver has the same
    Service Name as that given in the packet. If they differ, the
    receiver will respond with a DCCP-Reset packet.

    The DCCP-Request packet initializes the client-to-server sequence
    number.  As in TCP, this sequence number should be chosen randomly
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    to help prevent connection hijacking.

    Options
        DCCP-Request packets will usually include a "Change(Connection
        Nonce)" option, to inform the server of the client's connection
        nonce; see Section 5.4.

4.6.  DCCP-Response Packet Format

    In the second phase of the three-way handshake, the server sends a
    DCCP-Response message to the client. The response initializes the
    server-to-client sequence number. As in TCP, this sequence number
    should be chosen randomly to help prevent connection hijacking.

    In this phase, a server will often specify the options it would like
    to use, either from among those the client requested, or in addition
    to those. Among these options is the congestion control mechanism
    the server expects to use.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    /                      Generic DCCP Header                      /
    /                          (12 octets)                          /
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Reserved    |           Acknowledgement Number              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Options                   |   [padding]   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                             data                              |
    |                              ...                              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Acknowledgement Number: 24 bits
        The acknowledgement number field acknowledges the largest valid
        sequence number received so far on this connection. (The usual
        care must be taken in case of wrapped sequence numbers.) In the
        case of a DCCP-Response packet, the acknowledgement number field
        will equal the sequence number from the DCCP-Request.
        Acknowledgement numbers make no attempt to provide precise
        information about which packets have arrived; options such as
        the Ack Vector do this.

    Reserved: 8 bits
        The version of DCCP specified here MUST set this field to all
        zeroes on generated packets, and ignore its value on received
        packets.
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    Options
        The Data Discarded and Init Cookie options are particularly
        designed for DCCP-Response packets (Sections 5.5 and 5.6). In
        addition, DCCP-Response, or early DCCP-Data or DCCP-Ack packets,
        will often include "Confirm(Connection Nonce)" and
        "Change(Connection Nonce)" packets, to further negotiate
        connection nonces (Section 5.4).

4.7.  DCCP-Data, DCCP-Ack, and DCCP-DataAck Packet Formats

    The payload data in a DCCP connection is sent in DCCP-Data and DCCP-
    DataAck packets. DCCP-Data packets look like this:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    /                      Generic DCCP Header                      /
    /                          (12 octets)                          /
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Options                   |   [padding]   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                             data                              |
    |                              ...                              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    DCCP-Ack packets dispense with the data, but contain an
    acknowledgement number:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    /                      Generic DCCP Header                      /
    /                          (12 octets)                          /
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Reserved    |           Acknowledgement Number              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Options                   |   [padding]   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    DCCP-DataAck packets contain both data and an acknowledgement
    number. That is, acknowledgement information is piggybacked on a
    data packet.
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     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    /                      Generic DCCP Header                      /
    /                          (12 octets)                          /
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Reserved    |           Acknowledgement Number              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Options                   |   [padding]   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                             data                              |
    |                              ...                              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    DCCP-Ack and DCCP-DataAck packets may include additional
    acknowledgement options, such as Ack Vector, as required by the
    congestion control mechanism in use.

    DCCP A sends DCCP-Data and DCCP-DataAck packets to DCCP B due to
    application events on host A. These packets are congestion-
    controlled by the CCID for the A-to-B half-connection. In contrast,
    DCCP-Ack packets sent by DCCP A are controlled by the CCID for the
    B-to-A half-connection. Generally, DCCP A will piggyback
    acknowledgement information on data packets when acceptable,
    creating DCCP-DataAck packets. DCCP-Ack packets are used when there
    is no data to send from DCCP A to DCCP B, or when the link from A to
    B is completely congested (so sending data would be inappropriate).

Section 7, below, describes acknowledgements in DCCP.

    A DCCP-Data or DCCP-DataAck packet may contain no data if the
    application sends a zero-length datagram.

4.8.  DCCP-CloseReq and DCCP-Close Packet Format

    The DCCP-CloseReq and DCCP-Close packets have the same format.
    However, only the server can send a DCCP-CloseReq packet. Either
    client or server may send a DCCP-Close packet.
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     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    /                      Generic DCCP Header                      /
    /                          (12 octets)                          /
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Reserved    |           Acknowledgement Number              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Options                   |   [padding]   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.9.  DCCP-Reset Packet Format

    DCCP-Reset packets unconditionally shut down a connection. Every
    connection shutdown sequence ends with a DCCP-Reset, but resets may
    be sent for other reasons, including bad port numbers, bad option
    behavior, incorrect ECN Nonce Echoes, and so forth. The reason for a
    reset is represented in the reset itself by a four-byte number, the
    Reason field.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    /                      Generic DCCP Header                      /
    /                          (12 octets)                          /
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Reserved    |           Acknowledgement Number              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                            Reason                             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Options                   |   [padding]   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Reason: 32 bits
        The Reason field represents the reason that the sender reset the
        DCCP connection. Particular values for this field will be
        described in later versions of this document.

4.10.  DCCP-Move Packet Format

    The DCCP-Move packet type is part of DCCP's support for multihoming
    and mobility, which is described further in Section 9. DCCP A sends
    a DCCP-Move packet to DCCP B after changing its IP address and/or
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    port number. The DCCP-Move packet requests that DCCP B start sending
    its data to the new address and port number. The old address and
    port are stored explicitly in the DCCP-Move packet header; the new
    address and port come from the network header and generic DCCP
    header. The type of address contained in the packet is indicated
    explicitly by an Old Address Family field. The Sequence Number and
    Acknowledgement Number fields, and the Connection Proof option,
    provide some protection against hijacked connections. See Section 9
    for more on security and DCCP's mobility support.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    /                      Generic DCCP Header                      /
    /                          (12 octets)                          /
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Reserved    |           Acknowledgement Number              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |      Old Address Family       |           Old Port            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    /                          Old Address                          /
    /                                               |   [padding]   /
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                     Options                   |   [padding]   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                             data                              |
    |                              ...                              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Old Address Family: 16 bits
        The Old Address Family field indicates the address family
        formerly used for this connection, and takes values from the
        Address Family Numbers registry administered by IANA. Particular
        values include 1 for IPv4 and 2 for IPv6.  The endpoint MUST
        discard DCCP-Move packets with unrecognized Old Address Family
        values.

    Old Port: 16 bits
        The former port number used by DCCP A's endpoint.

    Old Address: at least 32 bits
        The former address used by DCCP A's endpoint, padded on the
        right to a multiple of 32 bits. The form and size of the address
        are determined by the Old Address Family field. For instance, if
        Old Address Family is 1, then Old Address contains an IPv4
        address and takes 32 bits; if it is 2, then Old Address contains
        an IPv6 address and takes 128 bits.
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    Options
        A DCCP-Move packet MUST contain a valid Connection Proof option
        (see Section 5.4.2). This means that mobile-aware DCCP endpoints
        MUST inform each other of their Connection Nonces (Section 5.4)
        during connection setup.

    DCCP B should reset the connection if the DCCP-Move packet has valid
    sequence and acknowledgement numbers, but incorrect Connection
    Proof.  Also, it should reset if neither the Old Address/Old Port
    combination nor the network address/Source Port combination refers
    to a currently active DCCP connection.

    DCCP B MUST respond to the DCCP-Move packet with a DCCP-Ack or DCCP-
    DataAck packet acknowledging the move. If this acknowledgement is
    lost, DCCP A might resend the DCCP-Move packet (using a new sequence
    number). DCCP B MUST NOT reset these packets, even though the Old
    Address/Old Port combination no longer refers to a valid DCCP
    connection. It SHOULD instead send another acknowledgement, as
    allowed by the congestion control mechanism in use.

    We note that DCCP mobility, as provided by DCCP-Move, may not be
    useful in the context of IPv6, with its mandatory support for Mobile
    IP.

5.  Options and Features

    All DCCP packets may contain options which can be used to extend
    DCCP's functionality. Options occupy space at the end of the DCCP
    header and are a multiple of 8 bits in length. All options are
    included in the checksum. An option may begin on any byte boundary.

    The first octet of an option is the option type. Options with types
    0 through 31 are single-byte options. Other options are followed by
    an octet indicating the option's length. This length includes the
    two octets of option-type and option-length as well as the option-
    data octets.

    The following options are currently defined:
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                  Option                           Section
          Type    Length     Meaning               Reference
          ----    ------     -------               ---------
            0        1       Padding                 5.1
            1        1       Data Discarded          5.5
            2        1       Slow Receiver           7.6
            3        1       Identify Yourself       5.4.3
           32        4       Ignored                 5.2
           33     variable   Change                  5.3
           34     variable   Prefer                  5.3
           35     variable   Confirm                 5.3
           36     variable   Init Cookie             5.6
           37     variable   Ack Vector [Nonce 0]    7.5
           38     variable   Ack Vector [Nonce 1]    7.5
           39        3       Receive Buffer Drops    7.7
           40        6       Timestamp               5.7
           41       10       Timestamp Echo          5.8
           42     variable   Connection Proof        5.4.2
           43        3       Buffer Closed Drops     7.8
         128-255  variable   CCID-Specific Options   6.4

5.1.  Padding Option

    The padding option, with type 0, is a single byte option used to pad
    between or after options. It either ensures the payload begins on a
    32-bit boundary (as required), or ensures alignment of following
    options (not mandatory).

5.2.  Ignored Option

    The Ignored option, with type 32, signals that a DCCP did not
    understand some option. This can happen, for example, when a
    conventional DCCP converses with an extended DCCP. Each Ignored
    option has two octets of payload, the first containing the offending
    option type and the second containing the first octet of the
    offending option's payload. (If the offending option had no payload,
    this octet is 0.)

    +--------+--------+--------+--------+
    |00100000|00000100|Opt Type|Opt Data|
    +--------+--------+--------+--------+
     Type=32  Length=4
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5.3.  Feature Negotiation

    DCCP contains a mechanism for reliably negotiating features, most
    notably the congestion control mechanism in use on each half-
    connection. The motivation was to implement reliable feature
    negotiation once, so that different options need not reinvent that
    particular wheel.

    Three options, Change, Prefer, and Confirm, implement feature
    negotiation.  Change is sent to a feature's location, asking it to
    change the feature's value. The feature location may respond with
    Prefer, which asks the other endpoint to Change again with different
    values, or it may change the feature value and acknowledge the
    request with Confirm. (The options were formerly called Ask, Choose,
    and Answer.)

    Features MUST NOT change values apart from feature negotiation, and
    enforced retransmissions make feature negotiation reliable. This
    ensures that both endpoints eventually agree on every feature's
    value.

    Some features are non-negotiable, meaning that the feature location
    MUST set its value to whatever the other endpoint requests. For non-
    negotiable features, the feature location MUST respond to Change
    options with Confirm; Prefer is not useful. These features use the
    feature framework simply to achieve reliability.

5.3.1.  Feature Numbers

    The first data octet of every Change, Prefer, or Confirm option is a
    feature number, defining the type of feature being negotiated. The
    remainder of the data gives one or more values for the feature, and
    is interpreted according to the feature. The current set of feature
    numbers is as follows:

                                                  Section
          Number  Meaning                  Neg.?  Reference
          ------  -------                  -----  ---------
            1     Congestion Control (CC)    Y      6
            2     ECN Capable                Y      8.1
            3     Ack Ratio                  N      7.3
            4     Use Ack Vector             Y      7.4
            5     Mobility Capable           Y      9.1
            6     Loss Window                N      5.9
            7     Connection Nonce           N      5.4.1
         128-255  CCID-Specific Features     ?      6.4
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    The "Neg.?" column is "Y" for normal features and "N" for non-
    negotiable features.

5.3.2.  Change Option

    DCCP B sends a Change option to DCCP A to ask it to change the value
    of some feature. (DCCP A is the feature location.) DCCP A MUST
    respond to the Change option with either Prefer or Confirm. DCCP B
    MUST retransmit the Change option until it receives some relevant
    response. DCCP B will always generate a Change option in response to
    a Prefer option; it may also generate a Change option due to some
    application event.

5.3.3.  Prefer Option

    DCCP A sends a Prefer option to DCCP B to ask it to confirm the
    value of some feature. (Again, DCCP A is the feature location.) DCCP
    B MUST respond to the Prefer option with a Change. DCCP A MUST
    retransmit the Prefer option until it receives a relevant Change
    response. DCCP A may generate a Prefer option in response to some
    Change option, or in response to some application event.  Prefer
    options are not useful for non-negotiable features.

5.3.4.  Confirm Option

    DCCP A sends a Confirm option to DCCP B to inform it of the current
    value of some feature. (Again, DCCP A is the feature location.) DCCP
    A MUST generate Confirm options only in response to Change options.
    DCCP A need not ever retransmit a Confirm option: DCCP B will
    retransmit the relevant Change as necessary.

5.3.5.  Example Negotiations

    This section demonstrates several negotiations of the congestion
    control feature for the A-to-B half-connection. (This feature is
    located at DCCP A.) In this sequence of packets, DCCP A is happy
    with DCCP B's suggestion of CC mechanism 2:

         B > A    Change(CC, 2)
         A > B    Confirm(CC, 2)

    Here, A and B jointly settle on CC mechanism 5:
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         B > A    Change(CC, 3, 4)
         A > B    Prefer(CC, 1, 2, 5)
         B > A    Change(CC, 5)
         A > B    Confirm(CC, 5)

    In this sequence, A refuses to use CC mechanism 5. If B requires CC
    mechanism 5, its only recourse is to abort the connection:

         B > A    Change(CC, 3, 4, 5)
         A > B    Prefer(CC, 1, 2)
         B > A    Change(CC, 5)
         A > B    Prefer(CC, 1, 2)

    Here, A elicts agreement from B that it is satisfied with congestion
    control mechanism 2:

         A > B    Prefer(CC, 1, 2)
         B > A    Change(CC, 2)
         A > B    Confirm(CC, 2)

5.3.6.  Unknown Features

    If a DCCP receives a Change or Prefer option referring to a feature
    number it does not understand, it MUST respond with a corresponding
    Ignored option.  This informs the remote DCCP that the local DCCP
    does not implement the feature. No other action need be taken.
    (Ignored may also indicate that the DCCP endpoint could not respond
    to a CCID-specific feature request because the CCID was in flux; see

Section 6.4.)

5.3.7.  State Diagram

    These state diagrams present the legal transitions in a DCCP feature
    negotiation. They define DCCP's states and transitions with respect
    to the negotiation of a single feature it understands. There are two
    diagrams, corresponding to the two endpoints: the feature location,
    or DCCP A, and what we call the "feature requester", DCCP B.

    Transitions between states are triggered by receiving a packet
    ("RECV") or by an application event ("APP"). Received packets are
    further distinguished by any options relevant to the feature being
    negotiated. "RECV -" means the packet contained no relevant option.
    "RECV Chg" denotes a Change option, "RECV Pr" a Prefer option, and
    "RECV Con" a Confirm option. The data contained in an option is
    given in parentheses when necessary. The "SEND" action indicates
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    which option the DCCP will send next. Finally, the "SET-VALUE"
    action causes the DCCP to change its value for the relevant feature.

    "SEND" does not force DCCP to immediately generate a packet; rather,
    it says which feature option must be sent on the next packet
    generated. A DCCP MAY choose to generate a packet in response to
    some "SEND" action. However, it MUST NOT generate a packet if doing
    so would violate the congestion control mechanism in use.

    The requester, DCCP B, has four states: Known, Unknown, Failed, and
    Changing.  Similarly, the feature location, DCCP A, has four states:
    Known, Unknown, Failed, and Confirming. In both cases, Known denotes
    a state where the DCCP knows the feature's current value, and
    believes that the other DCCP agrees.  Changing and Confirming denote
    states where the DCCPs are in the process of negotiating a new value
    for the feature. The Unknown state can occur only at connection
    setup time. It denotes a state where the DCCP does not know any
    value for the feature, and has not yet entered a negotiation to
    determine its value. Finally, the Failed state represents a state
    where the other DCCP does not implement the feature under
    negotiation.

    A DCCP may start in either the Unknown or Known state, depending on
    the feature in question. In particular, some features have a well-
    known value for new connections, in which case the DCCPs begin the
    connection in the Known states.
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                    REQUESTER STATE DIAGRAM (DCCP B)

                        +-----------+
                        |  Unknown  |
                        +-----------+
      +----------+            |                    +-----------+
      |          |RECV -      |RECV -/Pr | APP     |           |RECV Pr/Con
      V          |SEND -      |SEND Chg            V           |SEND Chg
+-----------+    |            |             +------------+     |
|           |----+            +------------>|            |-----+
|   Known   |------------------------------>|  Changing  |
|           |        RECV Pr | APP          |            |-----+
+-----------+          SEND Chg             +------------+     |RECV -
      ^                                          | | ^         |SEND -/Chg
      |                                          | | |         |
      +------------------------------------------+ | +---------+
                       RECV Con(O)                 |          +----------+
                       SEND -                      +--------->|  Failed  |
                       SET-VALUE O                  RECV Ign  +----------+
                                                    SEND -
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                  FEATURE LOCATION STATE DIAGRAM (DCCP A)
(O represents any feature value acceptable to DCCP A; X is not acceptable.)

        RECV Chg(O)
        SEND Con(O)                   RECV -  |  APP
        SET-VALUE O     +-----------+ SEND Pr(O)
   +--------------------|  Unknown  |------------+
   |                    +-----------+            |
   |     +-------+            |                  | +-----------+
   |     |       |RECV -      |RECV Chg(X)       | |           |RECV Chg(X)
   V     V       |SEND -      |SEND Pr(O)        V V           |SEND Pr(O)
+-----------+    |            |             +------------+     |  (need not be
|           |----+            +------------>|            |-----+   the same O)
|   Known   |------------------------------>| Confirming |
|           |----+     RECV Chg  |  APP     |            |-----+
+-----------+    |        SEND Pr(O)        +------------+     |RECV -
   ^     ^       |                               | | ^         |SEND -/Pr(O)
   |     |       |RECV Chg(O)                    | | |         |
   |     |       |SEND Con(O)                    | | +---------+
   |     |       |SET-VALUE O                    | |
   |     +-------+                               | |         +----------+
   +---------------------------------------------+ +-------->|  Failed  |
                  RECV Chg(O)                       RECV Ign +----------+
                  SEND Con(O)                       SEND -
                  SET-VALUE O

    This specification allows several choices of action in certain
    states. The implementation will generally use feature-specific
    information to decide how to respond. For example, DCCP A in the
    Known state may respond to a Change option with either Confirm or
    Prefer. If DCCP A is willing to set the feature to the value
    specified by Change, it will generally send Confirm; but if it would
    like to negotiate further, it will send Prefer.

    DCCP B must retransmit Change options, and DCCP A must retransmit
    Prefer options, until receiving a relevant response. However, they
    need not retransmit the option on every packet, as shown by the
    "RECV - / SEND -" transitions in the Changing and Confirming states.

    These state diagrams guarantee safety, but not liveness. Namely, no
    unexpected or erroneous options will be sent, but option negotiation
    might not terminate. For example, the following infinite negotiation
    is legal according to this specification.
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    A > B    Prefer(1)
    B > A    Change(2)
    A > B    Prefer(1)
    B > A    Change(2)...

    Implementations may choose to enforce a maximum length on any
    negotiation -- for example, by resetting the connection when any
    negotiation lasts more than some maximum time.

    In the Changing and Confirming states, the value of the
    corresponding feature is in flux. DCCP MAY change its behavior in
    these states---for example, by refusing to send data until
    reentering a Known state.

5.4.  Connection Nonce Options

    Connection nonces are opaque cookies that serve as identities for
    DCCP endpoints. They may be negotiated at connection setup time, or
    at any point thereafter. Once set up, they facilitate reconnection
    after an endpoint moves (Section 9) or a long burst of loss that
    gets the endpoints out of sync (Section 4.3).

    The Connection Nonce feature is used to inform one endpoint of the
    other endpoint's connection nonce. The Connection Proof option
    contains the xor of the two endpoints' nonces, and thus acts as
    proof that the sending endpoint knows both nonces. The Identify
    Yourself option requests that a DCCP send a Connection Proof option
    on its next packet.

5.4.1.  Connection Nonce Feature

    Connection Nonce has feature number 7. The Connection Nonce feature
    located at DCCP B is the value of DCCP A's connection nonce. Each
    endpoint must keep track of both its nonce and, via the Connection
    Nonce feature, the other endpoint's nonce.

    The Connection Nonce feature takes arbitrary values of at least 4
    bytes long. A Change or Confirm Connection Nonce option therefore
    takes at least 6 bytes.

    Connection Nonce defaults to a random 8-byte string. To prevent
    spoofing, this string MUST NOT have any predictable value. For
    example, it MUST NOT be set deterministically to zero, and it MUST
    change on every connection.

    This feature is non-negotiable.
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5.4.2.  Connection Proof Option

    This option is permitted in any DCCP packet, although it is useful
    only after the endpoints have informed each other of their
    connection nonces.  The value of the option is the exclusive-or of
    the two connection nonces.  (If one nonce is longer than the other,
    then the shorter one is padded on the right with zero bytes before
    the exclusive-or.) The endpoint receiving Connection Proof compares
    the option value with the xor of the connection nonces, and thus
    determines whether or not the packet is really part of the
    connection. Packets with invalid Connection Proof MUST be ignored,
    except that the receiving DCCP MAY send an Identify Yourself option.
    (DCCP implementations SHOULD limit the rate of such response
    packets.)

    +--------+--------+--------+--------+--------+--------
    |00101010|????????|      Connection Proof Value ...
    +--------+--------+--------+--------+--------+--------
     Type=42   Length

5.4.3.  Identify Yourself Option

    This option is permitted in any DCCP packet, although it is useful
    only after the endpoints have informed each other of their
    connection nonces.  The option informs the receiving DCCP that one
    of its packets was ignored, and that succeeding packets will be
    ignored until the endpoint sends a correct Connection Proof option.
    The receiving DCCP SHOULD include a Connection Proof option on the
    next packet it sends.

    +--------+
    |00000011|
    +--------+
     Type=3

5.5.  Data Discarded Option

    This option is permitted in a DCCP-Response packet only.  It
    indicates that the payload of the DCCP-Request packet was discarded
    by the server, and therefore should be resent in a following DCCP-
    Data or DCCP-DataAck packet.  This option can be set by the server
    to avoid having to keep state for the connection until the handshake
    is complete.  Doing so causes an additional round-trip time before
    the server can begin servicing the request.  The tradeoff is under
    the control of local policy at the server.
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    +--------+
    |00000010|
    +--------+
     Type=2

5.6.  Init Cookie Option

    This option is permitted in DCCP-Response, DCCP-Data, and DCCP-
    DataAck messages. The option MAY be returned by the server in a
    DCCP-Response mechanism. If so, then the client MUST echo the same
    Init Cookie option in its ensuing DCCP-Data or DCCP-DataAck
    message.

    The purpose of this option is to allow a DCCP server to avoid having
    to hold any state until the three-way connection setup handshake has
    completed.  The server wraps up the service name, server port, and
    any options it cares about from both the DCCP-Request and DCCP-
    Response in a opaque cookie.  Typically the cookie will be encrypted
    using a secret known only to the server and include a cryptographic
    checksum or magic value so that correct decryption can be verified.
    When the server receives the cookie back in the response, it can
    decrypt the cookie and instantiate all the state it avoided keeping.

    The precise implementation of the Init Cookie does not need to be
    specified here as it is only relayed by the client, and does not
    need to be understood by the client.

    +--------+--------+--------+--------+--------+--------
    |00100100|????????|         Init Cookie Value   ...
    +--------+--------+--------+--------+--------+--------
     Type=36   Length

5.7.  Timestamp Option

    This option is permitted in any DCCP packet. The length of the
    option is 6 bytes.

    +--------+--------+--------+--------+--------+--------+
    |00101000|00000110|          Timestamp Value          |
    +--------+--------+--------+--------+--------+--------+
     Type=40  Length=6

    The four bytes of option data carry the timestamp of this packet, in
    some undetermined form. A DCCP receiving a Timestamp option SHOULD
    respond with a Timestamp Echo option on the next packet it sends.
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5.8.  Timestamp Echo Option

    This option is permitted in any DCCP packet, as long as at least one
    packet carrying the Timestamp option has been received. The length
    of the option is 10 bytes.

    +--------+--------+------- ... -------+------- ... -------+
    |00101001|00001010|      TS Echo      |      Elapsed      |
    +--------+--------+------- ... -------+------- ... -------+
     Type=41   Len=10       (4 bytes)           (4 bytes)

    The first four bytes of option data, TS Echo, carry a Timestamp
    Value taken from a preceding received Timestamp option. Usually,
    this will be the last packet that was received. The final four bytes
    indicate the amount of time elapsed since receiving the packet whose
    timestamp is being echoed. This time MUST be in microseconds. We are
    currently investigating ways to relax the last requirement.

5.9.  Loss Window Feature

    Loss Window has feature number 6. The Loss Window feature located at
    DCCP B is the width of the window DCCP B uses to determine whether
    packets from DCCP A are valid. Packets outside this window will be
    dropped by DCCP B as old duplicates or spoofing attempts; see

Section 4.3 for more information. DCCP A sends a "Change(Loss
    Window, W)" option to DCCP B to set DCCP B's Loss Window to W.

    The Loss Window feature takes 3-byte integer values, like DCCP
    sequence numbers. Change and Confirm options for Loss Window are
    therefore 6 bytes long.

    Loss Window defaults to 1000 for new connections. The Loss Window
    value is the total width of the loss window. The receiver may
    position the loss window asymmetrically around the last sequence
    number seen -- for example, by allocating 1/4 of the loss window
    width for older sequence numbers and 3/4 of it for newer sequence
    numbers.

    This feature is non-negotiable.

6.  Congestion Control IDs

    Each congestion control mechanism supported by DCCP is assigned a
    congestion control identifier, or CCID: a number from 0 to 255.
    During connection setup, and optionally thereafter, the endpoints
    negotiate their congestion control mechanisms by negotiating the
    values for their Congestion Control features. Congestion Control has
    feature number 1. The feature located at DCCP A is the CCID in use
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    for the A-to-B half-connection. DCCP B sends an "Change(CC, K)"
    option to DCCP A to ask A to use CCID K for its data packets.

    The data octets of Congestion Control feature negotiation options
    form a list of acceptable CCIDs, sorted in descending order of
    priority. For example, the option "Change(CC 1, 2, 3)" asks the
    sender to use CCID 1, although CCIDs 2 and 3 are also acceptable.
    (This corresponds to the octets "33, 6, 1, 1, 2, 3": Change option
    (33), option length (6), feature ID (1), CCIDs (1, 2, 3).)
    Similarly, "Confirm(CC 1, 2, 3)" tells the receiver that the sender
    is using CCID 1, but that CCIDs 2 or 3 might also be acceptable.

    The CCIDs defined by this document are:

         CCID   Meaning
         ----   -------
           0    Reserved
           1    Unspecified Sender-Based Congestion Control
           2    TCP-like Congestion Control
           3    TFRC Congestion Control

    A new connection starts with CCID 2 for both DCCPs. If this is
    unacceptable for either DCCP, that DCCP will start in the Unknown
    state. A DCCP SHOULD NOT send data when its Congestion Control
    feature is in the Unknown state.

6.1.  Unspecified Sender-Based Congestion Control

    CCID 1 denotes an unspecified sender-based congestion control
    mechanism.  Separate features negotiate the corresponding congestion
    acknowledgement options---for example, Ack Vector.  This provides a
    limited, controlled form of interoperability for new IETF-approved
    CCIDs.

    Implementors MUST NOT use CCID 1 in production environments as a
    proxy for congestion control mechanisms that have not entered the
    IETF standards process. We intend for the IETF to approve all
    production uses of CCID 1.  Nevertheless, middle boxes MAY choose to
    treat the use of CCID 1 as experimental or unacceptable.

    For example, say that CCID 98, a new sender-based congestion control
    mechanism using Ack Vector for acknowledgements, has entered the
    IETF standards process. Now, DCCP A, which understands and would
    like to use CCID 98, is trying to communicate with DCCP B, which
    doesn't yet know about CCID 98. DCCP A can simply negotiate use of
    CCID 1 and, separately, negotiate Use Ack Vector. DCCP B will
    provide the feedback DCCP A requires for CCID 98, namely Ack Vector,
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    without needing to understand the congestion control mechanism in
    use.

6.2.  TCP-like Congestion Control

    CCID 2 denotes Additive Increase, Multiplicative Decrease (AIMD)
    congestion control with behavior modelled directly on TCP, including
    congestion window, slow start, timeouts, and so forth. CCID 2 is
    further described in [CCID 2 PROFILE].

6.3.  TFRC Congestion Control

    CCID 3 denotes TCP-Friendly Rate Control, an equation-based rate-
    controlled congestion control mechanism. CCID 3 is further described
    in [CCID 3 PROFILE].

6.4.  CCID-Specific Options and Features

    Option and feature numbers 128 through 255 are available for CCID-
    specific use. CCIDs may often need new option types---for
    communicating acknowledgement or rate information, for example.
    CCID-specific option types let them create options at will without
    polluting the global options space. Option 128 might have different
    meanings on a half-connection using CCID 4 and a half-connection
    using CCID 8. CCID-specific options and features will never conflict
    with global options introduced by later versions of this
    specification.

    Any packet may contain information meant for either half-connection,
    so CCID-specific option and feature numbers explicitly signal the
    half-connection to which they apply. Option numbers 128 through 191
    are for options sent from the HC-Sender to the HC-Receiver; option
    numbers 192 through 255 are for options sent from the HC-Receiver to
    the HC-Sender. Similarly, feature numbers 128 through 191 are for
    features located at the HC-Sender; feature numbers 192 through 255
    are for features located at the HC-Receiver. (Change options for a
    feature are sent *to* the feature location; Prefer and Confirm
    options are sent *from* the feature location. Thus, Change(128)
    options are sent by the HC-Receiver by definition, while Change(192)
    options are sent by the HC-Sender.)

    For example, consider a DCCP connection where the A-to-B half-
    connection uses CCID 4 and the B-to-A half-connection uses CCID 5.
    Here is how a sampling of CCID-specific options and features are
    assigned to half-connections:
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                                    Relevant    Relevant
         Packet  Option             Half-conn.  CCID
         ------  ------             ----------  ----
         A > B   128                  A-to-B     4
         A > B   192                  B-to-A     5

A > B   Change(128, ...)     B-to-A     5
A > B   Prefer(128, ...)     A-to-B     4
A > B   Confirm(128, ...)    A-to-B     4
A > B   Change(192, ...)     A-to-B     4
A > B   Prefer(192, ...)     B-to-A     5
A > B   Confirm(192, ...)    B-to-A     5

    CCID-specific options and features have no clear meaning when the
    relevant CCID is in flux. A DCCP SHOULD respond to CCID-specific
    options and features with Ignored options during those times.

7.  Acknowledgements

    Congestion control requires receivers to transmit information about
    packet losses and ECN marks to senders. DCCP receivers MUST report
    all congestion they see, as defined by the relevant CCID profile.
    Each CCID says when acknowledgements should be sent, what options
    they must use, how they should be congestion controlled, and so on.

    Most acknowledgements use DCCP options. For example, on a half-
    connection with CCID 2 (TCP-like), the receiver reports
    acknowledgement information using the Ack Vector option. This
    section describes common acknowledgement options and shows how acks
    using those options will commonly work. Full descriptions of the
    acknowledgement mechanisms used for each CCID are laid out in the
    CCID profile specifications.

    Acknowledgement options, such as Ack Vector, are only allowed on
    DCCP-Ack, DCCP-DataAck, DCCP-Close, and DCCP-CloseReq packets.

7.1.  Acks of Acks and Unidirectional Connections

    DCCP was designed to work well for both bidirectional and
    unidirectional flows of data, and for connections that transition
    between these states.  However, acknowledgements required for a
    unidirectional connection are very different from those required for
    a bidirectional connection. In particular, unidirectional
    connections need to worry about acks of acks.

    The ack-of-acks problem arises because some acknowledgement
    mechanisms are reliable. For example, an HC-Receiver using CCID 2,
    TCP-like Congestion Control, sends Ack Vectors containing completely
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    reliable acknowledgement information. The HC-Sender should
    occasionally inform the HC-Receiver that it has received an ack. If
    it did not, the HC-Receiver might resend complete Ack Vector
    information, going back to the start of the connection, with every
    DCCP-Ack packet! However, note that acks-of-acks need not be
    reliable themselves: when an ack-of-acks is lost, the HC-Receiver
    will simply maintain old acknowledgement-related state for a little
    longer. Therefore, there is no need for acks of acks of acks.

    When communication is bidirectional, any required acks of acks are
    automatically contained in normal acknowledgements for data packets.
    On a unidirectional connection, however, the receiver DCCP sends no
    data, so the sender would not normally send acknowledgements.
    Therefore, the CCID in force on that half-connection must explicitly
    say whether, when, and how the HC-Sender should generate acks of
    acks.

    For example, consider a bidirectional connection where both half-
    connections use the same CCID (either 2 or 3), and where DCCP B goes
    *quiescent*. This means that the connection becomes unidirectional:
    DCCP B stops sending data, and sends only sends DCCP-Ack packets to
    DCCP A. For CCID 2, TCP-like Congestion Control, DCCP B uses Ack
    Vector to reliably communicate which packets it has received. As
    described above, DCCP A must occasionally acknowledge a pure
    acknowledgement from DCCP B, so that DCCP B can free old Ack Vector
    state. For instance, DCCP A might send a DCCP-DataAck packet every
    now and then, instead of DCCP-Data. In contrast, for CCID 3, TFRC
    Congestion Control, DCCP B's acknowledgements need not be reliable,
    since they contain cumulative loss rates; TFRC works even if every
    DCCP-Ack is lost. Therefore, DCCP A need never acknowledge an
    acknowledgement.

    When communication is unidirectional, a single CCID---in the
    example, the A-to-B CCID---controls both DCCPs' acknowledgements, in
    terms of their content, their frequency, and so forth. For
    bidirectional connections, the A-to-B CCID governs DCCP B's
    acknowledgements (including its acks of DCCP A's acks), while the B-
    to-A CCID governs DCCP A's acknowledgements.

    DCCP A switches its ack pattern from bidirectional to unidirectional
    when it notices that DCCP B has gone quiescent. It switches from
    unidirectional to bidirectional when it must acknowledge even a
    single DCCP-Data or DCCP-DataAck packet from DCCP B. (This includes
    the case where a single DCCP-Data or DCCP-DataAck packet was lost in
    transit, which is detectable using the # NDP field in the DCCP
    packet header.)
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    Each CCID defines how to detect quiescence on that CCID, and how
    that CCID handles acks-of-acks on unidirectional connections. The B-
    to-A CCID defines when DCCP B has gone quiescent. Usually, this
    happens when a period has passed without B sending any data packets.
    For CCID 2, this period is roughly two round-trip times.  The A-to-B
    CCID defines how DCCP A handles acks-of-acks once DCCP B has gone
    quiescent.

7.2.  Ack Piggybacking

    Acknowledgements of A-to-B data MAY be piggybacked on data sent by
    DCCP B, as long as that does not delay the acknowledgement longer
    than the A-to-B CCID would find acceptable. However, data
    acknowledgements often require more than 4 bytes to express. A large
    set of acknowledgements prepended to a large data packet might
    exceed the path's MTU. In this case, DCCP B SHOULD send separate
    DCCP-Data and DCCP-Ack packets, or wait for a smaller datagram (but
    not too long).

    Piggybacking is particularly common at DCCP A when the B-to-A half-
    connection is quiescent---that is, when DCCP A is just acknowledging
    DCCP B's acknowledgements, as described above. There are three
    reasons to acknowledge DCCP B's acknowledgements: to allow DCCP B to
    free up information about previously acknowledged data packets from
    A; to shrink the size of future acknowledgements; and to manipulate
    the rate future acknowledgements are sent. Since these are secondary
    concerns, DCCP A can generally afford to wait indefinitely for a
    data packet to piggyback its acknowledgement onto.

    Any restrictions on ack piggybacking are described in the relevant
    CCID's profile.

7.3.  Ack Ratio Feature

    With Ack Ratio, DCCP A can perform rudimentary congestion control on
    DCCP B's acknowledgement stream by telling DCCP B how to clock its
    acks.

    Ack Ratio has feature number 3. The Ack Ratio feature located at
    DCCP B equals the ratio of data packets sent by DCCP A to
    acknowledgement packets sent back by DCCP B. For example, if it is
    set to four, then DCCP B will send at least one acknowledgement
    packet for every four data packets DCCP A sends. DCCP A sends a
    "Change(Ack Ratio)" option to DCCP B to change DCCP B's ack ratio.

    An Ack Ratio option contains two bytes of data: a sixteen-bit
    integer representing the ratio. A new connection starts with Ack
    Ratio 2 for both DCCPs.
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    This feature is non-negotiable.

7.4.  Use Ack Vector Feature

    The Use Ack Vector feature lets DCCPs negotiate whether they should
    use Ack Vector options to report congestion. Ack Vector provides
    detailed loss information, and lets senders report back to their
    applications whether particular packets were dropped. Use Ack Vector
    is mandatory for some CCIDs, and optional for others.

    Use Ack Vector has feature number 4. The Use Ack Vector feature
    located at DCCP B specifies whether DCCP B should use the Ack Vector
    option to report congestion back to DCCP A. DCCP A sends a
    "Change(Use Ack Vector, 1)" option to DCCP B to ask B to send Ack
    Vector options as part of its acknowledgement traffic.

    A Use Ack Vector option contains a single octet of data. The
    receiver should send Ack Vector options if and only if this octet is
    nonzero. A new connection starts with Use Ack Vector 0 for both
    DCCPs.

7.5.  Ack Vector Options

    The Ack Vector gives a run-length encoded history of data packets
    received at the client. Each octet of the vector gives the state of
    that data packet in the loss history, and the number of preceding
    packets with the same state. The option's data looks like this:

    +--------+--------+--------+--------+--------+
    |001001??| Length |SSLLLLLL|SSLLLLLL|SSLLLLLL|...
    +--------+--------+--------+--------+--------+
    Type=37/38         \________ Vector ________/

    The two Ack Vector options (option types 37 and 38) differ only in
    the values they imply for ECN Nonce Echo. Section 8.2 describes this
    further.

    The vector itself consists of a series of octets, each of whose
    encoding is:

     0 1 2 3 4 5 6 7
    +-+-+-+-+-+-+-+-+
    |St | Run Length|
    +-+-+-+-+-+-+-+-+
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        St[ate]: 2 bits

        Run Length: 6 bits

    State occupies the most significant two bits of each byte, and can
    have one of four values:

        0   Packet received (and not ECN marked).

        1   Packet ECN marked.

        2   Reserved.

        3   Packet not yet received.

    The first byte in the first Ack Vector option refers to the packet
    indicated in the Acknowledgement Number; subsequent bytes refer to
    older packets. (Ack Vector may not be sent on DCCP-Data packets,
    which lack an Acknowledgement Number.) If an Ack Vector contains the
    decimal values 0,192,3,64,5 and the Acknowledgement Number is
    decimal 100, then:

        Packet 100 was received (Acknowledgement Number 100, State 0,
        Run Length 0).

        Packet 99 was lost (State 3, Run Length 0).

        Packets 98, 97, 96 and 95 were received (State 0, Run Length 3).

        Packet 94 was ECN marked (State 1, Run Length 0).

        Packets 93, 92, 91, 90, 89, and 88 were received (State 0, Run
        Length 5).

    Run lengths of more than 64 must be encoded in multiple bytes. A
    single Ack Vector option can acknowledge up to 16192 data packets.
    Should more packets need to be acknowledged than can fit in 253
    bytes of Ack Vector, then multiple Ack Vector options can be sent.
    The second Ack Vector option will begin where the first Ack Vector
    option left off, and so forth.

    Packets dropped in the receive buffer should be reported as not
    received (State 3). The Receive Buffer Drops and Buffer Closed Drops
    options distinguishes between congestion losses and losses due to
    receive buffer overflow.
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7.5.1.  Ack Vector Consistency

    A DCCP sender will commonly receive multiple acknowledgements for
    some of its data packets. For instance, an HC-Sender might receive
    two DCCP-Acks with Ack Vectors, both of which contained information
    about sequence number 24.  (Because of cumulative acking,
    information about a sequence number is repeated in every ack until
    the HC-Sender acknowledges an ack. Perhaps the HC-Receiver is
    sending acks faster than the HC-Sender is acknowledging them.) In a
    perfect world, the two Ack Vectors would always be consistent.
    However, there are many reasons why they might not be:

    o The HC-Receiver received packet 24 between sending its acks, so
      the first ack said 24 was not received (State 3) and the second
      said it was received or ECN marked (State 0 or 1).

    o The HC-Receiver received packet 24 between sending its acks, and
      the network reordered the acks. In this case, the packet will
      appear to transition from State 0 or 1 to State 3.

    o The network duplicated packet 24, but only one of the duplicates
      was ECN marked. Depending on the HC-Receiver's implementation,
      this might show up as a transition between States 0 and 1.

    To cope with these situations, HC-Sender DCCP implementations SHOULD
    combine multiple received Ack Vector states according to this table:

                                Received State
                                  0   1   3
                                +---+---+---+
                              0 | 0 | 1 | 0 |
                        Old     +---+---+---+
                              1 | 1 | 1 | 1 |
                       State    +---+---+---+
                              3 | 0 | 1 | 3 |
                                +---+---+---+

    To read the table, choose the row corresponding to the packet's old
    state and the column corresponding to the packet's state in the
    newly received Ack Vector, then read the packet's new state off the
    table. The table is symmetric about the main diagonal, so it is
    indifferent to ack reordering.

    A HC-Sender MAY choose to throw away old information gleaned from
    the HC-Receiver's Ack Vectors, in which case it MUST ignore newly
    received acknowledgements from the HC-Receiver for those old
    packets. However, it is often kinder to save recent Ack Vector
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    information for a while, so that the HC-Sender can undo its reaction
    to presumed congestion when a "lost" packet unexpectedly shows up
    (the transition from State 3 to State 0).

7.5.2.  Ack Vector Coverage

    We can divide the packets that have been sent from an HC-Sender to
    an HC-Receiver into four roughly contiguous groups. From oldest to
    youngest, these are:

    (1) Packets already acknowledged by the HC-Receiver, where the HC-
        Receiver knows that the HC-Sender has definitely received the
        acknowledgements.

    (2) Packets already acknowledged by the HC-Receiver, where the HC-
        Receiver cannot be sure that the HC-Sender has received the
        acknowledgements.

    (3) Packets not yet acknowledged by the HC-Receiver.

    (4) Packets not yet received by the HC-Receiver.

    The union of groups 2 and 3 is called the Unacknowledged Window.
    Generally, every Ack Vector the HC-Receiver sends will cover the
    whole Unacknowledged Window: Ack Vector acknowledgements are
    cumulative. (This simplifies Ack Vector maintenance at the HC-
    Receiver; see Section 7.9, below.) As packets are received, this
    window both grows on the right and shrinks on the left. It grows
    because there are more packets, and shrinks because the data
    packets' Acknowledgement Numbers will acknowledge previous
    acknowledgements, moving packets from group 2 into group 1.

7.6.  Slow Receiver Option

    An HC-Receiver sends the Slow Receiver option to its sender to
    indicate that it is having trouble keeping up with the sender's
    data. The HC-Sender SHOULD NOT increase its sending rate for
    approximately one round-trip time after seeing a packet with a Slow
    Receiver option. However, the Slow Receiver option does not indicate
    congestion, and the HC-Sender need not reduce its sending rate. (If
    necessary, the receiver can force the sender to slow down by
    dropping packets and including Receive Buffer Drops options.) APIs
    SHOULD let receiver applications set Slow Receiver, and sending
    applications determine whether or not their receivers are Slow.

    The Slow Receiver option takes just one byte:
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    +--------+
    |00000010|
    +--------+
     Type=2

    Slow Receiver does not specify why the receiver is having trouble
    keeping up with the sender. Possible reasons include lack of buffer
    space, CPU overload, and application quotas. A sending application
    might react to Slow Receiver by reducing its sending rate or by
    switching to a lossier compression algorithm. However, a smart
    sender might actually *increase* its sending rate in response to
    Slow Receiver, by switching to a less-compressed sending format. (A
    highly-compressed data format might overwhelm a slow CPU more
    seriously than the higher memory requirements of a less-compressed
    data format.) This tension between transfer size (less compression
    means more congestion) and processing speed (more compression means
    more processing) cannot be resolved in general.

    Slow Receiver implements a portion of TCP's receive window
    functionality.  We believe receiver operating systems and
    applications will find it much easier to send Slow Receiver when
    appropriate than they currently find it to correctly set a TCP
    receive window.

7.7.  Receive Buffer Drops Option

    The Receive Buffer Drops option indicates that some packets reported
    as not received were actually dropped at the endpoint, due to
    insufficient kernel space. The sender will probably react
    differently to receive buffer drops than congestion losses; for
    instance, it might not reduce its congestion window. The option's
    data looks like this:

    +--------+--------+--------+
    |00100111|00000011| Count  |
    +--------+--------+--------+
     Type=39  Length=3

    Count: 8 bits
        The Count field says how many acknowledged packets were dropped
        at the receive buffer, limited to packets acknowledged by the
        packet containing the option. Count is simply a number between 0
        and 255.

    Multiple Receive Buffer Drops options are added together, so a
    single option with Count 2 is equivalent to two options, each with
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    Count 1. A packet's total Receive Buffer Drops count MUST be less
    than or equal to the number of packets acknowledged by it as "not
    yet received". For example, assuming Ack Vector, the Receive Buffer
    Drops count must be less than or equal to the total number of
    State-3 packets in the Ack Vectors.

    If an ECN-marked packet is dropped at the receive buffer, it MUST
    NOT be included in the Receive Buffer Drops count. Such packets MUST
    be reported as the equivalent of "dropped by the network". (For Ack
    Vector, this is "not yet received".)

7.8.  Buffer Closed Drops Option

    The Buffer Closed Drops option indicates that some packets reported
    as not received were actually dropped at the endpoint, because the
    application is no longer listening for data. For example, a server
    might close its receiving half-connection to new data after
    receiving a complete request from the client. This would limit the
    amount of state the server would expend on incoming data, and thus
    reduce the potential damage from certain denial-of-service attacks.
    A DCCP receiving a Buffer Closed Drops option MAY report this event
    to the application.

    The semantics of Buffer Closed Drops are similar to those of Receive
    Buffer Drops.

    +--------+--------+--------+
    |00101011|00000011| Count  |
    +--------+--------+--------+
     Type=43  Length=3

    Count: 8 bits
        Like the Count field in Receive Buffer Drops.

    Multiple Buffer Closed Drops options are added together, so a single
    option with Count 2 is equivalent to two options, each with Count 1.
    A packet's total Buffer Closed Drops count MUST be less than or
    equal to the number of packets acknowledged by it as "not yet
    received". If an ECN-marked packet is dropped due to a closed
    receive buffer, it MUST NOT be included in the Buffer Closed Drops
    count. Such packets MUST be reported as the equivalent of "dropped
    by the network". (For Ack Vector, this is "not yet received".)  No
    packet should be included in both the Receive Buffer Drops and
    Buffer Closed Drops count.
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7.9.  Ack Vector Implementation Notes

    This section discusses the particulars of DCCP acknowledgement
    handling, in the context of an abstract implementation for Ack
    Vector. It may safely be skipped.

    The first part of our implementation runs at the HC-Receiver, and
    therefore acknowledges data packets. It generates Ack Vector
    options. The implementation has the following characteristics:

    o At most one byte of state per acknowledged packet.

    o O(1) time to update that state when a new packet arrives (normal
      case).

    o Cumulative acknowledgements.

    o Quick removal of old state.

    The basic data structure is a circular buffer containing information
    about acknowledged packets. Each byte in this buffer contains a
    state and run length; the state can be 0 (packet received), 1
    (packet ECN marked), or 3 (packet not yet received). The live
    portion of the buffer is marked off by head and tail pointers; each
    is further marked with the HC-Sender sequence number to which it
    corresponds. The buffer grows from right to left. For example:

      +-------------------------------------------------------------------+
      |S,L|S,L|S,L|S,L|S,L|   |   |   |   |S,L|S,L|S,L|S,L|S,L|S,L|S,L|S,L|
      +-------------------------------------------------------------------+
                        ^                   ^
                 Tail, seqno = T     Head, seqno = H

                   <=== Head and Tail move this way <===

    Each `S,L' represents a State/Run length byte. We will draw these
    buffers showing only their live portion; for example, here is
    another representation for the buffer above:

             +---------------------------------------------------+
    (Head) H |S,L|S,L|S,L|S,L|S,L|S,L|S,L|S,L|S,L|S,L|S,L|S,L|S,L| T (Tail)
             +---------------------------------------------------+

    This smaller Example Buffer contains actual data.
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                 +---------------------------+
              10 |0,0|3,0|3,0|3,0|0,4|1,0|0,0| 0    [Example Buffer]
                 +---------------------------+

    In concrete terms, its meaning is as follows:

        Packet 10 was received. (The head of the buffer has sequence
        number 10, state 0, and run length 0.)

        Packets 9, 8, and 7 have not yet been received. (The three bytes
        preceding the head each have state 3 and run length 0.)

        Packets 6, 5, 4, 3, and 2 were received.

        Packet 1 was ECN marked.

        Packet 0 was received.

7.9.1.  New Packets

    When a packet arrives whose sequence number is larger than any in
    the buffer, the HC-Receiver simply moves the Head pointer to the
    left, increases the head sequence number, and stores a byte
    representing the packet into the buffer. For example, if HC-Sender
    packet 11 arrived ECN marked, the Example Buffer above would enter
    this new state (the change is marked with stars):

             +***----------------------------+
          11 |1,0|0,0|3,0|3,0|3,0|0,4|1,0|0,0| 0
             +***----------------------------+

    If the packet's state equals the state at the head of the buffer,
    the HC-Receiver may choose to increment its run length (up to the
    maximum). For example, if HC-Sender packet 11 arrived without ECN
    marking, the Example Buffer might enter this state instead:

                 +--*------------------------+
              11 |0,1|3,0|3,0|3,0|0,4|1,0|0,0| 0
                 +--*------------------------+

    Of course, the new packet's sequence number might not equal the
    expected sequence number. In this case, the HC-Receiver should enter
    the intervening packets as State 3. If several packets are missing,
    the HC-Receiver may prefer to enter multiple bytes with run length
    0, rather than a single byte with a larger run length; this
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    simplifies table updates when one of the missing packets arrives.
    For example, if HC-Sender packet 12 arrived, the Example Buffer
    would enter this state:

         +*******----------------------------+
      12 |0,0|3,0|0,1|3,0|3,0|3,0|0,4|1,0|0,0| 0
         +*******----------------------------+

    When a new packet's sequence number is less than the head sequence
    number, the HC-Receiver should scan the table for the byte
    corresponding to that sequence number. (Slightly more complex
    indexing structures could reduce the complexity of this scan.)
    Assume that the sequence number was previously lost (State 3), and
    that it was stored in a byte with run length 0. Then the HC-Receiver
    can simply change the byte's state. For example, if HC-Sender packet
    8 was received, the Example Buffer would enter this state:

                 +--------*------------------+
              10 |0,0|3,0|0,0|3,0|0,4|1,0|0,0| 0
                 +--------*------------------+

    If the packet is not marked as lost, or if its sequence number is
    not contained in the table, the packet is probably a duplicate, and
    should be ignored. (The new packet's ECN marking state might differ
    from the state in the buffer; Section 7.5.1 describes what to do
    then.) If the packet's corresponding buffer byte has a non-zero run
    length, then the buffer might need be reshuffled to make space for
    one or two new bytes.

    Of course, the circular buffer may overflow, either when the HC-
    Sender is sending data at a very high rate, when the HC-Receiver's
    acknowledgements are not reaching the HC-Sender, or when the HC-
    Sender is forgetting to acknowledge those acks (so the HC-Receiver
    is unable to clean up old state). In this case, the HC-Receiver
    should either compress the buffer, transfer its state to a larger
    buffer, or drop all received packets until its buffer shrinks again.

7.9.2.  Sending Acknowledgements

    Whenever the HC-Receiver needs to generate an acknowledgement, the
    buffer's contents can simply be copied into one or more Ack Vector
    options. Copied Ack Vectors might not be maximally compressed; for
    example, the Example Buffer above contains three adjacent 3,0 bytes
    that could be combined into a single 3,2 byte. The HC-Receiver
    might, therefore, choose to compress the buffer in place before
    sending the option, or to compress the buffer while copying it;
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    either operation is simple.

    Every acknowledgement sent by the HC-Receiver should include the
    entire state of the buffer. That is, acknowledgements are
    cumulative.

    The HC-Receiver should store information about each acknowledgement
    it sends in another buffer. Specifically, for every acknowledgement
    it sends, the HC-Receiver should store:

    o The HC-Receiver sequence number it used for the ack packet.

    o The HC-Sender sequence number it acknowledged (that is, the
      packet's Acknowledgement Number). Since acknowledgements are
      cumulative, this single number completely specifies the set of HC-
      Sender packets acknowledged by this ack packet.

7.9.3.  Clearing State

    Some of the HC-Sender's packets will include acknowledgement
    numbers, which ack the HC-Receiver's acknowledgements. When such an
    ack is received, the HC-Receiver simply finds the HC-Sender sequence
    number corresponding to that acked HC-Receiver packet, and moves the
    buffer's Tail pointer up to that sequence number. (It may choose to
    keep some older information, in case a lost packet shows up late.)
    For example, say that the HC-Receiver storing the Example Buffer had
    sent two acknowledgements already:

         HC-Receiver Ack 59  acknowledged  HC-Sender Seq 3, and
         HC-Receiver Ack 60  acknowledged  HC-Sender Seq 10.

    Say the HC-Receiver then received a DCCP-DataAck packet from the HC-
    Sender with Acknowledgement Number 59. This informs the HC-Receiver
    that the HC-Sender received, and processed, all the information in
    HC-Receiver packet 59. This packet acknowledged HC-Sender packet 3,
    so the HC-Sender has now received HC-Receiver's acknowledgements for
    packets 0, 1, 2, and 3. The Example Buffer should enter this state:

                 +------------------*+ *
              10 |0,0|3,0|3,0|3,0|0,2| 4
                 +------------------*+ *

    Note that the tail byte's run length was adjusted, since packet 3
    was in the middle of that byte. The HC-Receiver can also throw away
    the information about HC-Receiver Ack 59.
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    A careful implementation might also modify its own acknowledgement
    record to ensure that it is reasonably robust to reordering.
    Suppose that the Example Buffer is as before, but that packet 9 now
    arrives, out of sequence.  The Example buffer would enter this
    state:

                 +----*----------------------+
              10 |0,0|0,0|3,0|3,0|0,4|1,0|0,0| 0
                 +----*----------------------+

    Now, if the HC-Receiver then received a DCCP-DataAck packet from the
    HC-Sender with Sequence Number 11 and Acknowledgement Number 60,
    this might cause the tail pointer to be moved up to packet 10,
    although packet 9's arrival has not yet been acknowledged.  Instead,
    when packet 9 arrived, the  HC-Receiver's  acknowledgement record
    might be modified to:

         HC-Receiver Ack 59  acknowledged  HC-Sender Seq 3, and
         HC-Receiver Ack 60  acknowledged  HC-Sender Seq 8.

    That is, any HC-Sender sequence number in the acknowledgement record
    is reduced to at most 8. This would prevent the Tail pointer from
    moving past packet 9 until the HC-Receiver knows that the HC-Sender
    has seen an Ack Vector indicating this packets arrival.

7.9.4.  Processing Acknowledgements

    When the HC-Sender receives an acknowledgement, it generally cares
    about the number of packets that were dropped and/or ECN marked. It
    simply reads this off the Ack Vector. Additionally, it may check the
    ECN Nonce for correctness. (As described in Section 7.5.1, it may
    want to keep more detailed information about acknowledged packets in
    case packets change states between acknowledgements, or in case the
    application queries whether a packet arrived.)

    The HC-Sender must also acknowledge the HC-Receiver's
    acknowledgements so that the HC-Receiver can free old Ack Vector
    state. (Since Ack Vector acknowledgements are reliable, the HC-
    Receiver must maintain and resend Ack Vector information until it is
    sure that the HC-Sender has received that information.) A simple
    algorithm suffices: since Ack Vector acknowledgements are
    cumulative, a single acknowledgement number tells HC-Receiver how
    much ack information has arrived. Assuming that the HC-Receiver
    sends no data, the HC-Sender can simply ensure that at least once a
    round-trip time, it sends a DCCP-DataAck packet acknowledging the
    latest DCCP-Ack packet it has received. Of course, the HC-Sender
    only needs to acknowledge the HC-Receiver's acknowledgements if the
    HC-Sender is also sending data. If the HC-Sender is not sending
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    data, then the HC-Receiver's Ack Vector state is stable, and there
    is no need to shrink it. The HC-Sender must watch for drops and ECN
    marks on received DCCP-Ack packets so that it can adjust the HC-
    Receiver's ack-sending rate with Ack Ratio in response to
    congestion.

    If the other half-connection is not quiescent---that is, the HC-
    Receiver is sending data to the HC-Sender, possibly using another
    CCID---then the acknowledgements on that half-connection are
    sufficient for the HC-Receiver to free its state.

8.  Explicit Congestion Notification

    The DCCP protocol is fully ECN-aware. Every CCID specifies how its
    endpoints respond to ECN marks. Furthermore, DCCP, unlike TCP,
    allows senders to control the rate at which acknowledgements are
    generated (with options like Ack Ratio); this means that
    acknowledgements are generally congestion-controlled, and may have
    ECN-Capable Transport set.

    Every CCID profile describes how that profile interacts with ECN,
    both for data traffic and pure-acknowledgement traffic. A sender
    SHOULD set ECN-Capable Transport on a sent packet whenever the
    receiver has its ECN Capable feature turned on, and the relevant
    CCID allows it.

    The rest of this section describes the ECN Capable feature, and the
    interaction of the ECN Nonce with acknowledgement options such as
    Ack Vector.

8.1.  ECN Capable Feature

    The ECN Capable feature lets a DCCP inform its partner that it
    cannot read ECN bits from received IP headers, so the partner must
    not set ECN-Capable Transport on its packets.

    ECN Capable has feature number 2. The ECN Capable feature located at
    DCCP A indicates whether or not A can successfully read ECN bits
    from received frames' IP headers. (This is independent of whether it
    can set ECN bits on sent frames.) DCCP A sends a "Prefer(ECN
    Capable, 0)" option to DCCP B to inform B that A cannot read ECN
    bits.

    An ECN Capable feature contains a single octet of data. ECN
    capability is on if and only if this octet is nonzero.

    A new connection starts with ECN Capable 1 (that is, ECN capable)
    for both DCCPs. If a DCCP is not ECN capable, it MUST send
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    "Prefer(ECN Capable, 0)" options to the other endpoint until
    acknowledged (by "Change(ECN Capable, 0)") or the connection closes.
    Furthermore, it MUST NOT accept any data until the other endpoint
    sends "Change(ECN Capable, 0)".

8.2.  ECN Nonces

    Congestion avoidance will not occur, and the receiver will sometimes
    get its data faster, when the sender is not told about any
    congestion events.  Thus, the receiver has some incentive to falsify
    acknowledgement information, reporting that marked or dropped
    packets were actually received unmarked. This problem is more
    serious with DCCP than with TCP, since TCP provides reliable
    transport: it is more difficult with TCP to lie about lost packets
    without breaking the application.

    ECN Nonces are a general mechanism to prevent ECN cheating (or loss
    cheating). Two values for the two-bit ECN header field indicate ECN-
    Capable Transport, 01 and 10. The second code point, 10, is the ECN
    Nonce. In general, a protocol sender chooses between these code
    points randomly on its output packets, remembering the sequence it
    chose. The protocol receiver reports, on every acknowledgement, the
    number of ECN Nonces it has received thus far. This is called the
    ECN Nonce Echo. Since ECN marking and packet dropping both destroy
    the ECN Nonce, a receiver that lies about an ECN mark or packet drop
    has a 50% chance of guessing right and avoiding discipline. The
    sender may react punitively to an ECN Nonce mismatch, possibly up to
    dropping the connection. The ECN Nonce Echo field need not be an
    integer; one bit is enough to catch 50% of infractions.

    In DCCP, the ECN Nonce Echo field is encoded in acknowledgement
    options. For example, the Ack Vector option comes in two forms, Ack
    Vector [Nonce 0] (option 37) and Ack Vector [Nonce 1] (option 38),
    corresponding to the two values for a one-bit ECN Nonce Echo. The
    Nonce Echo for a given Ack Vector equals the base-2 modulus of the
    number of received ECN Nonce packets represented by that Ack Vector.
    Only packets marked as State 0 matter for this calculation (that is,
    received packets that were not ECN marked or dropped in the receive
    buffer). Every Ack Vector option is detailed enough for the sender
    to determine what the Nonce Echo should have been. It can check this
    calculation against the actual Nonce Echo, and complain if there is
    a mismatch.

    (The Ack Vector could conceivably report every ECN Nonce packet,
    using a separate code point for received ECN Nonces. However, this
    would limit Ack Vector's compressibility without providing much
    extra protection.)
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    Consider a half-connection from DCCP A to DCCP B. DCCP A SHOULD set
    ECN Nonces on its packets, and remember which packets had nonces,
    whenever DCCP B reports that it is ECN Capable. An ECN-capable
    endpoint MUST calculate and use the correct value for ECN Nonce Echo
    when sending acknowledgement options. An ECN-incapable endpoint,
    however, SHOULD treat the ECN Nonce Echo as always zero. When a
    sender detects an ECN Nonce Echo mismatch, it SHOULD behave as if
    the receiver had reported one or more packets as ECN-marked (instead
    of unmarked). It MAY take more punitive action, such as resetting
    the connection.

9.  Multihoming and Mobility

    DCCP provides primitive support for multihoming and mobility, via a
    mechanism for transferring a connection endpoint from one IP address
    to another. The moving endpoint must negotiate mobility support
    beforehand, and both endpoints must share their Connection Nonces.
    When the moving endpoint gets a new IP address, it sends a DCCP-Move
    packet from that address to the stationary endpoint, including proof
    that it knows both nonces. The stationary endpoint then changes its
    connection state to use the new IP address.

    DCCP's support for mobility is intended to solve only the simplest
    multihoming and mobility problems. For instance, DCCP has no support
    for simultaneous moves. Applications requiring more complex mobility
    semantics, or more stringent security guarantees, should use an
    existing solution like Mobile IP or Snoeren and Balakrishnan's work
    [SB00].

9.1.  Mobility Capable Feature

    A DCCP uses the Mobility Capable feature to inform its partner that
    it would like to be able to change its IP address and/or port during
    the course of the connection.

    Mobility Capable has feature number 5. The Mobility Capable feature
    located at DCCP A indicates whether or not A will accept a DCCP-Move
    packet sent by B. DCCP B sends a "Change(Mobility Capable, 1)"
    option to DCCP A to inform it that B might like to move later.

    A Mobility Capable feature contains a single octet of data. Mobility
    is allowed if and only if this octet is nonzero. A DCCP MUST reject
    a DCCP-Move packet referring to a connection when Mobility Capable
    is 0; however, it MAY reject a valid DCCP-Move packet even when
    Mobility Capable is 1.

    A new connection starts with Mobility Capable 0 (that is, mobility
    is not allowed) for both DCCPs.
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9.2.  Security

    The DCCP mobility mechanism, like DCCP in general, does not provide
    cryptographic security guarantees. Nevertheless, DCCP-Move packets
    must have valid sequence numbers and Connection Proof, providing
    protection against some classes of attackers. Specifically, an
    attacker cannot move a DCCP connection to a new IP address unless
    they know both the Connection Proof and a valid sequence number. If
    initial sequence numbers and Connection Nonces are chosen well (that
    is, randomly), this means that attackers must snoop on data packets
    to get any reasonable probability of success. Section 14 further
    describes DCCP security considerations.

9.3.  Congestion Control State

    Once an endpoint has transitioned to a new IP address, the
    connection is effectively a new connection in terms of its
    congestion control state: the accumulated information about
    congestion between the old endpoints no longer applies. Both DCCPs
    MUST initialize their congestion control state (windows, rates, and
    so forth) to that of a new connection---that is, they must "slow
    start"---unless they have high-quality information about actual
    network conditions between the two new endpoints. Normally, the only
    way to get this information would be by instrumenting a DCCP
    connection between the new addresses.

    Similarly, the endpoints' configured MTUs (see 10) should be
    reinitialized, and PMTU discovery performed again, following an IP
    address change.

9.4.  Loss During Transition

    (This section is preliminary.) Several loss and delay events may
    affect the transition of a DCCP connection from one IP address to
    another. The DCCP-Move packet itself might be lost; the
    acknowledgement to that packet might be lost, leaving the mobile
    endpoint unsure of whether the transition has completed; and data
    from the old endpoint might continue to arrive at the receiver even
    after the transition.

    To protect against lost DCCP-Move packets, the mobile host SHOULD
    retransmit a DCCP-Move packet if it does not receive an
    acknowledgement within a reasonable time period. Section 4.10
    describes the mechanism used to protect against duplicate DCCP-Move
    packets.

    A receiver MAY drop all data received from the old IP address/port
    pair, once a DCCP-Move has successfully completed. Alternately, it
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    MAY accept one loss window's worth of this data. Congestion and loss
    events on this data SHOULD NOT affect the new connection's
    congestion control state. The receiver MUST NOT accept data with the
    old IP address/port pair past one loss window, and SHOULD send DCCP-
    Resets in response to those packets.

    During some transition period, acknowledgements from the receiver to
    the mobile host will contain information about packets sent both
    from the old IP address/port pair, and from the new IP address/port
    pair. The mobile DCCP MUST NOT let loss events on packets from the
    old IP address/port pair affect the new congestion control state.

10.  Path MTU Discovery

    A DCCP implementation should be capable of performing Path MTU
    (PMTU) discovery, as described in [RFC 1191]. The API to DCCP SHOULD
    allow this mechanism to be disabled in cases where IP fragmentation
    is preferred. The rest of this section assumes PMTU discovery has
    not been disabled.

    A DCCP implementation MUST maintain its idea of the current PMTU for
    each active DCCP session.  The PMTU should be initialized from the
    interface MTU that will be used to send packets.

    To perform PMTU discovery, the DCCP sender sets the IP Don't
    Fragment (DF) bit.  However, it is undersirable for MTU discovery to
    occur on the initial connection setup handshake, as the connection
    setup process may not be representative of packet sizes used during
    the connection, and performing MTU discovery on the initial
    handshake might unnecessarily delay connection establishment.  Thus,
    DF SHOULD NOT be set on DCCP-Request and DCCP-Response packets. In
    addition DF SHOULD NOT be set on DCCP-Reset packets, although
    typically these would be small enough to not be a problem.  On all
    other DCCP packets, DF SHOULD be set.

    Any API to DCCP MUST allow the application to discover DCCP's
    current PMTU.  DCCP applications SHOULD use the API to discover the
    PMTU, and SHOULD NOT send datagrams that are greater than the PMTU;
    the only exception to this is if the application disables PMTU
    discovery. If the application tries to send a packet bigger than the
    PMTU, the DCCP implementation MUST drop the packet and return an
    appropriate error.

    As specified in [RFC 1191], when a router receives a packet with DF
    set that is larger than the PMTU, it sends an ICMP Destination
    Unreachable message to the source of the datagram with the Code
    indicating "fragmentation needed and DF set" (also known as a
    "Datagram Too Big" message).  When a DCCP implementation receives a

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1191
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    Datagram Too Big message, it decreases its PMTU to the Next-Hop MTU
    value given in the ICMP message.  If the MTU given in the message is
    zero, the sender chooses a value for PMTU using the algorithm
    described in Section 7 of [RFC 1191]. If the MTU given in the
    message is greater than the current PMTU, the Datagram Too Big
    message is ignored, as described in [RFC 1191]. (We are aware that
    this may cause problems for DCCP endpoints behind certain
    firewalls.)

    If the DCCP implementation has decreased the PMTU, and the sending
    application attempts to send a packet larger than the new MTU, the
    API MUST cause the send to fail returning an appropriate error to
    the application, and the application SHOULD then use the API to
    query the new value of the PMTU.  When this occurs, it is possible
    that the kernel has some packets buffered for transmission that are
    smaller than the old PMTU, but larger than the new PMTU.  The kernel
    MAY send these packets with the DF bit cleared, or it MAY discard
    these packets; it MUST NOT transmit these datagrams with the DF bit
    set.

    DCCP currently provides no way to increase the PMTU once it has
    decreased.

    A DCCP sender MAY optionally treat the reception of an ICMP Datagram
    Too Big message as an indication that the packet being reported was
    not lost due congestion, and so for the purposes of congestion
    control it MAY ignore the DCCP receiver's indication that this
    packet did not arrive.  However, if this is done, then the DCCP
    sender MUST check the ECN bits of the IP header echoed in the ICMP
    message, and only perform this optimization if these ECN bits
    indicate that the packet did not experience congestion prior to
    reaching the router whose MTU it exceeded.

11.  Abstract API

    TBA

12.  Multiplexing Issues

    In contrast to TCP, DCCP does not offer reliable ordered delivery.
    As a consequence, with DCCP there are no inherent performance
    penalties in layering functionality above DCCP to multiplex several
    sub-flows into a single DCCP connection.

    However, this approach of multiplexing sub-flows above DCCP will not
    work in circumstances such as RTP where the RTP subflows require
    separate port numbers.  In this case, if it is desired to share
    congestion control state among multiple DCCP flows that share the

https://datatracker.ietf.org/doc/html/rfc1191#section-7
https://datatracker.ietf.org/doc/html/rfc1191
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    same source and destination addresses, the possibilities are to add
    DCCP-specific mechanisms to enable this, or to use a generic
    multiplexing facility like the Congestion Manager [RFC 3124]
    residing below the transport layer.  For some DCCP flows, the
    ability to specify the congestion control mechanism might be
    critical, and for these flows the Congestion Manager will only be a
    viable tool if it allows DCCP to specify the congestion control
    mechanism used by the Congestion Manager for that flow.  Thus, to
    allow the sharing of congestion control state among multiple DCCP
    flows, the alternatives seem to be to add DCCP-specific
    functionality to the Congestion Manager, or to add a similar layer
    below DCCP that is specific to DCCP.  We defer issues of DCCP
    operating over a revised version of the Congestion Manager, or over
    a DCCP-specific module for the sharing of congestion control state,
    to later work.

13.  DCCP and RTP

    This section discusses the relationship between DCCP and RTP [RFC
    1889].

    TBA

14.  Security Considerations

    DCCP does not provide cryptographic security guarantees.
    Applications desiring hard security should use IPsec or end-to-end
    security of some kind.

    Nevertheless, DCCP is intended to protect against some classes of
    attackers.  Attackers cannot hijack a DCCP connection (close the
    connection unexpectedly, or cause attacker data to be accepted by an
    endpoint as if it came from the sender) unless they can guess valid
    sequence numbers. Thus, as long as endpoints choose initial sequence
    numbers well, a DCCP attacker must snoop on data packets to get any
    reasonable probability of success.  The sequence number validity
    (Section 4.3) and mobility (Section 9) mechanisms provide this
    guarantee.

    This section is not in its final state. Further research is needed
    to ensure that we have met our stated security requirement.

15.  IANA Considerations

    DCCP introduces five sets of numbers whose values should be
    allocated by IANA.

https://datatracker.ietf.org/doc/html/rfc3124
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    o 32-bit Service Names (Section 4.5).

    o 32-bit DCCP-Reset Reasons (Section 4.9).

    o 8-bit DCCP Option Types (Section 5). The CCID-specific options 128
      through 255 need not be allocated by IANA.

    o 8-bit DCCP Feature Numbers (Section 5.3). The CCID-specific
      features 128 through 255 need not be allocated by IANA.

    o 8-bit DCCP Congestion Control Identifiers (CCIDs) (Section 6).

    In addition, DCCP requires a Protocol Number to be added to the
    registry of Assigned Internet Protocol Numbers. Experimental
    implementors should use Protocol Number 33 for DCCP, but this number
    may change in future.

16.  Thanks

    There is a wealth of work in this area, including the Congestion
    Manager.  We thank the staff and interns of ICIR and, formerly,
    ACIRI, the members of the End-to-End Research Group, and the members
    of the Transport Area Working Group for their feedback on DCCP.
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