
Internet Engineering Task Force
INTERNET-DRAFT Eddie Kohler
draft-kohler-dcp-04.txt Mark Handley
 Sally Floyd
 ICIR
 Jitendra Padhye
 Microsoft Research
 19 June 2002
 Expires: December 2002

Datagram Congestion Control Protocol (DCCP)

Status of this Document

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of [RFC 2026]. Internet-Drafts are
 working documents of the Internet Engineering Task Force (IETF), its
 areas, and its working groups. Note that other groups may also
 distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Abstract

 This document specifies the Datagram Congestion Control
 Protocol (DCCP), which implements a congestion-controlled,
 unreliable flow of datagrams suitable for use by applications
 such as streaming media.

Kohler/Handley/Floyd/Padhye [Page 1]

https://datatracker.ietf.org/doc/html/draft-kohler-dcp-04.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

INTERNET-DRAFT Expires: December 2002 June 2002

 Table of Contents

1. Introduction. 4
2. Design Rationale. 5
3. Concepts and Terminology. 6
3.1. Anatomy of a DCCP Connection 6
3.2. Congestion Control 7
3.3. Connection Initiation and Termination. 7
3.4. Features . 8
4. DCCP Packets. 8
4.1. Examples of DCCP Congestion Control. 10
4.1.1. DCCP with TCP-like Congestion Control 10
4.1.2. DCCP with TFRC Congestion Control 12
4.2. DCCP Generic Packet Header 13
4.3. Sequence Number Validity 15
4.4. DCCP State Diagram 16
4.5. DCCP-Request Packet Format 17
4.6. DCCP-Response Packet Format. 18

 4.7. DCCP-Data, DCCP-Ack, and DCCP-DataAck Packet
 Formats . 19

4.8. DCCP-CloseReq and DCCP-Close Packet Format 20
4.9. DCCP-Reset Packet Format 21
4.10. DCCP-Move Packet Format 21
5. Options and Features. 23
5.1. Padding Option 24
5.2. Ignored Option 24
5.3. Feature Negotiation. 25
5.3.1. Feature Numbers 25
5.3.2. Change Option 26
5.3.3. Prefer Option 26
5.3.4. Confirm Option. 26
5.3.5. Example Negotiations. 26
5.3.6. Unknown Features. 27
5.3.7. State Diagram 27
5.4. Connection Nonce Options 31
5.4.1. Connection Nonce Feature. 31
5.4.2. Connection Proof Option 32
5.4.3. Identify Yourself Option. 32
5.5. Data Discarded Option. 32
5.6. Init Cookie Option 33
5.7. Timestamp Option 33
5.8. Timestamp Echo Option. 34
5.9. Loss Window Feature. 34
6. Congestion Control IDs. 34
6.1. Unspecified Sender-Based Congestion Control. 35
6.2. TCP-like Congestion Control. 36
6.3. TFRC Congestion Control. 36

Kohler/Handley/Floyd/Padhye [Page 2]

INTERNET-DRAFT Expires: December 2002 June 2002

6.4. CCID-Specific Options and Features 36
7. Acknowledgements. 37
7.1. Acks of Acks and Unidirectional Connections. 37
7.2. Ack Piggybacking 39
7.3. Ack Ratio Feature. 39
7.4. Use Ack Vector Feature 40
7.5. Ack Vector Options 40
7.5.1. Ack Vector Consistency. 42
7.5.2. Ack Vector Coverage 43
7.6. Slow Receiver Option 43
7.7. Receive Buffer Drops Option. 44
7.8. Buffer Closed Drops Option 45
7.9. Ack Vector Implementation Notes. 46
7.9.1. New Packets 47
7.9.2. Sending Acknowledgements. 48
7.9.3. Clearing State. 49
7.9.4. Processing Acknowledgements 50

8. Explicit Congestion Notification. 51
8.1. ECN Capable Feature. 51
8.2. ECN Nonces . 52
9. Multihoming and Mobility. 53
9.1. Mobility Capable Feature 53
9.2. Security . 54
9.3. Congestion Control State 54
9.4. Loss During Transition 54
10. Path MTU Discovery 55
11. Abstract API . 56
12. Multiplexing Issues. 56
13. DCCP and RTP . 57
14. Security Considerations. 57
15. IANA Considerations. 57
16. Thanks . 58
17. References . 58
18. Authors' Addresses 59

Kohler/Handley/Floyd/Padhye [Page 3]

INTERNET-DRAFT Expires: December 2002 June 2002

1. Introduction

 This document specifies the Datagram Congestion Control Protocol
 (DCCP). DCCP provides the following features:

 o An unreliable flow of datagrams, with acknowledgements.

 o A reliable handshake for connection setup and teardown.

 o Reliable negotiation of options, including negotiation of a
 suitable congestion control mechanism.

 o Mechanisms allowing a server to avoid holding any state for
 unacknowledged connection attempts or already-finished
 connections.

 o An optional mechanism that allows the sender to know, with high
 reliability, which packets reached the receiver.

 o Congestion control incorporating Explicit Congestion Notification
 (ECN) and the ECN Nonce, as per [RFC 3168] and [WES01].

 o Path MTU discovery, as per [RFC 1191].

 DCCP is intended for applications that require the flow-based
 semantics of TCP, but which do not want TCP's in-order delivery and
 reliability semantics, or which would like different congestion
 control dynamics than TCP. Similarly, DCCP is intended for
 applications that do not require the features of SCTP [RFC 2960]
 such as sequenced delivery within multiple streams.

 The sort of applications which could make use of DCCP are those
 which have timing constraints on the delivery of data, such that
 reliable in-order delivery, when combined with congestion control,
 is likely to result in some information arriving at the receiver
 after it is no longer of use. Such applications might include
 streaming media and Internet telephony.

 To date most such applications have used either TCP, with the
 problems described above, or used UDP and implemented their own
 congestion control mechanisms (or no congestion control at all). The
 purpose of DCCP is to provide a standard way to implement congestion
 control and congestion control negotiation for such applications.
 One of the motivations for DCCP is to enable the use of ECN, along
 with conformant end-to-end congestion control, for applications that
 otherwise would be using UDP. In addition, DCCP implements reliable
 connection setup, teardown, and feature negotiation.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc2960

Kohler/Handley/Floyd/Padhye Section 1. [Page 4]

INTERNET-DRAFT Expires: December 2002 June 2002

 A DCCP connection contains acknowledgement traffic as well as data
 traffic. Acknowledgements inform a sender whether its packets
 arrived, and whether they were ECN marked. Acks are transmitted as
 reliably as the congestion control mechanism in use requires,
 possibly up to completely reliably.

 Previous drafts of this specification called the protocol DCP, or
 Datagram Control Protocol. The name was changed to make the acronym
 sound less like "TCP".

2. Design Rationale

 One of the motivations behind the design of DCCP is to make DCCP as
 low-overhead as possible, in terms both of the size of the packet
 header and in terms of the state and CPU overhead required at the
 end hosts. In particular, DCCP is designed to minimize the state
 maintained by the data sender. DCCP is intended to be used by
 applications that currently now use UDP without end-to-end
 congestion control. The desire is for many applications to have
 little reason not to use DCCP instead of UDP, once DCCP is deployed.

 This desire for minimal overhead results in the design decision to
 add only the minimal necessary functionality to DCCP, and to leave
 other functionality such as FEC or semi-reliability to the
 application, to be layered on top of DCCP as desired. The desire
 for minimal overhead is also one of the reasons to propose DCCP
 instead of just proposing an unreliable version of SCTP for
 applications currently using UDP.

 Mechanisms for multi-homing and mobility are the one area of
 additional functionality that can not necessarily be layered cleanly
 and effectively on top of DCCP. Thus, the one outstanding design
 decision with DCCP concerns whether to incorporate mechanisms for
 multi-homing and mobility into DCCP itself.

 A second motivation behind the design of DCCP is to allow
 applications to choose an alternative to the current TCP-style
 congestion control that halves the congestion window in response to
 a congestion indication. Thus, DCCP is designed to allow
 applications to choose between several forms of congestion control.
 The first, TCP-like congestion control, halves the congestion window
 in response to a packet drop or mark, as in TCP. A second
 alternative, TFRC (TCP-Friendly Rate Control), is a form of
 equation-based congestion control that minimized abrupt changes in
 the sending rate, while maintaining longer-term fairness with TCP.

 In proposing a new transport protocol, it is necessary to justify
 the design decision not to require the use of the Congestion

Kohler/Handley/Floyd/Padhye Section 2. [Page 5]

INTERNET-DRAFT Expires: December 2002 June 2002

 Manager, as well as the design decision to add a new transport
 protocol to the current family of UDP, TCP, and SCTP. The
 Congestion Manager [RFC3124] allows multiple concurrent streams
 between the same sender and receiver to share congestion control.
 However, the current Congestion Manager can only be used by
 applications that have their own end-to-end feedback about packet
 losses, and this is not the case for many of the applications
 currently using UDP. In addition, the current Congestion Manager
 does not lend itself to the use of forms of TFRC where the state
 about past packet drops or marks is maintained at the receiver
 rather than at the sender. In addition, while we would like for
 DCCP to be able to make use of CM where desired by the application,
 we do not see any benefit in making the deployment of DCCP
 contingent on the deployment of CM itself.

3. Concepts and Terminology

3.1. Anatomy of a DCCP Connection

 Each DCCP connection runs between two endpoints, which we often name
 DCCP A and DCCP B. Data may pass over the connection in either or
 both directions. The DCCP connection between DCCP A and DCCP B
 consists of four sets of packets, as follows:

 (1) Data packets from DCCP A to DCCP B.

 (2) Acknowledgements from DCCP B to DCCP A.

 (3) Data packets from DCCP B to DCCP A.

 (4) Acknowledgements from DCCP A to DCCP B.

 We use the following terms to refer to subsets and endpoints of a
 DCCP connection.

 Subflows
 A subflow consists of either data or acknowledgement packets,
 sent in one direction (from DCCP A to DCCP B, say). Each of the
 four sets of packets above is a subflow. (Subflows may overlap
 to some extent, since acknowledgements may be piggybacked on
 data packets.)

 Sequences
 A sequence consists of all packets sent in one direction,
 regardless of whether they are data or acknowledgements. The
 sets 1+4 and 2+3, from above, are each sequences. Each packet on
 a sequence has a different sequence number.

https://datatracker.ietf.org/doc/html/rfc3124

Kohler/Handley/Floyd/Padhye Section 3.1. [Page 6]

INTERNET-DRAFT Expires: December 2002 June 2002

 Half-connections
 A half-connection consists of the data packets sent in one
 direction, plus the corresponding acknowledgements. The sets 1+2
 and 3+4, from above, are each half-connections. Half-connections
 are named after the direction of data flow, so the A-to-B half-
 connection contains the data packets from A to B and the
 acknowledgements from B to A.

 HC-Sender and HC-Receiver
 In the context of a single half-connection, the HC-Sender is the
 endpoint sending data, while the HC-Receiver is the endpoint
 sending acknowledgements. For example, in the A-to-B half-
 connection, DCCP A is the HC-Sender and DCCP B is the HC-
 Receiver.

3.2. Congestion Control

 Each half-connection is managed by a congestion control mechanism.
 The endpoints negotiate these mechanisms at connection setup; the
 mechanisms for the two half-connections need not be the same, but
 they must both be TCP-compatible.

 Conformant congestion control mechanisms correspond to single-byte
 congestion control identifiers, or CCIDs. The CCID for a half-
 connection describes how the HC-Sender limits data packet rates in a
 TCP-friendly manner; how it maintains necessary parameters, such as
 congestion windows; how the HC-Receiver sends congestion feedback
 via acknowledgements; and how it manages the acknowledgement rate.

Section 6 introduces the currently allocated CCIDs, which are
 defined in separate profile documents.

3.3. Connection Initiation and Termination

 Every DCCP connection is actively initiated by one DCCP, which
 connects to a DCCP socket in the passive listening state. We refer
 to the active endpoint as "the client" and the passive endpoint as
 "the server". Most of the DCCP specification is indifferent to
 whether a DCCP is client or server. However, only the server may
 generate a DCCP-CloseReq packet. (A DCCP-CloseReq packet forces the
 receiving DCCP to close the connection and maintain connection state
 for a reasonable time, allowing old packets to clear the network.)
 This means that the client cannot force the server to maintain
 connection state after the connection is closed.

 DCCP does not support TCP-style simultaneous open. In particular, a
 host MUST NOT respond to a DCCP-Request packet with a DCCP-Response
 packet unless the destination port specified in the DCCP-Request
 corresponds to a local socket opened for listening.

Kohler/Handley/Floyd/Padhye Section 3.3. [Page 7]

INTERNET-DRAFT Expires: December 2002 June 2002

 DCCP also does not support half-open connections. That is, DCCP
 shuts down both half-connections as a unit. However, DCCP SHOULD
 allow applications to declare that they are no longer interested in
 receiving data. This would allow DCCP implementations to streamline
 state for certain half-connections. See Section 7.8, the Buffer
 Closed Drops option, for more information.

3.4. Features

 DCCP uses a generic mechanism to negotiate connection properties,
 such as the CCIDs active on the two half-connections. These
 properties are called features. (We reserve the term "option" for a
 collection of bytes in some DCCP header.) A feature name, such as
 "CCID", generally corresponds to two features, one per half-
 connection. For instance, there are two CCIDs per connection. The
 endpoint in charge of a particular feature is called its feature
 location.

 The Change, Prefer, and Confirm options negotiate feature values.
 (These options were formerly called Ask, Choose, and Answer,
 respectively.) Change is sent to a feature location, asking it to
 change its value for the feature. The feature location may respond
 with Prefer, which asks the other endpoint to Change again with
 different values, or it may change the feature value and acknowledge
 the request with Confirm. Retransmissions make feature negotiation
 reliable. Section 5.3 describes these options further.

4. DCCP Packets

 DCCP has nine different packet types:

 o DCCP-Request

 o DCCP-Response

 o DCCP-Data

 o DCCP-Ack

 o DCCP-DataAck

 o DCCP-CloseReq

 o DCCP-Close

 o DCCP-Reset

Kohler/Handley/Floyd/Padhye Section 4. [Page 8]

INTERNET-DRAFT Expires: December 2002 June 2002

 o DCCP-Move

 Only the first eight types commonly occur. The DCCP-Move packet is
 used to support multihoming and mobility.

 The progress of a typical DCCP connection is as follows.

 (1) The client sends the server a DCCP-Request packet specifying the
 client and server ports, the service that is being requested,
 and any features that are being negotiated, including the CCID
 that the client would like the server to use. The client MAY
 optionally piggyback some data on the DCCP-Request packet---an
 application-level request, say---which the server MAY ignore.

 (2) The server sends the client a DCCP-Response packet indicating
 that it is willing to communicate with the client. The response
 indicates any features and options that the server agrees to,
 whether an application request in the DCCP-request was actually
 passed to the application, and optionally an Init Cookie that
 wraps up all this information and which MUST be returned by the
 client for the connection to complete.

 (3) The client sends the server a DCCP-Ack packet that acknowledges
 the DCCP-Response packet. This acknowledges the server's initial
 sequence number and returns the Init Cookie if there was one in
 the DCCP-Response. It may also continue feature negotiation.

 (4) Next comes zero or more DCCP-Ack exchanges as required to
 finalize feature negotiation. The client may piggyback an
 application-level request on its final ack, producing a DCCP-
 DataAck packet.

 (5) The server and client then exchange DCCP-Data packets, DCCP-Ack
 packets acknowledging that data, and, optionally, DCCP-DataAck
 packets containing piggybacked data and acknowledgements. If the
 client has no data to send, then the server will send DCCP-Data
 and DCCP-DataAck packets, while the client will send DCCP-Acks
 exclusively.

 (6) The server sends a DCCP-CloseReq packet requesting a close.

 (7) The client sends a DCCP-Close packet acknowledging the close.

 (8) The server sends a DCCP-Reset packet and clears its connection
 state.

 (9) The client receives the DCCP-Reset packet and holds state for a
 reasonable interval of time to allow any remaining packets to

Kohler/Handley/Floyd/Padhye Section 4. [Page 9]

INTERNET-DRAFT Expires: December 2002 June 2002

 clear the network.

 An alternative connection closedown sequence is initiated by the
 client:

 (6) The client sends a DCCP-Close packet closing the connection.

 (7) The server sends a DCCP-Reset packet and clears its connection
 state.

 (8) The client receives the DCCP-Reset packet and holds state for a
 reasonable interval of time to allow any remaining packets to
 clear the network.

 This arrangement of setup and teardown handshakes permits the server
 to decline to hold any state until the handshake with the client has
 completed, and ensures that the client must hold the TimeWait state
 at connection closedown.

4.1. Examples of DCCP Congestion Control

 Before giving the detailed specifications of DCCP, we first give two
 more detailed examples on DCCP congestion control in operation.

4.1.1. DCCP with TCP-like Congestion Control

 The first example is of a connection where both half-connections use
 TCP-like Congestion Control, specified by CCID 2 [CCID 2 PROFILE].
 In this example, the client sends an application-level request to
 the server, and the server responds with a stream of data packets.
 This example is of a connection using ECN.

 (1) The client sends the DCCP-Request, which includes a Change
 option asking the server to use CCID 2 for the server's data
 packets, and a Prefer option informing the server that the
 client would like to use CCID 2 for the its data packets.

 (2) The server sends a DCCP-Response, including a Confirm option
 indicating that the server agrees to use CCID 2 for its data
 packets, and a Change option indicating that the server agrees
 to the client's suggestion of CCID 2 for the client's data
 packets.

 (3) The client responds with a DCCP-DataAck acknowledging the
 server's initial sequence number, and including a Confirm option
 finalizing the negotiation of the client-to-server CCID, and an
 application-level request for data. We will not discuss the
 client-to-server half-connection further in this example.

Kohler/Handley/Floyd/Padhye Section 4.1.1. [Page 10]

INTERNET-DRAFT Expires: December 2002 June 2002

 (4) The server sends DCCP-Data packets, where the number of packets
 sent is governed by a congestion window cwnd, as in TCP. The
 details of the congestion window are defined in the profile for
 CCID 2, which is a separate document [CCID 2 PROFILE]. The
 server also sends Ack Ratio feature options specifying the
 number of server data packets to be covered by an Ack packet
 from the client.

 Some of these data packets are DCCP-DataAcks acknowledging
 packets from the client.

 (5) The client sends a DCCP-Ack packet acknowledging the data
 packets for every Ack Ratio data packets transmitted by the
 server. Each DCCP-Ack packet uses a sequence number and
 contains an Ack Vector, as defined in Section 7 on
 Acknowledgements. These packets also include Confirm options
 answering any Ack Ratio requests from the server.

 (6) The server continues sending DCCP-Data packets as controlled by
 the congestion window. Upon receiving DCCP-Ack packets, the
 server examines the Ack Vector to learn about marked or dropped
 data packets, and adjusts its congestion window accordingly, as
 described in [CCID 2 PROFILE]. Because this is unreliable
 transfer, the server does not retransmit dropped packets.

 (7) Because DCCP-Ack packets use sequence numbers, the server has
 direct information about the fraction of loss or marked DCCP-Ack
 packets. The server responds to lost or marked DCCP-Ack packets
 by modifying the Ack Ratio sent to the client, as described in
 [CCID 2 PROFILE]. Under certain conditions, the server must
 acknowledge some of the client's acknowledgements; see Section

7.1 for more information.

 (8) The server estimates round-trip times and calculates a TimeOut
 (TO) value much as the RTO (Retransmit Timeout) is calculated in
 TCP. Again, the specification for this is in [CCID 2 PROFILE].
 The TO is used to determine when a new DCCP-Data packet can be
 transmitted when the server has been limited by the congestion
 window and no feedback has been received from the client.

 (9) Each DCCP-Data, DCCP-DataAck, and DCCP-Ack packet is sent as
 ECN-Capable, with either the ECT(0) or the ECT(1) codepoint set,
 as described in [WES01]. The client echoes the accumulated ECN
 Nonce for the server's packets along with its Ack Vector
 options.

 (10)
 The DCCP-CloseReq, DCCP-Close, and DCCP-Reset packets to close

Kohler/Handley/Floyd/Padhye Section 4.1.1. [Page 11]

INTERNET-DRAFT Expires: December 2002 June 2002

 the connection are as in the example above.

4.1.2. DCCP with TFRC Congestion Control

 This example is of a connection where both half-connections use TFRC
 Congestion Control, specified by CCID 3 The specification for CCID 3
 is in a separate profile [CCID 3 PROFILE]; the purpose of this
 example is to illustrate the range of uses for DCCP.

 (1) The DCCP-Request and DCCP-Response packets specifying the use of
 CCID 3 and the initial DCCP-DataAck packet are similar to those
 in the TCP-like example above.

 (2) The server sends DCCP-Data packets, where the number of packets
 sent is governed by an allowed transmit rate, as in TFRC. The
 details of the allowed transmit rate are defined in the profile
 for CCID 3, which is a separate document [CCID 3 PROFILE]. Each
 DCCP-Data packet has a sequence number and a window counter
 option.

 Some of these data packets are DCCP-DataAck packets
 acknowledging packets from the client, but for simplicity we
 will not discuss the half-connection of data from the client to
 the server in this example.

 (3) The receiver sends DCCP-Ack packets at least once per round-trip
 time acknowledging the data packets, unless the server is
 sending at a rate of less than one packet per RTT, as specified
 by CITE CCID3 . These acknowledgements may be piggybacked on
 data packets, producing DCCP-DataAck packets. Each DCCP-Ack
 packet uses a sequence number and identifies the most recent
 packet received from the server. Each DCCP-Ack packet includes
 feedback about the loss event rate calculated by the client, as
 specified by [CCID 3 PROFILE].

 (4) The server continues sending DCCP-Data packets as controlled by
 the allowed transmit rate. Upon receiving DCCP-Ack packets, the
 server updates its allowed transmit rate as specified by [CCID 3
 PROFILE].

 (5) The server estimates round-trip times and calculates a TimeOut
 (TO) value much as the RTO (Retransmit Timeout) is calculated in
 TCP. Again, the specification for this is in [CCID 3 PROFILE].

 (6) The use of ECN follows TCP-like Congestion Control, above, and
 is described further in [CCID 3 PROFILE].

Kohler/Handley/Floyd/Padhye Section 4.1.2. [Page 12]

INTERNET-DRAFT Expires: December 2002 June 2002

 (7) The DCCP-CloseReq, DCCP-Close, and DCCP-Reset packets to close
 the connection are as in the examples above.

4.2. DCCP Generic Packet Header

 All DCCP packets begin with a generic DCCP packet header:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source Port | Dest Port |
 +-+
 | Type | Res | Sequence Number |
 +-+
 | Data Offset | # NDP | Cslen | Checksum |
 +-+

 Source and Destination Ports: 16 bits each
 These fields identify the connection. Packets sent on the other
 sequence switch the source and destination port values.

 Type: 4 bits
 The type field specifies the type of the DCCP message. The
 following values are defined:

 0 DCCP-Request packet.

 1 DCCP-Response packet.

 2 DCCP-Data packet.

 3 DCCP-Ack packet.

 4 DCCP-DataAck packet.

 5 DCCP-CloseReq packet.

 6 DCCP-Close packet.

 7 DCCP-Reset packet.

 8 DCCP-Move packet.

Kohler/Handley/Floyd/Padhye Section 4.2. [Page 13]

INTERNET-DRAFT Expires: December 2002 June 2002

 Reserved (Res): 4 bits
 This field is reserved for future expansion. The version of DCCP
 specified here MUST set the field to all zeroes on generated
 packets, and ignore its value on received packets.

 Sequence Number: 24 bits
 The sequence number field is initialized by a DCCP-Request or
 DCCP-Response packet, and increases by one (modulo 16777216)
 with every packet sent. The receiver uses this information to
 determine whether packet losses have occurred. Even packets
 containing no data update the sequence number. Sequence numbers
 also provide some protection against old and malicious packets.

Section 4.3 discusses sequence number validity.

 Data Offset: 8 bits
 The offset from the start of the DCCP header to the beginning of
 the packet's payload, measured in 32-bit words.

 Number of Non-Data Packets (# NDP): 4 bits
 DCCP sets this field to the number of non-data packets it has
 sent so far on its sequence, modulo 16. A non-data packet is
 simply any packet not containing user data; DCCP-Ack packets are
 the canonical example. When sending a non-data packet, DCCP
 increments the # NDP counter before storing its value in the
 packet header.

 This field can help the receiving DCCP decide whether a lost
 packet contained any user data. (An application may want to know
 when it has lost data. DCCP could report every packet loss as a
 potential data loss, but that would cause false loss reports
 when non-data packets were lost.) For example, say that packet
 10 had # NDP set to 5; packet 11 was lost; and packet 12 had #
 NDP set to 5. Then the receiving DCCP could deduce that packet
 11 contained data, since # NDP did not change. Likewise, if #
 NDP had gone up to 6 (and packets 10 and 12 contained user
 data), then packet 11 must not have contained any data.

 Checksum Length (Cslen): 4 bits
 The checksum length field specifies what parts of the packet are
 covered by the checksum field. The checksum always covers at
 least the DCCP header, DCCP options, and a pseudoheader taken
 from the network-layer header (see below). If the checksum
 length field is zero, that is all the checksum covers. If the
 field is 15, the checksum covers the packet's payload as well,

Kohler/Handley/Floyd/Padhye Section 4.2. [Page 14]

INTERNET-DRAFT Expires: December 2002 June 2002

 possibly with 8 bits of zero padding on the right to pad the
 payload to an even number of bytes. Values between 1 and 14,
 inclusive, indicate that the checksum additionally covers the
 indicated number of initial 32-bit words of the packet's
 payload, padded on the right with zeros as necessary. Any value
 other than 15 specifies that corruption is acceptable in some or
 all of the DCCP packet's payload, and that partially corrupted
 data packets may be received and counted for congestion control
 purposes. The meaning of values other than 0 and 15 should be
 considered experimental.

 Checksum: 16 bits
 DCCP uses the TCP/IP checksum algorithm. The checksum field
 equals the 16 bit one's complement of the one's complement sum
 of all 16 bit words in the DCCP header, DCCP options, a
 pseudoheader taken from the network-layer header, and, depending
 on the value of the checksum length field, some or all of the
 payload. When calculating the checksum, the checksum field
 itself is treated as 0. If a packet contains an odd number of
 header and text octets to be checksummed, the last octet is
 padded on the right with zeros to form a 16 bit word for
 checksum purposes. The pad is not transmitted as part of the
 packet.

 The pseudoheader is calculated as for TCP. For IPv4, it is 96
 bits long, and consists of the IPv4 source and destination
 addresses, the IP protocol number for DCCP (padded on the left
 with 8 zero bits), and the DCCP length (the length of the DCCP
 header with options, plus the length of any data); see Section

3.1 of [RFC 793]. For IPv6, it is 320 bits long, and consists of
 the IPv6 source and destination addresses, the DCCP length as a
 32-bit quantity, and the IP protocol number for DCCP (padded on
 the left with 24 zero bits); see Section 8.1 of [RFC 2460].

4.3. Sequence Number Validity

 DCCP should ignore packets with invalid sequence numbers, which may
 arise if the network delivers a very old packet or an attacker
 attempts to hijack a connection. TCP solves this problem with its
 window. In DCCP, however, the definition of "unreasonable sequence
 number" is complicated because sequence numbers change with each
 packet sent. Thus, a loss event that dropped many consecutive
 packets could cause two DCCPs to get out of sync relative to any
 window.

 DCCP uses Loss Window and Connection Nonce mechanisms to determine
 whether a given packet's sequence number is valid. Each HC-Sender

https://datatracker.ietf.org/doc/html/rfc793#section-3.1
https://datatracker.ietf.org/doc/html/rfc793#section-3.1
https://datatracker.ietf.org/doc/html/rfc2460#section-8.1

Kohler/Handley/Floyd/Padhye Section 4.3. [Page 15]

INTERNET-DRAFT Expires: December 2002 June 2002

 gives the corresponding HC-Receiver a *loss window width* W; see
Section 5.9. This reflects how many packets the sender expects to be

 in flight. Only the sender can anticipate this number. One good
 guideline is to set it to about 3 or 4 times the maximum number of
 packets the sender expects to send in any round-trip time. Too-small
 values increase the risk of the endpoints getting out sync after
 bursts of loss; too-large values increase the risk of connection
 hijacking. W defaults to 1000. The Connection Nonces are used to get
 back into sync when more than W consecutive packets are lost.

 The HC-Receiver sets up a loss window of W consecutive sequence
 numbers containing GSN, the Greatest Sequence Number it has received
 on any valid packet from the sender. ("Consecutive" and "greatest"
 are measured in circular sequence space. The receiver may center the
 loss window on GSN, or arrange it asymmetrically.) Sequence numbers
 outside this loss window are invalid. Packets with invalid sequence
 numbers are themselves invalid, *unless* their sequence numbers are
 greater than GSN and their acknowledgement numbers are correct
 (within a loss window of the last packets sent from the receiver),
 or they include correct Connection Proof (Section 5.4.2).

 The receiving DCCP SHOULD ignore invalid packets---that is, it
 should not pass any enclosed data to the application, update its
 congestion control state, or close the connection. However, the
 receiving DCCP MAY send a DCCP-Ack packet to the sender, as allowed
 by the congestion control mechanism in use. This packet should
 contain the last received valid sequence number and an Identify
 Yourself option (Section 5.4.3). The other DCCP will send a
 Connection Proof option to resync. (Such Identify Yourself packets
 MUST be rate limited.)

 We note that resyncing mechanisms may need further research.

4.4. DCCP State Diagram

 In this section we present a DCCP state diagram showing how a DCCP
 connection should progress, and the proper responses for packets or
 timeout events in various connection states. The state diagram is
 illustrative; the text should be considered definitive.

 +-----------------------------------+
 | Figures omitted from text version |
 +-----------------------------------+

 All receive events on the diagram represent receipt of valid
 packets. For example, receiving a Reset with a bad Acknowledgement

Kohler/Handley/Floyd/Padhye Section 4.4. [Page 16]

INTERNET-DRAFT Expires: December 2002 June 2002

 Number should not cause DCCP to transition to the Time-Wait state.
 Furthermore, packets without explicit transitions in the state
 diagram should be treated as invald. DCCP implementations MAY send
 Resets (or Acks, as described above) in response to invalid packets.
 Any such responses MUST be rate-limited.

 The Open state does not signify that a DCCP connection is ready for
 data transfer. In particular, incomplete feature negotiations might
 prevent data transfer. Feature negotiation takes place in parallel
 with the state transitions on this diagram.

 Only the server may take the transition from the OPEN state to the
 SERVER-CLOSE state. (The server is the DCCP endpoint that began in
 the LISTEN state.) Similarly, only the client must transition to
 CLIENT-CLOSE after receiving a CloseReq packet.

4.5. DCCP-Request Packet Format

 A DCCP connection is initiated by sending a DCCP-Request packet. The
 format of a DCCP request packet is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 / Generic DCCP Header /
 / (12 octets) /
 +-+
 | Service Name |
 +-+
 | Options | [padding] |
 +-+
 | data |
 | ... |
 +-+

 The Service Name field, in combination with the Destination Port,
 identifies the service to which the sender is trying to connect.
 Service Names are 32-bit numbers allocated by the IETF; they are
 meant to correspond to application services and protocols. The host
 operating system MAY force every DCCP socket, both actively and
 passively opened, to specify a Service Name. The connection will
 succeed only if the Destination Port on the receiver has the same
 Service Name as that given in the packet. If they differ, the
 receiver will respond with a DCCP-Reset packet.

 The DCCP-Request packet initializes the client-to-server sequence
 number. As in TCP, this sequence number should be chosen randomly

Kohler/Handley/Floyd/Padhye Section 4.5. [Page 17]

INTERNET-DRAFT Expires: December 2002 June 2002

 to help prevent connection hijacking.

 Options
 DCCP-Request packets will usually include a "Change(Connection
 Nonce)" option, to inform the server of the client's connection
 nonce; see Section 5.4.

4.6. DCCP-Response Packet Format

 In the second phase of the three-way handshake, the server sends a
 DCCP-Response message to the client. The response initializes the
 server-to-client sequence number. As in TCP, this sequence number
 should be chosen randomly to help prevent connection hijacking.

 In this phase, a server will often specify the options it would like
 to use, either from among those the client requested, or in addition
 to those. Among these options is the congestion control mechanism
 the server expects to use.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 / Generic DCCP Header /
 / (12 octets) /
 +-+
 | Reserved | Acknowledgement Number |
 +-+
 | Options | [padding] |
 +-+
 | data |
 | ... |
 +-+

 Acknowledgement Number: 24 bits
 The acknowledgement number field acknowledges the largest valid
 sequence number received so far on this connection. (The usual
 care must be taken in case of wrapped sequence numbers.) In the
 case of a DCCP-Response packet, the acknowledgement number field
 will equal the sequence number from the DCCP-Request.
 Acknowledgement numbers make no attempt to provide precise
 information about which packets have arrived; options such as
 the Ack Vector do this.

 Reserved: 8 bits
 The version of DCCP specified here MUST set this field to all
 zeroes on generated packets, and ignore its value on received
 packets.

Kohler/Handley/Floyd/Padhye Section 4.6. [Page 18]

INTERNET-DRAFT Expires: December 2002 June 2002

 Options
 The Data Discarded and Init Cookie options are particularly
 designed for DCCP-Response packets (Sections 5.5 and 5.6). In
 addition, DCCP-Response, or early DCCP-Data or DCCP-Ack packets,
 will often include "Confirm(Connection Nonce)" and
 "Change(Connection Nonce)" packets, to further negotiate
 connection nonces (Section 5.4).

4.7. DCCP-Data, DCCP-Ack, and DCCP-DataAck Packet Formats

 The payload data in a DCCP connection is sent in DCCP-Data and DCCP-
 DataAck packets. DCCP-Data packets look like this:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 / Generic DCCP Header /
 / (12 octets) /
 +-+
 | Options | [padding] |
 +-+
 | data |
 | ... |
 +-+

 DCCP-Ack packets dispense with the data, but contain an
 acknowledgement number:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 / Generic DCCP Header /
 / (12 octets) /
 +-+
 | Reserved | Acknowledgement Number |
 +-+
 | Options | [padding] |
 +-+

 DCCP-DataAck packets contain both data and an acknowledgement
 number. That is, acknowledgement information is piggybacked on a
 data packet.

Kohler/Handley/Floyd/Padhye Section 4.7. [Page 19]

INTERNET-DRAFT Expires: December 2002 June 2002

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 / Generic DCCP Header /
 / (12 octets) /
 +-+
 | Reserved | Acknowledgement Number |
 +-+
 | Options | [padding] |
 +-+
 | data |
 | ... |
 +-+

 DCCP-Ack and DCCP-DataAck packets may include additional
 acknowledgement options, such as Ack Vector, as required by the
 congestion control mechanism in use.

 DCCP A sends DCCP-Data and DCCP-DataAck packets to DCCP B due to
 application events on host A. These packets are congestion-
 controlled by the CCID for the A-to-B half-connection. In contrast,
 DCCP-Ack packets sent by DCCP A are controlled by the CCID for the
 B-to-A half-connection. Generally, DCCP A will piggyback
 acknowledgement information on data packets when acceptable,
 creating DCCP-DataAck packets. DCCP-Ack packets are used when there
 is no data to send from DCCP A to DCCP B, or when the link from A to
 B is completely congested (so sending data would be inappropriate).

Section 7, below, describes acknowledgements in DCCP.

 A DCCP-Data or DCCP-DataAck packet may contain no data if the
 application sends a zero-length datagram.

4.8. DCCP-CloseReq and DCCP-Close Packet Format

 The DCCP-CloseReq and DCCP-Close packets have the same format.
 However, only the server can send a DCCP-CloseReq packet. Either
 client or server may send a DCCP-Close packet.

Kohler/Handley/Floyd/Padhye Section 4.8. [Page 20]

INTERNET-DRAFT Expires: December 2002 June 2002

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 / Generic DCCP Header /
 / (12 octets) /
 +-+
 | Reserved | Acknowledgement Number |
 +-+
 | Options | [padding] |
 +-+

4.9. DCCP-Reset Packet Format

 DCCP-Reset packets unconditionally shut down a connection. Every
 connection shutdown sequence ends with a DCCP-Reset, but resets may
 be sent for other reasons, including bad port numbers, bad option
 behavior, incorrect ECN Nonce Echoes, and so forth. The reason for a
 reset is represented in the reset itself by a four-byte number, the
 Reason field.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 / Generic DCCP Header /
 / (12 octets) /
 +-+
 | Reserved | Acknowledgement Number |
 +-+
 | Reason |
 +-+
 | Options | [padding] |
 +-+

 Reason: 32 bits
 The Reason field represents the reason that the sender reset the
 DCCP connection. Particular values for this field will be
 described in later versions of this document.

4.10. DCCP-Move Packet Format

 The DCCP-Move packet type is part of DCCP's support for multihoming
 and mobility, which is described further in Section 9. DCCP A sends
 a DCCP-Move packet to DCCP B after changing its IP address and/or

Kohler/Handley/Floyd/Padhye Section 4.10. [Page 21]

INTERNET-DRAFT Expires: December 2002 June 2002

 port number. The DCCP-Move packet requests that DCCP B start sending
 its data to the new address and port number. The old address and
 port are stored explicitly in the DCCP-Move packet header; the new
 address and port come from the network header and generic DCCP
 header. The type of address contained in the packet is indicated
 explicitly by an Old Address Family field. The Sequence Number and
 Acknowledgement Number fields, and the Connection Proof option,
 provide some protection against hijacked connections. See Section 9
 for more on security and DCCP's mobility support.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 / Generic DCCP Header /
 / (12 octets) /
 +-+
 | Reserved | Acknowledgement Number |
 +-+
 | Old Address Family | Old Port |
 +-+
 / Old Address /
 / | [padding] /
 +-+
 | Options | [padding] |
 +-+
 | data |
 | ... |
 +-+

 Old Address Family: 16 bits
 The Old Address Family field indicates the address family
 formerly used for this connection, and takes values from the
 Address Family Numbers registry administered by IANA. Particular
 values include 1 for IPv4 and 2 for IPv6. The endpoint MUST
 discard DCCP-Move packets with unrecognized Old Address Family
 values.

 Old Port: 16 bits
 The former port number used by DCCP A's endpoint.

 Old Address: at least 32 bits
 The former address used by DCCP A's endpoint, padded on the
 right to a multiple of 32 bits. The form and size of the address
 are determined by the Old Address Family field. For instance, if
 Old Address Family is 1, then Old Address contains an IPv4
 address and takes 32 bits; if it is 2, then Old Address contains
 an IPv6 address and takes 128 bits.

Kohler/Handley/Floyd/Padhye Section 4.10. [Page 22]

INTERNET-DRAFT Expires: December 2002 June 2002

 Options
 A DCCP-Move packet MUST contain a valid Connection Proof option
 (see Section 5.4.2). This means that mobile-aware DCCP endpoints
 MUST inform each other of their Connection Nonces (Section 5.4)
 during connection setup.

 DCCP B should reset the connection if the DCCP-Move packet has valid
 sequence and acknowledgement numbers, but incorrect Connection
 Proof. Also, it should reset if neither the Old Address/Old Port
 combination nor the network address/Source Port combination refers
 to a currently active DCCP connection.

 DCCP B MUST respond to the DCCP-Move packet with a DCCP-Ack or DCCP-
 DataAck packet acknowledging the move. If this acknowledgement is
 lost, DCCP A might resend the DCCP-Move packet (using a new sequence
 number). DCCP B MUST NOT reset these packets, even though the Old
 Address/Old Port combination no longer refers to a valid DCCP
 connection. It SHOULD instead send another acknowledgement, as
 allowed by the congestion control mechanism in use.

 We note that DCCP mobility, as provided by DCCP-Move, may not be
 useful in the context of IPv6, with its mandatory support for Mobile
 IP.

5. Options and Features

 All DCCP packets may contain options which can be used to extend
 DCCP's functionality. Options occupy space at the end of the DCCP
 header and are a multiple of 8 bits in length. All options are
 included in the checksum. An option may begin on any byte boundary.

 The first octet of an option is the option type. Options with types
 0 through 31 are single-byte options. Other options are followed by
 an octet indicating the option's length. This length includes the
 two octets of option-type and option-length as well as the option-
 data octets.

 The following options are currently defined:

Kohler/Handley/Floyd/Padhye Section 5. [Page 23]

INTERNET-DRAFT Expires: December 2002 June 2002

 Option Section
 Type Length Meaning Reference
 ---- ------ ------- ---------
 0 1 Padding 5.1
 1 1 Data Discarded 5.5
 2 1 Slow Receiver 7.6
 3 1 Identify Yourself 5.4.3
 32 4 Ignored 5.2
 33 variable Change 5.3
 34 variable Prefer 5.3
 35 variable Confirm 5.3
 36 variable Init Cookie 5.6
 37 variable Ack Vector [Nonce 0] 7.5
 38 variable Ack Vector [Nonce 1] 7.5
 39 3 Receive Buffer Drops 7.7
 40 6 Timestamp 5.7
 41 10 Timestamp Echo 5.8
 42 variable Connection Proof 5.4.2
 43 3 Buffer Closed Drops 7.8
 128-255 variable CCID-Specific Options 6.4

5.1. Padding Option

 The padding option, with type 0, is a single byte option used to pad
 between or after options. It either ensures the payload begins on a
 32-bit boundary (as required), or ensures alignment of following
 options (not mandatory).

5.2. Ignored Option

 The Ignored option, with type 32, signals that a DCCP did not
 understand some option. This can happen, for example, when a
 conventional DCCP converses with an extended DCCP. Each Ignored
 option has two octets of payload, the first containing the offending
 option type and the second containing the first octet of the
 offending option's payload. (If the offending option had no payload,
 this octet is 0.)

 +--------+--------+--------+--------+
 |00100000|00000100|Opt Type|Opt Data|
 +--------+--------+--------+--------+
 Type=32 Length=4

Kohler/Handley/Floyd/Padhye Section 5.2. [Page 24]

INTERNET-DRAFT Expires: December 2002 June 2002

5.3. Feature Negotiation

 DCCP contains a mechanism for reliably negotiating features, most
 notably the congestion control mechanism in use on each half-
 connection. The motivation was to implement reliable feature
 negotiation once, so that different options need not reinvent that
 particular wheel.

 Three options, Change, Prefer, and Confirm, implement feature
 negotiation. Change is sent to a feature's location, asking it to
 change the feature's value. The feature location may respond with
 Prefer, which asks the other endpoint to Change again with different
 values, or it may change the feature value and acknowledge the
 request with Confirm. (The options were formerly called Ask, Choose,
 and Answer.)

 Features MUST NOT change values apart from feature negotiation, and
 enforced retransmissions make feature negotiation reliable. This
 ensures that both endpoints eventually agree on every feature's
 value.

 Some features are non-negotiable, meaning that the feature location
 MUST set its value to whatever the other endpoint requests. For non-
 negotiable features, the feature location MUST respond to Change
 options with Confirm; Prefer is not useful. These features use the
 feature framework simply to achieve reliability.

5.3.1. Feature Numbers

 The first data octet of every Change, Prefer, or Confirm option is a
 feature number, defining the type of feature being negotiated. The
 remainder of the data gives one or more values for the feature, and
 is interpreted according to the feature. The current set of feature
 numbers is as follows:

 Section
 Number Meaning Neg.? Reference
 ------ ------- ----- ---------
 1 Congestion Control (CC) Y 6
 2 ECN Capable Y 8.1
 3 Ack Ratio N 7.3
 4 Use Ack Vector Y 7.4
 5 Mobility Capable Y 9.1
 6 Loss Window N 5.9
 7 Connection Nonce N 5.4.1
 128-255 CCID-Specific Features ? 6.4

Kohler/Handley/Floyd/Padhye Section 5.3.1. [Page 25]

INTERNET-DRAFT Expires: December 2002 June 2002

 The "Neg.?" column is "Y" for normal features and "N" for non-
 negotiable features.

5.3.2. Change Option

 DCCP B sends a Change option to DCCP A to ask it to change the value
 of some feature. (DCCP A is the feature location.) DCCP A MUST
 respond to the Change option with either Prefer or Confirm. DCCP B
 MUST retransmit the Change option until it receives some relevant
 response. DCCP B will always generate a Change option in response to
 a Prefer option; it may also generate a Change option due to some
 application event.

5.3.3. Prefer Option

 DCCP A sends a Prefer option to DCCP B to ask it to confirm the
 value of some feature. (Again, DCCP A is the feature location.) DCCP
 B MUST respond to the Prefer option with a Change. DCCP A MUST
 retransmit the Prefer option until it receives a relevant Change
 response. DCCP A may generate a Prefer option in response to some
 Change option, or in response to some application event. Prefer
 options are not useful for non-negotiable features.

5.3.4. Confirm Option

 DCCP A sends a Confirm option to DCCP B to inform it of the current
 value of some feature. (Again, DCCP A is the feature location.) DCCP
 A MUST generate Confirm options only in response to Change options.
 DCCP A need not ever retransmit a Confirm option: DCCP B will
 retransmit the relevant Change as necessary.

5.3.5. Example Negotiations

 This section demonstrates several negotiations of the congestion
 control feature for the A-to-B half-connection. (This feature is
 located at DCCP A.) In this sequence of packets, DCCP A is happy
 with DCCP B's suggestion of CC mechanism 2:

 B > A Change(CC, 2)
 A > B Confirm(CC, 2)

 Here, A and B jointly settle on CC mechanism 5:

Kohler/Handley/Floyd/Padhye Section 5.3.5. [Page 26]

INTERNET-DRAFT Expires: December 2002 June 2002

 B > A Change(CC, 3, 4)
 A > B Prefer(CC, 1, 2, 5)
 B > A Change(CC, 5)
 A > B Confirm(CC, 5)

 In this sequence, A refuses to use CC mechanism 5. If B requires CC
 mechanism 5, its only recourse is to abort the connection:

 B > A Change(CC, 3, 4, 5)
 A > B Prefer(CC, 1, 2)
 B > A Change(CC, 5)
 A > B Prefer(CC, 1, 2)

 Here, A elicts agreement from B that it is satisfied with congestion
 control mechanism 2:

 A > B Prefer(CC, 1, 2)
 B > A Change(CC, 2)
 A > B Confirm(CC, 2)

5.3.6. Unknown Features

 If a DCCP receives a Change or Prefer option referring to a feature
 number it does not understand, it MUST respond with a corresponding
 Ignored option. This informs the remote DCCP that the local DCCP
 does not implement the feature. No other action need be taken.
 (Ignored may also indicate that the DCCP endpoint could not respond
 to a CCID-specific feature request because the CCID was in flux; see

Section 6.4.)

5.3.7. State Diagram

 These state diagrams present the legal transitions in a DCCP feature
 negotiation. They define DCCP's states and transitions with respect
 to the negotiation of a single feature it understands. There are two
 diagrams, corresponding to the two endpoints: the feature location,
 or DCCP A, and what we call the "feature requester", DCCP B.

 Transitions between states are triggered by receiving a packet
 ("RECV") or by an application event ("APP"). Received packets are
 further distinguished by any options relevant to the feature being
 negotiated. "RECV -" means the packet contained no relevant option.
 "RECV Chg" denotes a Change option, "RECV Pr" a Prefer option, and
 "RECV Con" a Confirm option. The data contained in an option is
 given in parentheses when necessary. The "SEND" action indicates

Kohler/Handley/Floyd/Padhye Section 5.3.7. [Page 27]

INTERNET-DRAFT Expires: December 2002 June 2002

 which option the DCCP will send next. Finally, the "SET-VALUE"
 action causes the DCCP to change its value for the relevant feature.

 "SEND" does not force DCCP to immediately generate a packet; rather,
 it says which feature option must be sent on the next packet
 generated. A DCCP MAY choose to generate a packet in response to
 some "SEND" action. However, it MUST NOT generate a packet if doing
 so would violate the congestion control mechanism in use.

 The requester, DCCP B, has four states: Known, Unknown, Failed, and
 Changing. Similarly, the feature location, DCCP A, has four states:
 Known, Unknown, Failed, and Confirming. In both cases, Known denotes
 a state where the DCCP knows the feature's current value, and
 believes that the other DCCP agrees. Changing and Confirming denote
 states where the DCCPs are in the process of negotiating a new value
 for the feature. The Unknown state can occur only at connection
 setup time. It denotes a state where the DCCP does not know any
 value for the feature, and has not yet entered a negotiation to
 determine its value. Finally, the Failed state represents a state
 where the other DCCP does not implement the feature under
 negotiation.

 A DCCP may start in either the Unknown or Known state, depending on
 the feature in question. In particular, some features have a well-
 known value for new connections, in which case the DCCPs begin the
 connection in the Known states.

Kohler/Handley/Floyd/Padhye Section 5.3.7. [Page 28]

INTERNET-DRAFT Expires: December 2002 June 2002

 REQUESTER STATE DIAGRAM (DCCP B)

 +-----------+
 | Unknown |
 +-----------+
 +----------+ | +-----------+
 | |RECV - |RECV -/Pr | APP | |RECV Pr/Con
 V |SEND - |SEND Chg V |SEND Chg
+-----------+ | | +------------+ |
| |----+ +------------>| |-----+
| Known |------------------------------>| Changing |
| | RECV Pr | APP | |-----+
+-----------+ SEND Chg +------------+ |RECV -
 ^ | | ^ |SEND -/Chg
 | | | | |
 +--+ | +---------+
 RECV Con(O) | +----------+
 SEND - +--------->| Failed |
 SET-VALUE O RECV Ign +----------+
 SEND -

Kohler/Handley/Floyd/Padhye Section 5.3.7. [Page 29]

INTERNET-DRAFT Expires: December 2002 June 2002

 FEATURE LOCATION STATE DIAGRAM (DCCP A)
(O represents any feature value acceptable to DCCP A; X is not acceptable.)

 RECV Chg(O)
 SEND Con(O) RECV - | APP
 SET-VALUE O +-----------+ SEND Pr(O)
 +--------------------| Unknown |------------+
 | +-----------+ |
 | +-------+ | | +-----------+
 | | |RECV - |RECV Chg(X) | | |RECV Chg(X)
 V V |SEND - |SEND Pr(O) V V |SEND Pr(O)
+-----------+ | | +------------+ | (need not be
| |----+ +------------>| |-----+ the same O)
| Known |------------------------------>| Confirming |
| |----+ RECV Chg | APP | |-----+
+-----------+ | SEND Pr(O) +------------+ |RECV -
 ^ ^ | | | ^ |SEND -/Pr(O)
 | | |RECV Chg(O) | | | |
 | | |SEND Con(O) | | +---------+
 | | |SET-VALUE O | |
 | +-------+ | | +----------+
 +---+ +-------->| Failed |
 RECV Chg(O) RECV Ign +----------+
 SEND Con(O) SEND -
 SET-VALUE O

 This specification allows several choices of action in certain
 states. The implementation will generally use feature-specific
 information to decide how to respond. For example, DCCP A in the
 Known state may respond to a Change option with either Confirm or
 Prefer. If DCCP A is willing to set the feature to the value
 specified by Change, it will generally send Confirm; but if it would
 like to negotiate further, it will send Prefer.

 DCCP B must retransmit Change options, and DCCP A must retransmit
 Prefer options, until receiving a relevant response. However, they
 need not retransmit the option on every packet, as shown by the
 "RECV - / SEND -" transitions in the Changing and Confirming states.

 These state diagrams guarantee safety, but not liveness. Namely, no
 unexpected or erroneous options will be sent, but option negotiation
 might not terminate. For example, the following infinite negotiation
 is legal according to this specification.

Kohler/Handley/Floyd/Padhye Section 5.3.7. [Page 30]

INTERNET-DRAFT Expires: December 2002 June 2002

 A > B Prefer(1)
 B > A Change(2)
 A > B Prefer(1)
 B > A Change(2)...

 Implementations may choose to enforce a maximum length on any
 negotiation -- for example, by resetting the connection when any
 negotiation lasts more than some maximum time.

 In the Changing and Confirming states, the value of the
 corresponding feature is in flux. DCCP MAY change its behavior in
 these states---for example, by refusing to send data until
 reentering a Known state.

5.4. Connection Nonce Options

 Connection nonces are opaque cookies that serve as identities for
 DCCP endpoints. They may be negotiated at connection setup time, or
 at any point thereafter. Once set up, they facilitate reconnection
 after an endpoint moves (Section 9) or a long burst of loss that
 gets the endpoints out of sync (Section 4.3).

 The Connection Nonce feature is used to inform one endpoint of the
 other endpoint's connection nonce. The Connection Proof option
 contains the xor of the two endpoints' nonces, and thus acts as
 proof that the sending endpoint knows both nonces. The Identify
 Yourself option requests that a DCCP send a Connection Proof option
 on its next packet.

5.4.1. Connection Nonce Feature

 Connection Nonce has feature number 7. The Connection Nonce feature
 located at DCCP B is the value of DCCP A's connection nonce. Each
 endpoint must keep track of both its nonce and, via the Connection
 Nonce feature, the other endpoint's nonce.

 The Connection Nonce feature takes arbitrary values of at least 4
 bytes long. A Change or Confirm Connection Nonce option therefore
 takes at least 6 bytes.

 Connection Nonce defaults to a random 8-byte string. To prevent
 spoofing, this string MUST NOT have any predictable value. For
 example, it MUST NOT be set deterministically to zero, and it MUST
 change on every connection.

 This feature is non-negotiable.

Kohler/Handley/Floyd/Padhye Section 5.4.1. [Page 31]

INTERNET-DRAFT Expires: December 2002 June 2002

5.4.2. Connection Proof Option

 This option is permitted in any DCCP packet, although it is useful
 only after the endpoints have informed each other of their
 connection nonces. The value of the option is the exclusive-or of
 the two connection nonces. (If one nonce is longer than the other,
 then the shorter one is padded on the right with zero bytes before
 the exclusive-or.) The endpoint receiving Connection Proof compares
 the option value with the xor of the connection nonces, and thus
 determines whether or not the packet is really part of the
 connection. Packets with invalid Connection Proof MUST be ignored,
 except that the receiving DCCP MAY send an Identify Yourself option.
 (DCCP implementations SHOULD limit the rate of such response
 packets.)

 +--------+--------+--------+--------+--------+--------
 |00101010|????????| Connection Proof Value ...
 +--------+--------+--------+--------+--------+--------
 Type=42 Length

5.4.3. Identify Yourself Option

 This option is permitted in any DCCP packet, although it is useful
 only after the endpoints have informed each other of their
 connection nonces. The option informs the receiving DCCP that one
 of its packets was ignored, and that succeeding packets will be
 ignored until the endpoint sends a correct Connection Proof option.
 The receiving DCCP SHOULD include a Connection Proof option on the
 next packet it sends.

 +--------+
 |00000011|
 +--------+
 Type=3

5.5. Data Discarded Option

 This option is permitted in a DCCP-Response packet only. It
 indicates that the payload of the DCCP-Request packet was discarded
 by the server, and therefore should be resent in a following DCCP-
 Data or DCCP-DataAck packet. This option can be set by the server
 to avoid having to keep state for the connection until the handshake
 is complete. Doing so causes an additional round-trip time before
 the server can begin servicing the request. The tradeoff is under
 the control of local policy at the server.

Kohler/Handley/Floyd/Padhye Section 5.5. [Page 32]

INTERNET-DRAFT Expires: December 2002 June 2002

 +--------+
 |00000010|
 +--------+
 Type=2

5.6. Init Cookie Option

 This option is permitted in DCCP-Response, DCCP-Data, and DCCP-
 DataAck messages. The option MAY be returned by the server in a
 DCCP-Response mechanism. If so, then the client MUST echo the same
 Init Cookie option in its ensuing DCCP-Data or DCCP-DataAck
 message.

 The purpose of this option is to allow a DCCP server to avoid having
 to hold any state until the three-way connection setup handshake has
 completed. The server wraps up the service name, server port, and
 any options it cares about from both the DCCP-Request and DCCP-
 Response in a opaque cookie. Typically the cookie will be encrypted
 using a secret known only to the server and include a cryptographic
 checksum or magic value so that correct decryption can be verified.
 When the server receives the cookie back in the response, it can
 decrypt the cookie and instantiate all the state it avoided keeping.

 The precise implementation of the Init Cookie does not need to be
 specified here as it is only relayed by the client, and does not
 need to be understood by the client.

 +--------+--------+--------+--------+--------+--------
 |00100100|????????| Init Cookie Value ...
 +--------+--------+--------+--------+--------+--------
 Type=36 Length

5.7. Timestamp Option

 This option is permitted in any DCCP packet. The length of the
 option is 6 bytes.

 +--------+--------+--------+--------+--------+--------+
 |00101000|00000110| Timestamp Value |
 +--------+--------+--------+--------+--------+--------+
 Type=40 Length=6

 The four bytes of option data carry the timestamp of this packet, in
 some undetermined form. A DCCP receiving a Timestamp option SHOULD
 respond with a Timestamp Echo option on the next packet it sends.

Kohler/Handley/Floyd/Padhye Section 5.7. [Page 33]

INTERNET-DRAFT Expires: December 2002 June 2002

5.8. Timestamp Echo Option

 This option is permitted in any DCCP packet, as long as at least one
 packet carrying the Timestamp option has been received. The length
 of the option is 10 bytes.

 +--------+--------+------- ... -------+------- ... -------+
 |00101001|00001010| TS Echo | Elapsed |
 +--------+--------+------- ... -------+------- ... -------+
 Type=41 Len=10 (4 bytes) (4 bytes)

 The first four bytes of option data, TS Echo, carry a Timestamp
 Value taken from a preceding received Timestamp option. Usually,
 this will be the last packet that was received. The final four bytes
 indicate the amount of time elapsed since receiving the packet whose
 timestamp is being echoed. This time MUST be in microseconds. We are
 currently investigating ways to relax the last requirement.

5.9. Loss Window Feature

 Loss Window has feature number 6. The Loss Window feature located at
 DCCP B is the width of the window DCCP B uses to determine whether
 packets from DCCP A are valid. Packets outside this window will be
 dropped by DCCP B as old duplicates or spoofing attempts; see

Section 4.3 for more information. DCCP A sends a "Change(Loss
 Window, W)" option to DCCP B to set DCCP B's Loss Window to W.

 The Loss Window feature takes 3-byte integer values, like DCCP
 sequence numbers. Change and Confirm options for Loss Window are
 therefore 6 bytes long.

 Loss Window defaults to 1000 for new connections. The Loss Window
 value is the total width of the loss window. The receiver may
 position the loss window asymmetrically around the last sequence
 number seen -- for example, by allocating 1/4 of the loss window
 width for older sequence numbers and 3/4 of it for newer sequence
 numbers.

 This feature is non-negotiable.

6. Congestion Control IDs

 Each congestion control mechanism supported by DCCP is assigned a
 congestion control identifier, or CCID: a number from 0 to 255.
 During connection setup, and optionally thereafter, the endpoints
 negotiate their congestion control mechanisms by negotiating the
 values for their Congestion Control features. Congestion Control has
 feature number 1. The feature located at DCCP A is the CCID in use

Kohler/Handley/Floyd/Padhye Section 6. [Page 34]

INTERNET-DRAFT Expires: December 2002 June 2002

 for the A-to-B half-connection. DCCP B sends an "Change(CC, K)"
 option to DCCP A to ask A to use CCID K for its data packets.

 The data octets of Congestion Control feature negotiation options
 form a list of acceptable CCIDs, sorted in descending order of
 priority. For example, the option "Change(CC 1, 2, 3)" asks the
 sender to use CCID 1, although CCIDs 2 and 3 are also acceptable.
 (This corresponds to the octets "33, 6, 1, 1, 2, 3": Change option
 (33), option length (6), feature ID (1), CCIDs (1, 2, 3).)
 Similarly, "Confirm(CC 1, 2, 3)" tells the receiver that the sender
 is using CCID 1, but that CCIDs 2 or 3 might also be acceptable.

 The CCIDs defined by this document are:

 CCID Meaning
 ---- -------
 0 Reserved
 1 Unspecified Sender-Based Congestion Control
 2 TCP-like Congestion Control
 3 TFRC Congestion Control

 A new connection starts with CCID 2 for both DCCPs. If this is
 unacceptable for either DCCP, that DCCP will start in the Unknown
 state. A DCCP SHOULD NOT send data when its Congestion Control
 feature is in the Unknown state.

6.1. Unspecified Sender-Based Congestion Control

 CCID 1 denotes an unspecified sender-based congestion control
 mechanism. Separate features negotiate the corresponding congestion
 acknowledgement options---for example, Ack Vector. This provides a
 limited, controlled form of interoperability for new IETF-approved
 CCIDs.

 Implementors MUST NOT use CCID 1 in production environments as a
 proxy for congestion control mechanisms that have not entered the
 IETF standards process. We intend for the IETF to approve all
 production uses of CCID 1. Nevertheless, middle boxes MAY choose to
 treat the use of CCID 1 as experimental or unacceptable.

 For example, say that CCID 98, a new sender-based congestion control
 mechanism using Ack Vector for acknowledgements, has entered the
 IETF standards process. Now, DCCP A, which understands and would
 like to use CCID 98, is trying to communicate with DCCP B, which
 doesn't yet know about CCID 98. DCCP A can simply negotiate use of
 CCID 1 and, separately, negotiate Use Ack Vector. DCCP B will
 provide the feedback DCCP A requires for CCID 98, namely Ack Vector,

Kohler/Handley/Floyd/Padhye Section 6.1. [Page 35]

INTERNET-DRAFT Expires: December 2002 June 2002

 without needing to understand the congestion control mechanism in
 use.

6.2. TCP-like Congestion Control

 CCID 2 denotes Additive Increase, Multiplicative Decrease (AIMD)
 congestion control with behavior modelled directly on TCP, including
 congestion window, slow start, timeouts, and so forth. CCID 2 is
 further described in [CCID 2 PROFILE].

6.3. TFRC Congestion Control

 CCID 3 denotes TCP-Friendly Rate Control, an equation-based rate-
 controlled congestion control mechanism. CCID 3 is further described
 in [CCID 3 PROFILE].

6.4. CCID-Specific Options and Features

 Option and feature numbers 128 through 255 are available for CCID-
 specific use. CCIDs may often need new option types---for
 communicating acknowledgement or rate information, for example.
 CCID-specific option types let them create options at will without
 polluting the global options space. Option 128 might have different
 meanings on a half-connection using CCID 4 and a half-connection
 using CCID 8. CCID-specific options and features will never conflict
 with global options introduced by later versions of this
 specification.

 Any packet may contain information meant for either half-connection,
 so CCID-specific option and feature numbers explicitly signal the
 half-connection to which they apply. Option numbers 128 through 191
 are for options sent from the HC-Sender to the HC-Receiver; option
 numbers 192 through 255 are for options sent from the HC-Receiver to
 the HC-Sender. Similarly, feature numbers 128 through 191 are for
 features located at the HC-Sender; feature numbers 192 through 255
 are for features located at the HC-Receiver. (Change options for a
 feature are sent *to* the feature location; Prefer and Confirm
 options are sent *from* the feature location. Thus, Change(128)
 options are sent by the HC-Receiver by definition, while Change(192)
 options are sent by the HC-Sender.)

 For example, consider a DCCP connection where the A-to-B half-
 connection uses CCID 4 and the B-to-A half-connection uses CCID 5.
 Here is how a sampling of CCID-specific options and features are
 assigned to half-connections:

Kohler/Handley/Floyd/Padhye Section 6.4. [Page 36]

INTERNET-DRAFT Expires: December 2002 June 2002

 Relevant Relevant
 Packet Option Half-conn. CCID
 ------ ------ ---------- ----
 A > B 128 A-to-B 4
 A > B 192 B-to-A 5

A > B Change(128, ...) B-to-A 5
A > B Prefer(128, ...) A-to-B 4
A > B Confirm(128, ...) A-to-B 4
A > B Change(192, ...) A-to-B 4
A > B Prefer(192, ...) B-to-A 5
A > B Confirm(192, ...) B-to-A 5

 CCID-specific options and features have no clear meaning when the
 relevant CCID is in flux. A DCCP SHOULD respond to CCID-specific
 options and features with Ignored options during those times.

7. Acknowledgements

 Congestion control requires receivers to transmit information about
 packet losses and ECN marks to senders. DCCP receivers MUST report
 all congestion they see, as defined by the relevant CCID profile.
 Each CCID says when acknowledgements should be sent, what options
 they must use, how they should be congestion controlled, and so on.

 Most acknowledgements use DCCP options. For example, on a half-
 connection with CCID 2 (TCP-like), the receiver reports
 acknowledgement information using the Ack Vector option. This
 section describes common acknowledgement options and shows how acks
 using those options will commonly work. Full descriptions of the
 acknowledgement mechanisms used for each CCID are laid out in the
 CCID profile specifications.

 Acknowledgement options, such as Ack Vector, are only allowed on
 DCCP-Ack, DCCP-DataAck, DCCP-Close, and DCCP-CloseReq packets.

7.1. Acks of Acks and Unidirectional Connections

 DCCP was designed to work well for both bidirectional and
 unidirectional flows of data, and for connections that transition
 between these states. However, acknowledgements required for a
 unidirectional connection are very different from those required for
 a bidirectional connection. In particular, unidirectional
 connections need to worry about acks of acks.

 The ack-of-acks problem arises because some acknowledgement
 mechanisms are reliable. For example, an HC-Receiver using CCID 2,
 TCP-like Congestion Control, sends Ack Vectors containing completely

Kohler/Handley/Floyd/Padhye Section 7.1. [Page 37]

INTERNET-DRAFT Expires: December 2002 June 2002

 reliable acknowledgement information. The HC-Sender should
 occasionally inform the HC-Receiver that it has received an ack. If
 it did not, the HC-Receiver might resend complete Ack Vector
 information, going back to the start of the connection, with every
 DCCP-Ack packet! However, note that acks-of-acks need not be
 reliable themselves: when an ack-of-acks is lost, the HC-Receiver
 will simply maintain old acknowledgement-related state for a little
 longer. Therefore, there is no need for acks of acks of acks.

 When communication is bidirectional, any required acks of acks are
 automatically contained in normal acknowledgements for data packets.
 On a unidirectional connection, however, the receiver DCCP sends no
 data, so the sender would not normally send acknowledgements.
 Therefore, the CCID in force on that half-connection must explicitly
 say whether, when, and how the HC-Sender should generate acks of
 acks.

 For example, consider a bidirectional connection where both half-
 connections use the same CCID (either 2 or 3), and where DCCP B goes
 quiescent. This means that the connection becomes unidirectional:
 DCCP B stops sending data, and sends only sends DCCP-Ack packets to
 DCCP A. For CCID 2, TCP-like Congestion Control, DCCP B uses Ack
 Vector to reliably communicate which packets it has received. As
 described above, DCCP A must occasionally acknowledge a pure
 acknowledgement from DCCP B, so that DCCP B can free old Ack Vector
 state. For instance, DCCP A might send a DCCP-DataAck packet every
 now and then, instead of DCCP-Data. In contrast, for CCID 3, TFRC
 Congestion Control, DCCP B's acknowledgements need not be reliable,
 since they contain cumulative loss rates; TFRC works even if every
 DCCP-Ack is lost. Therefore, DCCP A need never acknowledge an
 acknowledgement.

 When communication is unidirectional, a single CCID---in the
 example, the A-to-B CCID---controls both DCCPs' acknowledgements, in
 terms of their content, their frequency, and so forth. For
 bidirectional connections, the A-to-B CCID governs DCCP B's
 acknowledgements (including its acks of DCCP A's acks), while the B-
 to-A CCID governs DCCP A's acknowledgements.

 DCCP A switches its ack pattern from bidirectional to unidirectional
 when it notices that DCCP B has gone quiescent. It switches from
 unidirectional to bidirectional when it must acknowledge even a
 single DCCP-Data or DCCP-DataAck packet from DCCP B. (This includes
 the case where a single DCCP-Data or DCCP-DataAck packet was lost in
 transit, which is detectable using the # NDP field in the DCCP
 packet header.)

Kohler/Handley/Floyd/Padhye Section 7.1. [Page 38]

INTERNET-DRAFT Expires: December 2002 June 2002

 Each CCID defines how to detect quiescence on that CCID, and how
 that CCID handles acks-of-acks on unidirectional connections. The B-
 to-A CCID defines when DCCP B has gone quiescent. Usually, this
 happens when a period has passed without B sending any data packets.
 For CCID 2, this period is roughly two round-trip times. The A-to-B
 CCID defines how DCCP A handles acks-of-acks once DCCP B has gone
 quiescent.

7.2. Ack Piggybacking

 Acknowledgements of A-to-B data MAY be piggybacked on data sent by
 DCCP B, as long as that does not delay the acknowledgement longer
 than the A-to-B CCID would find acceptable. However, data
 acknowledgements often require more than 4 bytes to express. A large
 set of acknowledgements prepended to a large data packet might
 exceed the path's MTU. In this case, DCCP B SHOULD send separate
 DCCP-Data and DCCP-Ack packets, or wait for a smaller datagram (but
 not too long).

 Piggybacking is particularly common at DCCP A when the B-to-A half-
 connection is quiescent---that is, when DCCP A is just acknowledging
 DCCP B's acknowledgements, as described above. There are three
 reasons to acknowledge DCCP B's acknowledgements: to allow DCCP B to
 free up information about previously acknowledged data packets from
 A; to shrink the size of future acknowledgements; and to manipulate
 the rate future acknowledgements are sent. Since these are secondary
 concerns, DCCP A can generally afford to wait indefinitely for a
 data packet to piggyback its acknowledgement onto.

 Any restrictions on ack piggybacking are described in the relevant
 CCID's profile.

7.3. Ack Ratio Feature

 With Ack Ratio, DCCP A can perform rudimentary congestion control on
 DCCP B's acknowledgement stream by telling DCCP B how to clock its
 acks.

 Ack Ratio has feature number 3. The Ack Ratio feature located at
 DCCP B equals the ratio of data packets sent by DCCP A to
 acknowledgement packets sent back by DCCP B. For example, if it is
 set to four, then DCCP B will send at least one acknowledgement
 packet for every four data packets DCCP A sends. DCCP A sends a
 "Change(Ack Ratio)" option to DCCP B to change DCCP B's ack ratio.

 An Ack Ratio option contains two bytes of data: a sixteen-bit
 integer representing the ratio. A new connection starts with Ack
 Ratio 2 for both DCCPs.

Kohler/Handley/Floyd/Padhye Section 7.3. [Page 39]

INTERNET-DRAFT Expires: December 2002 June 2002

 This feature is non-negotiable.

7.4. Use Ack Vector Feature

 The Use Ack Vector feature lets DCCPs negotiate whether they should
 use Ack Vector options to report congestion. Ack Vector provides
 detailed loss information, and lets senders report back to their
 applications whether particular packets were dropped. Use Ack Vector
 is mandatory for some CCIDs, and optional for others.

 Use Ack Vector has feature number 4. The Use Ack Vector feature
 located at DCCP B specifies whether DCCP B should use the Ack Vector
 option to report congestion back to DCCP A. DCCP A sends a
 "Change(Use Ack Vector, 1)" option to DCCP B to ask B to send Ack
 Vector options as part of its acknowledgement traffic.

 A Use Ack Vector option contains a single octet of data. The
 receiver should send Ack Vector options if and only if this octet is
 nonzero. A new connection starts with Use Ack Vector 0 for both
 DCCPs.

7.5. Ack Vector Options

 The Ack Vector gives a run-length encoded history of data packets
 received at the client. Each octet of the vector gives the state of
 that data packet in the loss history, and the number of preceding
 packets with the same state. The option's data looks like this:

 +--------+--------+--------+--------+--------+
 |001001??| Length |SSLLLLLL|SSLLLLLL|SSLLLLLL|...
 +--------+--------+--------+--------+--------+
 Type=37/38 ________ Vector ________/

 The two Ack Vector options (option types 37 and 38) differ only in
 the values they imply for ECN Nonce Echo. Section 8.2 describes this
 further.

 The vector itself consists of a series of octets, each of whose
 encoding is:

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |St | Run Length|
 +-+-+-+-+-+-+-+-+

Kohler/Handley/Floyd/Padhye Section 7.5. [Page 40]

INTERNET-DRAFT Expires: December 2002 June 2002

 St[ate]: 2 bits

 Run Length: 6 bits

 State occupies the most significant two bits of each byte, and can
 have one of four values:

 0 Packet received (and not ECN marked).

 1 Packet ECN marked.

 2 Reserved.

 3 Packet not yet received.

 The first byte in the first Ack Vector option refers to the packet
 indicated in the Acknowledgement Number; subsequent bytes refer to
 older packets. (Ack Vector may not be sent on DCCP-Data packets,
 which lack an Acknowledgement Number.) If an Ack Vector contains the
 decimal values 0,192,3,64,5 and the Acknowledgement Number is
 decimal 100, then:

 Packet 100 was received (Acknowledgement Number 100, State 0,
 Run Length 0).

 Packet 99 was lost (State 3, Run Length 0).

 Packets 98, 97, 96 and 95 were received (State 0, Run Length 3).

 Packet 94 was ECN marked (State 1, Run Length 0).

 Packets 93, 92, 91, 90, 89, and 88 were received (State 0, Run
 Length 5).

 Run lengths of more than 64 must be encoded in multiple bytes. A
 single Ack Vector option can acknowledge up to 16192 data packets.
 Should more packets need to be acknowledged than can fit in 253
 bytes of Ack Vector, then multiple Ack Vector options can be sent.
 The second Ack Vector option will begin where the first Ack Vector
 option left off, and so forth.

 Packets dropped in the receive buffer should be reported as not
 received (State 3). The Receive Buffer Drops and Buffer Closed Drops
 options distinguishes between congestion losses and losses due to
 receive buffer overflow.

Kohler/Handley/Floyd/Padhye Section 7.5. [Page 41]

INTERNET-DRAFT Expires: December 2002 June 2002

7.5.1. Ack Vector Consistency

 A DCCP sender will commonly receive multiple acknowledgements for
 some of its data packets. For instance, an HC-Sender might receive
 two DCCP-Acks with Ack Vectors, both of which contained information
 about sequence number 24. (Because of cumulative acking,
 information about a sequence number is repeated in every ack until
 the HC-Sender acknowledges an ack. Perhaps the HC-Receiver is
 sending acks faster than the HC-Sender is acknowledging them.) In a
 perfect world, the two Ack Vectors would always be consistent.
 However, there are many reasons why they might not be:

 o The HC-Receiver received packet 24 between sending its acks, so
 the first ack said 24 was not received (State 3) and the second
 said it was received or ECN marked (State 0 or 1).

 o The HC-Receiver received packet 24 between sending its acks, and
 the network reordered the acks. In this case, the packet will
 appear to transition from State 0 or 1 to State 3.

 o The network duplicated packet 24, but only one of the duplicates
 was ECN marked. Depending on the HC-Receiver's implementation,
 this might show up as a transition between States 0 and 1.

 To cope with these situations, HC-Sender DCCP implementations SHOULD
 combine multiple received Ack Vector states according to this table:

 Received State
 0 1 3
 +---+---+---+
 0 | 0 | 1 | 0 |
 Old +---+---+---+
 1 | 1 | 1 | 1 |
 State +---+---+---+
 3 | 0 | 1 | 3 |
 +---+---+---+

 To read the table, choose the row corresponding to the packet's old
 state and the column corresponding to the packet's state in the
 newly received Ack Vector, then read the packet's new state off the
 table. The table is symmetric about the main diagonal, so it is
 indifferent to ack reordering.

 A HC-Sender MAY choose to throw away old information gleaned from
 the HC-Receiver's Ack Vectors, in which case it MUST ignore newly
 received acknowledgements from the HC-Receiver for those old
 packets. However, it is often kinder to save recent Ack Vector

Kohler/Handley/Floyd/Padhye Section 7.5.1. [Page 42]

INTERNET-DRAFT Expires: December 2002 June 2002

 information for a while, so that the HC-Sender can undo its reaction
 to presumed congestion when a "lost" packet unexpectedly shows up
 (the transition from State 3 to State 0).

7.5.2. Ack Vector Coverage

 We can divide the packets that have been sent from an HC-Sender to
 an HC-Receiver into four roughly contiguous groups. From oldest to
 youngest, these are:

 (1) Packets already acknowledged by the HC-Receiver, where the HC-
 Receiver knows that the HC-Sender has definitely received the
 acknowledgements.

 (2) Packets already acknowledged by the HC-Receiver, where the HC-
 Receiver cannot be sure that the HC-Sender has received the
 acknowledgements.

 (3) Packets not yet acknowledged by the HC-Receiver.

 (4) Packets not yet received by the HC-Receiver.

 The union of groups 2 and 3 is called the Unacknowledged Window.
 Generally, every Ack Vector the HC-Receiver sends will cover the
 whole Unacknowledged Window: Ack Vector acknowledgements are
 cumulative. (This simplifies Ack Vector maintenance at the HC-
 Receiver; see Section 7.9, below.) As packets are received, this
 window both grows on the right and shrinks on the left. It grows
 because there are more packets, and shrinks because the data
 packets' Acknowledgement Numbers will acknowledge previous
 acknowledgements, moving packets from group 2 into group 1.

7.6. Slow Receiver Option

 An HC-Receiver sends the Slow Receiver option to its sender to
 indicate that it is having trouble keeping up with the sender's
 data. The HC-Sender SHOULD NOT increase its sending rate for
 approximately one round-trip time after seeing a packet with a Slow
 Receiver option. However, the Slow Receiver option does not indicate
 congestion, and the HC-Sender need not reduce its sending rate. (If
 necessary, the receiver can force the sender to slow down by
 dropping packets and including Receive Buffer Drops options.) APIs
 SHOULD let receiver applications set Slow Receiver, and sending
 applications determine whether or not their receivers are Slow.

 The Slow Receiver option takes just one byte:

Kohler/Handley/Floyd/Padhye Section 7.6. [Page 43]

INTERNET-DRAFT Expires: December 2002 June 2002

 +--------+
 |00000010|
 +--------+
 Type=2

 Slow Receiver does not specify why the receiver is having trouble
 keeping up with the sender. Possible reasons include lack of buffer
 space, CPU overload, and application quotas. A sending application
 might react to Slow Receiver by reducing its sending rate or by
 switching to a lossier compression algorithm. However, a smart
 sender might actually *increase* its sending rate in response to
 Slow Receiver, by switching to a less-compressed sending format. (A
 highly-compressed data format might overwhelm a slow CPU more
 seriously than the higher memory requirements of a less-compressed
 data format.) This tension between transfer size (less compression
 means more congestion) and processing speed (more compression means
 more processing) cannot be resolved in general.

 Slow Receiver implements a portion of TCP's receive window
 functionality. We believe receiver operating systems and
 applications will find it much easier to send Slow Receiver when
 appropriate than they currently find it to correctly set a TCP
 receive window.

7.7. Receive Buffer Drops Option

 The Receive Buffer Drops option indicates that some packets reported
 as not received were actually dropped at the endpoint, due to
 insufficient kernel space. The sender will probably react
 differently to receive buffer drops than congestion losses; for
 instance, it might not reduce its congestion window. The option's
 data looks like this:

 +--------+--------+--------+
 |00100111|00000011| Count |
 +--------+--------+--------+
 Type=39 Length=3

 Count: 8 bits
 The Count field says how many acknowledged packets were dropped
 at the receive buffer, limited to packets acknowledged by the
 packet containing the option. Count is simply a number between 0
 and 255.

 Multiple Receive Buffer Drops options are added together, so a
 single option with Count 2 is equivalent to two options, each with

Kohler/Handley/Floyd/Padhye Section 7.7. [Page 44]

INTERNET-DRAFT Expires: December 2002 June 2002

 Count 1. A packet's total Receive Buffer Drops count MUST be less
 than or equal to the number of packets acknowledged by it as "not
 yet received". For example, assuming Ack Vector, the Receive Buffer
 Drops count must be less than or equal to the total number of
 State-3 packets in the Ack Vectors.

 If an ECN-marked packet is dropped at the receive buffer, it MUST
 NOT be included in the Receive Buffer Drops count. Such packets MUST
 be reported as the equivalent of "dropped by the network". (For Ack
 Vector, this is "not yet received".)

7.8. Buffer Closed Drops Option

 The Buffer Closed Drops option indicates that some packets reported
 as not received were actually dropped at the endpoint, because the
 application is no longer listening for data. For example, a server
 might close its receiving half-connection to new data after
 receiving a complete request from the client. This would limit the
 amount of state the server would expend on incoming data, and thus
 reduce the potential damage from certain denial-of-service attacks.
 A DCCP receiving a Buffer Closed Drops option MAY report this event
 to the application.

 The semantics of Buffer Closed Drops are similar to those of Receive
 Buffer Drops.

 +--------+--------+--------+
 |00101011|00000011| Count |
 +--------+--------+--------+
 Type=43 Length=3

 Count: 8 bits
 Like the Count field in Receive Buffer Drops.

 Multiple Buffer Closed Drops options are added together, so a single
 option with Count 2 is equivalent to two options, each with Count 1.
 A packet's total Buffer Closed Drops count MUST be less than or
 equal to the number of packets acknowledged by it as "not yet
 received". If an ECN-marked packet is dropped due to a closed
 receive buffer, it MUST NOT be included in the Buffer Closed Drops
 count. Such packets MUST be reported as the equivalent of "dropped
 by the network". (For Ack Vector, this is "not yet received".) No
 packet should be included in both the Receive Buffer Drops and
 Buffer Closed Drops count.

Kohler/Handley/Floyd/Padhye Section 7.8. [Page 45]

INTERNET-DRAFT Expires: December 2002 June 2002

7.9. Ack Vector Implementation Notes

 This section discusses the particulars of DCCP acknowledgement
 handling, in the context of an abstract implementation for Ack
 Vector. It may safely be skipped.

 The first part of our implementation runs at the HC-Receiver, and
 therefore acknowledges data packets. It generates Ack Vector
 options. The implementation has the following characteristics:

 o At most one byte of state per acknowledged packet.

 o O(1) time to update that state when a new packet arrives (normal
 case).

 o Cumulative acknowledgements.

 o Quick removal of old state.

 The basic data structure is a circular buffer containing information
 about acknowledged packets. Each byte in this buffer contains a
 state and run length; the state can be 0 (packet received), 1
 (packet ECN marked), or 3 (packet not yet received). The live
 portion of the buffer is marked off by head and tail pointers; each
 is further marked with the HC-Sender sequence number to which it
 corresponds. The buffer grows from right to left. For example:

 +---+
 |S,L|S,L|S,L|S,L|S,L| | | | |S,L|S,L|S,L|S,L|S,L|S,L|S,L|S,L|
 +---+
 ^ ^
 Tail, seqno = T Head, seqno = H

 <=== Head and Tail move this way <===

 Each `S,L' represents a State/Run length byte. We will draw these
 buffers showing only their live portion; for example, here is
 another representation for the buffer above:

 +---+
 (Head) H |S,L|S,L|S,L|S,L|S,L|S,L|S,L|S,L|S,L|S,L|S,L|S,L|S,L| T (Tail)
 +---+

 This smaller Example Buffer contains actual data.

Kohler/Handley/Floyd/Padhye Section 7.9. [Page 46]

INTERNET-DRAFT Expires: December 2002 June 2002

 +---------------------------+
 10 |0,0|3,0|3,0|3,0|0,4|1,0|0,0| 0 [Example Buffer]
 +---------------------------+

 In concrete terms, its meaning is as follows:

 Packet 10 was received. (The head of the buffer has sequence
 number 10, state 0, and run length 0.)

 Packets 9, 8, and 7 have not yet been received. (The three bytes
 preceding the head each have state 3 and run length 0.)

 Packets 6, 5, 4, 3, and 2 were received.

 Packet 1 was ECN marked.

 Packet 0 was received.

7.9.1. New Packets

 When a packet arrives whose sequence number is larger than any in
 the buffer, the HC-Receiver simply moves the Head pointer to the
 left, increases the head sequence number, and stores a byte
 representing the packet into the buffer. For example, if HC-Sender
 packet 11 arrived ECN marked, the Example Buffer above would enter
 this new state (the change is marked with stars):

 +***----------------------------+
 11 |1,0|0,0|3,0|3,0|3,0|0,4|1,0|0,0| 0
 +***----------------------------+

 If the packet's state equals the state at the head of the buffer,
 the HC-Receiver may choose to increment its run length (up to the
 maximum). For example, if HC-Sender packet 11 arrived without ECN
 marking, the Example Buffer might enter this state instead:

 +--*------------------------+
 11 |0,1|3,0|3,0|3,0|0,4|1,0|0,0| 0
 +--*------------------------+

 Of course, the new packet's sequence number might not equal the
 expected sequence number. In this case, the HC-Receiver should enter
 the intervening packets as State 3. If several packets are missing,
 the HC-Receiver may prefer to enter multiple bytes with run length
 0, rather than a single byte with a larger run length; this

Kohler/Handley/Floyd/Padhye Section 7.9.1. [Page 47]

INTERNET-DRAFT Expires: December 2002 June 2002

 simplifies table updates when one of the missing packets arrives.
 For example, if HC-Sender packet 12 arrived, the Example Buffer
 would enter this state:

 +*******----------------------------+
 12 |0,0|3,0|0,1|3,0|3,0|3,0|0,4|1,0|0,0| 0
 +*******----------------------------+

 When a new packet's sequence number is less than the head sequence
 number, the HC-Receiver should scan the table for the byte
 corresponding to that sequence number. (Slightly more complex
 indexing structures could reduce the complexity of this scan.)
 Assume that the sequence number was previously lost (State 3), and
 that it was stored in a byte with run length 0. Then the HC-Receiver
 can simply change the byte's state. For example, if HC-Sender packet
 8 was received, the Example Buffer would enter this state:

 +--------*------------------+
 10 |0,0|3,0|0,0|3,0|0,4|1,0|0,0| 0
 +--------*------------------+

 If the packet is not marked as lost, or if its sequence number is
 not contained in the table, the packet is probably a duplicate, and
 should be ignored. (The new packet's ECN marking state might differ
 from the state in the buffer; Section 7.5.1 describes what to do
 then.) If the packet's corresponding buffer byte has a non-zero run
 length, then the buffer might need be reshuffled to make space for
 one or two new bytes.

 Of course, the circular buffer may overflow, either when the HC-
 Sender is sending data at a very high rate, when the HC-Receiver's
 acknowledgements are not reaching the HC-Sender, or when the HC-
 Sender is forgetting to acknowledge those acks (so the HC-Receiver
 is unable to clean up old state). In this case, the HC-Receiver
 should either compress the buffer, transfer its state to a larger
 buffer, or drop all received packets until its buffer shrinks again.

7.9.2. Sending Acknowledgements

 Whenever the HC-Receiver needs to generate an acknowledgement, the
 buffer's contents can simply be copied into one or more Ack Vector
 options. Copied Ack Vectors might not be maximally compressed; for
 example, the Example Buffer above contains three adjacent 3,0 bytes
 that could be combined into a single 3,2 byte. The HC-Receiver
 might, therefore, choose to compress the buffer in place before
 sending the option, or to compress the buffer while copying it;

Kohler/Handley/Floyd/Padhye Section 7.9.2. [Page 48]

INTERNET-DRAFT Expires: December 2002 June 2002

 either operation is simple.

 Every acknowledgement sent by the HC-Receiver should include the
 entire state of the buffer. That is, acknowledgements are
 cumulative.

 The HC-Receiver should store information about each acknowledgement
 it sends in another buffer. Specifically, for every acknowledgement
 it sends, the HC-Receiver should store:

 o The HC-Receiver sequence number it used for the ack packet.

 o The HC-Sender sequence number it acknowledged (that is, the
 packet's Acknowledgement Number). Since acknowledgements are
 cumulative, this single number completely specifies the set of HC-
 Sender packets acknowledged by this ack packet.

7.9.3. Clearing State

 Some of the HC-Sender's packets will include acknowledgement
 numbers, which ack the HC-Receiver's acknowledgements. When such an
 ack is received, the HC-Receiver simply finds the HC-Sender sequence
 number corresponding to that acked HC-Receiver packet, and moves the
 buffer's Tail pointer up to that sequence number. (It may choose to
 keep some older information, in case a lost packet shows up late.)
 For example, say that the HC-Receiver storing the Example Buffer had
 sent two acknowledgements already:

 HC-Receiver Ack 59 acknowledged HC-Sender Seq 3, and
 HC-Receiver Ack 60 acknowledged HC-Sender Seq 10.

 Say the HC-Receiver then received a DCCP-DataAck packet from the HC-
 Sender with Acknowledgement Number 59. This informs the HC-Receiver
 that the HC-Sender received, and processed, all the information in
 HC-Receiver packet 59. This packet acknowledged HC-Sender packet 3,
 so the HC-Sender has now received HC-Receiver's acknowledgements for
 packets 0, 1, 2, and 3. The Example Buffer should enter this state:

 +------------------*+ *
 10 |0,0|3,0|3,0|3,0|0,2| 4
 +------------------*+ *

 Note that the tail byte's run length was adjusted, since packet 3
 was in the middle of that byte. The HC-Receiver can also throw away
 the information about HC-Receiver Ack 59.

Kohler/Handley/Floyd/Padhye Section 7.9.3. [Page 49]

INTERNET-DRAFT Expires: December 2002 June 2002

 A careful implementation might also modify its own acknowledgement
 record to ensure that it is reasonably robust to reordering.
 Suppose that the Example Buffer is as before, but that packet 9 now
 arrives, out of sequence. The Example buffer would enter this
 state:

 +----*----------------------+
 10 |0,0|0,0|3,0|3,0|0,4|1,0|0,0| 0
 +----*----------------------+

 Now, if the HC-Receiver then received a DCCP-DataAck packet from the
 HC-Sender with Sequence Number 11 and Acknowledgement Number 60,
 this might cause the tail pointer to be moved up to packet 10,
 although packet 9's arrival has not yet been acknowledged. Instead,
 when packet 9 arrived, the HC-Receiver's acknowledgement record
 might be modified to:

 HC-Receiver Ack 59 acknowledged HC-Sender Seq 3, and
 HC-Receiver Ack 60 acknowledged HC-Sender Seq 8.

 That is, any HC-Sender sequence number in the acknowledgement record
 is reduced to at most 8. This would prevent the Tail pointer from
 moving past packet 9 until the HC-Receiver knows that the HC-Sender
 has seen an Ack Vector indicating this packets arrival.

7.9.4. Processing Acknowledgements

 When the HC-Sender receives an acknowledgement, it generally cares
 about the number of packets that were dropped and/or ECN marked. It
 simply reads this off the Ack Vector. Additionally, it may check the
 ECN Nonce for correctness. (As described in Section 7.5.1, it may
 want to keep more detailed information about acknowledged packets in
 case packets change states between acknowledgements, or in case the
 application queries whether a packet arrived.)

 The HC-Sender must also acknowledge the HC-Receiver's
 acknowledgements so that the HC-Receiver can free old Ack Vector
 state. (Since Ack Vector acknowledgements are reliable, the HC-
 Receiver must maintain and resend Ack Vector information until it is
 sure that the HC-Sender has received that information.) A simple
 algorithm suffices: since Ack Vector acknowledgements are
 cumulative, a single acknowledgement number tells HC-Receiver how
 much ack information has arrived. Assuming that the HC-Receiver
 sends no data, the HC-Sender can simply ensure that at least once a
 round-trip time, it sends a DCCP-DataAck packet acknowledging the
 latest DCCP-Ack packet it has received. Of course, the HC-Sender
 only needs to acknowledge the HC-Receiver's acknowledgements if the
 HC-Sender is also sending data. If the HC-Sender is not sending

Kohler/Handley/Floyd/Padhye Section 7.9.4. [Page 50]

INTERNET-DRAFT Expires: December 2002 June 2002

 data, then the HC-Receiver's Ack Vector state is stable, and there
 is no need to shrink it. The HC-Sender must watch for drops and ECN
 marks on received DCCP-Ack packets so that it can adjust the HC-
 Receiver's ack-sending rate with Ack Ratio in response to
 congestion.

 If the other half-connection is not quiescent---that is, the HC-
 Receiver is sending data to the HC-Sender, possibly using another
 CCID---then the acknowledgements on that half-connection are
 sufficient for the HC-Receiver to free its state.

8. Explicit Congestion Notification

 The DCCP protocol is fully ECN-aware. Every CCID specifies how its
 endpoints respond to ECN marks. Furthermore, DCCP, unlike TCP,
 allows senders to control the rate at which acknowledgements are
 generated (with options like Ack Ratio); this means that
 acknowledgements are generally congestion-controlled, and may have
 ECN-Capable Transport set.

 Every CCID profile describes how that profile interacts with ECN,
 both for data traffic and pure-acknowledgement traffic. A sender
 SHOULD set ECN-Capable Transport on a sent packet whenever the
 receiver has its ECN Capable feature turned on, and the relevant
 CCID allows it.

 The rest of this section describes the ECN Capable feature, and the
 interaction of the ECN Nonce with acknowledgement options such as
 Ack Vector.

8.1. ECN Capable Feature

 The ECN Capable feature lets a DCCP inform its partner that it
 cannot read ECN bits from received IP headers, so the partner must
 not set ECN-Capable Transport on its packets.

 ECN Capable has feature number 2. The ECN Capable feature located at
 DCCP A indicates whether or not A can successfully read ECN bits
 from received frames' IP headers. (This is independent of whether it
 can set ECN bits on sent frames.) DCCP A sends a "Prefer(ECN
 Capable, 0)" option to DCCP B to inform B that A cannot read ECN
 bits.

 An ECN Capable feature contains a single octet of data. ECN
 capability is on if and only if this octet is nonzero.

 A new connection starts with ECN Capable 1 (that is, ECN capable)
 for both DCCPs. If a DCCP is not ECN capable, it MUST send

Kohler/Handley/Floyd/Padhye Section 8.1. [Page 51]

INTERNET-DRAFT Expires: December 2002 June 2002

 "Prefer(ECN Capable, 0)" options to the other endpoint until
 acknowledged (by "Change(ECN Capable, 0)") or the connection closes.
 Furthermore, it MUST NOT accept any data until the other endpoint
 sends "Change(ECN Capable, 0)".

8.2. ECN Nonces

 Congestion avoidance will not occur, and the receiver will sometimes
 get its data faster, when the sender is not told about any
 congestion events. Thus, the receiver has some incentive to falsify
 acknowledgement information, reporting that marked or dropped
 packets were actually received unmarked. This problem is more
 serious with DCCP than with TCP, since TCP provides reliable
 transport: it is more difficult with TCP to lie about lost packets
 without breaking the application.

 ECN Nonces are a general mechanism to prevent ECN cheating (or loss
 cheating). Two values for the two-bit ECN header field indicate ECN-
 Capable Transport, 01 and 10. The second code point, 10, is the ECN
 Nonce. In general, a protocol sender chooses between these code
 points randomly on its output packets, remembering the sequence it
 chose. The protocol receiver reports, on every acknowledgement, the
 number of ECN Nonces it has received thus far. This is called the
 ECN Nonce Echo. Since ECN marking and packet dropping both destroy
 the ECN Nonce, a receiver that lies about an ECN mark or packet drop
 has a 50% chance of guessing right and avoiding discipline. The
 sender may react punitively to an ECN Nonce mismatch, possibly up to
 dropping the connection. The ECN Nonce Echo field need not be an
 integer; one bit is enough to catch 50% of infractions.

 In DCCP, the ECN Nonce Echo field is encoded in acknowledgement
 options. For example, the Ack Vector option comes in two forms, Ack
 Vector [Nonce 0] (option 37) and Ack Vector [Nonce 1] (option 38),
 corresponding to the two values for a one-bit ECN Nonce Echo. The
 Nonce Echo for a given Ack Vector equals the base-2 modulus of the
 number of received ECN Nonce packets represented by that Ack Vector.
 Only packets marked as State 0 matter for this calculation (that is,
 received packets that were not ECN marked or dropped in the receive
 buffer). Every Ack Vector option is detailed enough for the sender
 to determine what the Nonce Echo should have been. It can check this
 calculation against the actual Nonce Echo, and complain if there is
 a mismatch.

 (The Ack Vector could conceivably report every ECN Nonce packet,
 using a separate code point for received ECN Nonces. However, this
 would limit Ack Vector's compressibility without providing much
 extra protection.)

Kohler/Handley/Floyd/Padhye Section 8.2. [Page 52]

INTERNET-DRAFT Expires: December 2002 June 2002

 Consider a half-connection from DCCP A to DCCP B. DCCP A SHOULD set
 ECN Nonces on its packets, and remember which packets had nonces,
 whenever DCCP B reports that it is ECN Capable. An ECN-capable
 endpoint MUST calculate and use the correct value for ECN Nonce Echo
 when sending acknowledgement options. An ECN-incapable endpoint,
 however, SHOULD treat the ECN Nonce Echo as always zero. When a
 sender detects an ECN Nonce Echo mismatch, it SHOULD behave as if
 the receiver had reported one or more packets as ECN-marked (instead
 of unmarked). It MAY take more punitive action, such as resetting
 the connection.

9. Multihoming and Mobility

 DCCP provides primitive support for multihoming and mobility, via a
 mechanism for transferring a connection endpoint from one IP address
 to another. The moving endpoint must negotiate mobility support
 beforehand, and both endpoints must share their Connection Nonces.
 When the moving endpoint gets a new IP address, it sends a DCCP-Move
 packet from that address to the stationary endpoint, including proof
 that it knows both nonces. The stationary endpoint then changes its
 connection state to use the new IP address.

 DCCP's support for mobility is intended to solve only the simplest
 multihoming and mobility problems. For instance, DCCP has no support
 for simultaneous moves. Applications requiring more complex mobility
 semantics, or more stringent security guarantees, should use an
 existing solution like Mobile IP or Snoeren and Balakrishnan's work
 [SB00].

9.1. Mobility Capable Feature

 A DCCP uses the Mobility Capable feature to inform its partner that
 it would like to be able to change its IP address and/or port during
 the course of the connection.

 Mobility Capable has feature number 5. The Mobility Capable feature
 located at DCCP A indicates whether or not A will accept a DCCP-Move
 packet sent by B. DCCP B sends a "Change(Mobility Capable, 1)"
 option to DCCP A to inform it that B might like to move later.

 A Mobility Capable feature contains a single octet of data. Mobility
 is allowed if and only if this octet is nonzero. A DCCP MUST reject
 a DCCP-Move packet referring to a connection when Mobility Capable
 is 0; however, it MAY reject a valid DCCP-Move packet even when
 Mobility Capable is 1.

 A new connection starts with Mobility Capable 0 (that is, mobility
 is not allowed) for both DCCPs.

Kohler/Handley/Floyd/Padhye Section 9.1. [Page 53]

INTERNET-DRAFT Expires: December 2002 June 2002

9.2. Security

 The DCCP mobility mechanism, like DCCP in general, does not provide
 cryptographic security guarantees. Nevertheless, DCCP-Move packets
 must have valid sequence numbers and Connection Proof, providing
 protection against some classes of attackers. Specifically, an
 attacker cannot move a DCCP connection to a new IP address unless
 they know both the Connection Proof and a valid sequence number. If
 initial sequence numbers and Connection Nonces are chosen well (that
 is, randomly), this means that attackers must snoop on data packets
 to get any reasonable probability of success. Section 14 further
 describes DCCP security considerations.

9.3. Congestion Control State

 Once an endpoint has transitioned to a new IP address, the
 connection is effectively a new connection in terms of its
 congestion control state: the accumulated information about
 congestion between the old endpoints no longer applies. Both DCCPs
 MUST initialize their congestion control state (windows, rates, and
 so forth) to that of a new connection---that is, they must "slow
 start"---unless they have high-quality information about actual
 network conditions between the two new endpoints. Normally, the only
 way to get this information would be by instrumenting a DCCP
 connection between the new addresses.

 Similarly, the endpoints' configured MTUs (see 10) should be
 reinitialized, and PMTU discovery performed again, following an IP
 address change.

9.4. Loss During Transition

 (This section is preliminary.) Several loss and delay events may
 affect the transition of a DCCP connection from one IP address to
 another. The DCCP-Move packet itself might be lost; the
 acknowledgement to that packet might be lost, leaving the mobile
 endpoint unsure of whether the transition has completed; and data
 from the old endpoint might continue to arrive at the receiver even
 after the transition.

 To protect against lost DCCP-Move packets, the mobile host SHOULD
 retransmit a DCCP-Move packet if it does not receive an
 acknowledgement within a reasonable time period. Section 4.10
 describes the mechanism used to protect against duplicate DCCP-Move
 packets.

 A receiver MAY drop all data received from the old IP address/port
 pair, once a DCCP-Move has successfully completed. Alternately, it

Kohler/Handley/Floyd/Padhye Section 9.4. [Page 54]

INTERNET-DRAFT Expires: December 2002 June 2002

 MAY accept one loss window's worth of this data. Congestion and loss
 events on this data SHOULD NOT affect the new connection's
 congestion control state. The receiver MUST NOT accept data with the
 old IP address/port pair past one loss window, and SHOULD send DCCP-
 Resets in response to those packets.

 During some transition period, acknowledgements from the receiver to
 the mobile host will contain information about packets sent both
 from the old IP address/port pair, and from the new IP address/port
 pair. The mobile DCCP MUST NOT let loss events on packets from the
 old IP address/port pair affect the new congestion control state.

10. Path MTU Discovery

 A DCCP implementation should be capable of performing Path MTU
 (PMTU) discovery, as described in [RFC 1191]. The API to DCCP SHOULD
 allow this mechanism to be disabled in cases where IP fragmentation
 is preferred. The rest of this section assumes PMTU discovery has
 not been disabled.

 A DCCP implementation MUST maintain its idea of the current PMTU for
 each active DCCP session. The PMTU should be initialized from the
 interface MTU that will be used to send packets.

 To perform PMTU discovery, the DCCP sender sets the IP Don't
 Fragment (DF) bit. However, it is undersirable for MTU discovery to
 occur on the initial connection setup handshake, as the connection
 setup process may not be representative of packet sizes used during
 the connection, and performing MTU discovery on the initial
 handshake might unnecessarily delay connection establishment. Thus,
 DF SHOULD NOT be set on DCCP-Request and DCCP-Response packets. In
 addition DF SHOULD NOT be set on DCCP-Reset packets, although
 typically these would be small enough to not be a problem. On all
 other DCCP packets, DF SHOULD be set.

 Any API to DCCP MUST allow the application to discover DCCP's
 current PMTU. DCCP applications SHOULD use the API to discover the
 PMTU, and SHOULD NOT send datagrams that are greater than the PMTU;
 the only exception to this is if the application disables PMTU
 discovery. If the application tries to send a packet bigger than the
 PMTU, the DCCP implementation MUST drop the packet and return an
 appropriate error.

 As specified in [RFC 1191], when a router receives a packet with DF
 set that is larger than the PMTU, it sends an ICMP Destination
 Unreachable message to the source of the datagram with the Code
 indicating "fragmentation needed and DF set" (also known as a
 "Datagram Too Big" message). When a DCCP implementation receives a

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1191

Kohler/Handley/Floyd/Padhye Section 10. [Page 55]

INTERNET-DRAFT Expires: December 2002 June 2002

 Datagram Too Big message, it decreases its PMTU to the Next-Hop MTU
 value given in the ICMP message. If the MTU given in the message is
 zero, the sender chooses a value for PMTU using the algorithm
 described in Section 7 of [RFC 1191]. If the MTU given in the
 message is greater than the current PMTU, the Datagram Too Big
 message is ignored, as described in [RFC 1191]. (We are aware that
 this may cause problems for DCCP endpoints behind certain
 firewalls.)

 If the DCCP implementation has decreased the PMTU, and the sending
 application attempts to send a packet larger than the new MTU, the
 API MUST cause the send to fail returning an appropriate error to
 the application, and the application SHOULD then use the API to
 query the new value of the PMTU. When this occurs, it is possible
 that the kernel has some packets buffered for transmission that are
 smaller than the old PMTU, but larger than the new PMTU. The kernel
 MAY send these packets with the DF bit cleared, or it MAY discard
 these packets; it MUST NOT transmit these datagrams with the DF bit
 set.

 DCCP currently provides no way to increase the PMTU once it has
 decreased.

 A DCCP sender MAY optionally treat the reception of an ICMP Datagram
 Too Big message as an indication that the packet being reported was
 not lost due congestion, and so for the purposes of congestion
 control it MAY ignore the DCCP receiver's indication that this
 packet did not arrive. However, if this is done, then the DCCP
 sender MUST check the ECN bits of the IP header echoed in the ICMP
 message, and only perform this optimization if these ECN bits
 indicate that the packet did not experience congestion prior to
 reaching the router whose MTU it exceeded.

11. Abstract API

 TBA

12. Multiplexing Issues

 In contrast to TCP, DCCP does not offer reliable ordered delivery.
 As a consequence, with DCCP there are no inherent performance
 penalties in layering functionality above DCCP to multiplex several
 sub-flows into a single DCCP connection.

 However, this approach of multiplexing sub-flows above DCCP will not
 work in circumstances such as RTP where the RTP subflows require
 separate port numbers. In this case, if it is desired to share
 congestion control state among multiple DCCP flows that share the

https://datatracker.ietf.org/doc/html/rfc1191#section-7
https://datatracker.ietf.org/doc/html/rfc1191

Kohler/Handley/Floyd/Padhye Section 12. [Page 56]

INTERNET-DRAFT Expires: December 2002 June 2002

 same source and destination addresses, the possibilities are to add
 DCCP-specific mechanisms to enable this, or to use a generic
 multiplexing facility like the Congestion Manager [RFC 3124]
 residing below the transport layer. For some DCCP flows, the
 ability to specify the congestion control mechanism might be
 critical, and for these flows the Congestion Manager will only be a
 viable tool if it allows DCCP to specify the congestion control
 mechanism used by the Congestion Manager for that flow. Thus, to
 allow the sharing of congestion control state among multiple DCCP
 flows, the alternatives seem to be to add DCCP-specific
 functionality to the Congestion Manager, or to add a similar layer
 below DCCP that is specific to DCCP. We defer issues of DCCP
 operating over a revised version of the Congestion Manager, or over
 a DCCP-specific module for the sharing of congestion control state,
 to later work.

13. DCCP and RTP

 This section discusses the relationship between DCCP and RTP [RFC
 1889].

 TBA

14. Security Considerations

 DCCP does not provide cryptographic security guarantees.
 Applications desiring hard security should use IPsec or end-to-end
 security of some kind.

 Nevertheless, DCCP is intended to protect against some classes of
 attackers. Attackers cannot hijack a DCCP connection (close the
 connection unexpectedly, or cause attacker data to be accepted by an
 endpoint as if it came from the sender) unless they can guess valid
 sequence numbers. Thus, as long as endpoints choose initial sequence
 numbers well, a DCCP attacker must snoop on data packets to get any
 reasonable probability of success. The sequence number validity
 (Section 4.3) and mobility (Section 9) mechanisms provide this
 guarantee.

 This section is not in its final state. Further research is needed
 to ensure that we have met our stated security requirement.

15. IANA Considerations

 DCCP introduces five sets of numbers whose values should be
 allocated by IANA.

https://datatracker.ietf.org/doc/html/rfc3124

Kohler/Handley/Floyd/Padhye Section 15. [Page 57]

INTERNET-DRAFT Expires: December 2002 June 2002

 o 32-bit Service Names (Section 4.5).

 o 32-bit DCCP-Reset Reasons (Section 4.9).

 o 8-bit DCCP Option Types (Section 5). The CCID-specific options 128
 through 255 need not be allocated by IANA.

 o 8-bit DCCP Feature Numbers (Section 5.3). The CCID-specific
 features 128 through 255 need not be allocated by IANA.

 o 8-bit DCCP Congestion Control Identifiers (CCIDs) (Section 6).

 In addition, DCCP requires a Protocol Number to be added to the
 registry of Assigned Internet Protocol Numbers. Experimental
 implementors should use Protocol Number 33 for DCCP, but this number
 may change in future.

16. Thanks

 There is a wealth of work in this area, including the Congestion
 Manager. We thank the staff and interns of ICIR and, formerly,
 ACIRI, the members of the End-to-End Research Group, and the members
 of the Transport Area Working Group for their feedback on DCCP.

17. References

 [CCID 2 PROFILE] S. Floyd and E. Kohler. Profile for DCCP Congestion
 Control ID 2: TCP-like Congestion Control. Work in progress.

 [CCID 3 PROFILE] J. Padhye, S. Floyd, and E. Kohler. Profile for
 DCCP Congestion Control ID 3: TFRC Congestion Control. Work in
 progress.

 [RFC 793] J. Postol, editor. Transmission Control Protocol. RFC 793.

 [RFC 1191] J. C. Mogul and S. E. Deering. Path MTU discovery. RFC
1191.

 [RFC 1889] Audio-Video Transport Working Group, H. Schulzrinne, S.
 Casner, R. Frederick, and V. Jacobson. RTP: A Transport
 Protocol for Real-Time Applications. RFC 1889.

 [RFC 2026] S. Bradner. The Internet Standards Process---Revision 3.
RFC 2026.

 [RFC 2460] S. Deering and R. Hinden. Internet Protocol, Version 6
 (IPv6) Specification. RFC 2460.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1889
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/rfc2460

Kohler/Handley/Floyd/Padhye Section 17. [Page 58]

INTERNET-DRAFT Expires: December 2002 June 2002

 [RFC 2960] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H.
 Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, and V.
 Paxson. Stream Control Transmission Protocol. RFC 2960.

 [RFC 3124] H. Balakrishnan and S. Seshan. The Congestion Manager.
RFC 3124.

 [RFC 3168] K.K. Ramakrishnan, S. Floyd, and D. Black. The Addition
 of Explicit Congestion Notification (ECN) to IP. RFC 3168.
 September 2001.

 [SB00] Alex C. Snoeren and Hari Balakrishnan. An End-to-End Approach
 to Host Mobility. Proc. 6th Annual ACM/IEEE International
 Conference on Mobile Computing and Networking (MOBICOM '00),
 August 2000.

 [WES01] David Wetherall, David Ely, Neil Spring. Robust ECN
 Signaling with Nonces. draft-ietf-tsvwg-tcp-nonce-00.txt, work
 in progress, January 2001.

18. Authors' Addresses

 Eddie Kohler <kohler@icir.org>
 Mark Handley <mjh@icir.org>
 Sally Floyd <floyd@icir.org>

 ICSI Center for Internet Research
 1947 Center Street, Suite 600
 Berkeley, CA 94704 USA

 Jitendra Padhye <padhye@microsoft.com>

 Microsoft Research
 One Microsoft Way
 Redmond, WA 98052 USA

https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc3124
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-nonce-00.txt

Kohler/Handley/Floyd/Padhye Section 18. [Page 59]

