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Abstract

Unlike signatures in a single-party setting, threshold signatures

require cooperation among a threshold number of signers each holding

a share of a common private key. Consequently, generating signatures

in a threshold setting imposes overhead due to network rounds among

signers, proving costly when secret shares are stored on network-

limited devices or when coordination occurs over unreliable

networks. This draft describes FROST, a Flexible Round-Optimized

Schnorr Threshold signature scheme that reduces network overhead

during signing operations while employing a novel technique to

protect against forgery attacks applicable to similar schemes in the

literature. FROST improves upon the state of the art in Schnorr

threshold signature protocols, as it can safely perform signing

operations in a single round without limiting concurrency of signing

operations, yet allows for true threshold signing, as only a

threshold number of participants are required for signing

operations. FROST can be used as either a two-round protocol where

signers send and receive two messages in total, or optimized to a

single-round signing protocol with a pre-processing stage. FROST

achieves its efficiency improvements in part by allowing the

protocol to abort in the presence of a misbehaving participant (who

is then identified and excluded from future operations)--a

reasonable model for practical deployment scenarios.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.
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working documents as Internet-Drafts. The list of current Internet-
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1. Introduction

Threshold signature schemes are a cryptographic primitive to

facilitate joint ownership over a private key by a set of

participants, such that a threshold number of participants must

cooperate to issue a signature that can be verified by a single
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public key. Threshold signatures are useful across a range of

settings that require a distributed root of trust among a set of

equally trusted parties.

Similarly to signing operations in a single-party setting, some

implementations of threshold signature schemes require performing

signing operations at scale and under heavy load. For example,

threshold signatures can be used by a set of signers to authenticate

financial transactions in cryptocurrencies [GGK_15], or to sign a

network consensus produced by a set of trusted authorities [MOT_11].

In both of these examples, as the number of signing parties or

signing operations increases, the number of communication rounds

between participants required to produce the joint signature becomes

a performance bottleneck, in addition to the increased load

experienced by each signer. This problem is further exacerbated when

signers utilize network-limited devices or unreliable networks for

transmission, or protocols that wish to allow signers to participate

in signing operations asynchronously. As such, optimizing the

network overhead of signing operations is highly beneficial to real-

world applications of threshold signatures.

Today in the literature, the best threshold signature schemes are

those that rely on pairing-based cryptography [BLS04] [BDN18], and

can perform signing operations in a single round among participants.

However, relying on pairing-based signature schemes is undesirable

for some implementations in practice, such as those that do not wish

to introduce a new cryptographic assumption, or that wish to

maintain backwards compatibility with an existing signature scheme

such as Schnorr signatures. Surprisingly, today's best non-pairing-

based threshold signature constructions that produce Schnorr

signatures with unlimited concurrency [SS01] [GJKR03] require at

least three rounds of communication during signing operations,

whereas constructions with fewer network rounds [GJKR03] must limit

signing concurrency to protect against a forgery attack [DEF_19].

This draft describes FROST, a Flexible Round-Optimized Schnorr

Threshold signature scheme that addresses the need for efficient

threshold signing operations while improving upon the state of the

art to ensure strong security properties without limiting the

parallelism of signing operations. (Signatures generated using the

FROST protocol can also be referred to as "FROSTy signatures".)

FROST can be used as either a two-round protocol where signers send

and receive two messages in total, or optimized to a (non-broadcast)

single-round signing protocol with a pre-processing stage. FROST

achieves improved efficiency in the optimistic case that no

participant misbehaves. However, in the case where a misbehaving

participant contributes malformed values during the protocol, honest

parties can identify and exclude the misbehaving participant, and

re-run the protocol.
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The flexible design of FROST lends itself to supporting a number of

practical use cases for threshold signing. Because the preprocessing

round can be performed separately from the signing round, signing

operations can be performed asynchronously; once the preprocessing

round is complete, signers only need to receive and eventually reply

with a single message to create a signature. Further, while some

threshold schemes in the literature require all participants to be

active during signing operations [GJKR03] [DJN_20], and refer to the

threshold property of the protocol as merely a security property,

FROST allows any threshold number of participants to produce valid

signatures. Consequently, FROST can support use cases where a subset

of participants (or participating devices) can remain offline, a

property that is often desirable for security in practice.

Organization. We describe background information important to

understanding FROST in Section 2, and in Section 3 we review

notation and security assumptions. Section 4 describes the FROST

protocol, and Section 5 reviews security considerations for FROST.

In Section 6 we describe implementation considerations.

2. Background

2.1. Threshold Schemes

Cryptographic protocols called (t,n)-threshold schemes allow a set

of n participants to share a secret s, such that any t out of the n

participants are required to cooperate in order to recover s, but

any subset of fewer than t participants cannot recover any

information about the secret.

Shamir Secret Sharing. Many threshold schemes build upon Shamir

secret sharing [Sha79], a (t,n)-threshold scheme that relies on

Lagrange interpolation to recover a secret. In Shamir secret

sharing, a trusted central dealer distributes a secret s to n

participants in such a way that any cooperating subset of t

participants can recover the secret. To distribute this secret, the

dealer first selects t-1 coefficients a , ..., a  at random, and

uses the randomly selected values as coefficients to define a

polynomial f(x) = s + SUM(a  x , i=1...t-1) of degree t-1 where f(0)

= s. The secret shares for each participant P  are subsequently (i,

f(i)), which the dealer is trusted to distribute honestly to each

participant P , ..., P . To reconstruct the secret, at least t

participants perform Lagrange interpolation to reconstruct the

polynomial and thus find the value s=f(0). However, no group of

fewer than t participants can reconstruct the secret, as at least t

points are required to reconstruct a polynomial of degree t-1.

Verifiable Secret Sharing. Feldman's Verifiable Secret Sharing (VSS)

Scheme [Fel87] builds upon Shamir secret sharing, adding a
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verification step to demonstrate the consistency of a participant's

share with a public commitment that is assumed to be correctly

visible to all participants. To validate that a share is well

formed, each participant validates their share using this

commitment. If the validation fails, the participant can issue a 

complaint against the dealer, and take actions such as broadcasting

this complaint to all other participants. FROST similarly uses this

technique as well.

The commitment produced in Feldman's scheme is as follows. As before

in Shamir secret sharing, a dealer samples t-1 random values

(a , ..., a ), and uses these values as coefficients to define a

polynomial f  of degree t-1 such that f(0) = s. However, along with

distributing the private share (i, f(i)) to each participant P , the

dealer also distributes the public commitment

C = < A , ..., A  >, where A  = g  and A  = g^{a }

Note that in a distributed setting, each participant P  must be sure

to have the same view of C as all other participants. In practice,

implementations guarantee consistency of participants' views by

using techniques such as posting commitments to a centralized server

that is trusted to provide a single view to all participants, or

adding another protocol round where participants compare their

received commitment values to ensure they are identical.

2.2. Threshold Signature Schemes

Threshold signature schemes leverage the (t,n) security properties

of threshold schemes, but allow participants to produce signatures

over a message using their secret shares such that anyone can

validate the integrity of the message, without ever reconstructing

the secret. In threshold signature schemes, the secret key s is

distributed among the n participants, while a single public key Y is

used to represent the group. Signatures can be generated by a

threshold of t cooperating signers.

For our work, we require the resulting signature produced by the

threshold signature scheme to be valid under the Schnorr signature

scheme [Sch89]. We introduce Schnorr signatures in Section 2.4.

Because threshold signature schemes ensure that no participant (or

indeed any group of fewer than t participants) ever learns the

secret key s, the generation of s and distribution of shares s , ...,

s  often require generating shares using a less-trusted method than

relying on a central dealer. Instead, these schemes (including

FROST) make use of a Distributed Key Generation (DKG) protocol,

which we describe next.
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2.3. Distributed Key Generation

While some threshold schemes such as Shamir secret sharing rely on a

trusted dealer to generate and distribute secret shares to all

participants, not all threat models can allow for such a high degree

of trust in a single individual. Distributed Key Generation (DKG)

supports such threat models by enabling every participant to

contribute equally to the generation of the shared secret. At the

end of running the protocol, all participants share a joint public

key Y, but each participant holds only a share s  of the

corresponding secret s such that no set of participants smaller than

the threshold knows s.

FROST can use either Pedersen's DKG [Ped91] or Gennaro's

DKG [GJKR07] to generate the shared long-lived secret key among

participants during its key generation stage.

2.4. Schnorr Signatures

Often, it is desirable for signatures produced by threshold signing

operations to be indistinguishable from signatures produced by a

single participant, consequently remaining backwards compatible with

existing systems, and also preventing a privacy leak of the

identities of the individual signers. For our work, we require

signatures produced by FROST signing operations to be

indistinguishable from Schnorr signatures, and thus verifiable using

the standard Schnorr verification operations. To this end, we now

describe Schnorr signing and verification operations [Sch89] in a

single-signer setting.

Let G be a group with prime order q and generator g, and let H be a

cryptographic hash function mapping to Z . A Schnorr signature is

generated over a message m by the following steps:

Sample a random nonce k <-$- Z ; compute the commitment R = g

in G

Compute the challenge c = H(m,R)

Using the secret key s, compute the response z = k + s * c in Z

Define the signature over m to be SIG = (z, c)

Validating the integrity of m using the public key Y=g  and the

signature SIG is performed as follows:

Parse SIG as (z, c).

Compute R' = g  * Y
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Compute c' = H(m, R')

Output 1 if c = c' to indicate success; otherwise, output 0.

Schnorr signatures are simply the standard Sigma-protocol proof of

knowledge of the discrete logarithm of Y, made non-interactive (and

bound to the message m) with the Fiat-Shamir transform.

2.5. Additive Secret Sharing

Similarly to the single-party setting described above, FROST

requires generating a random nonce k for each signing operation.

However, in the threshold setting, k should be generated in such a

way that each participant contributes to but does not know the

resulting k (properties that performing a DKG as described in 

Section 2.3 also achieve). Key to the design of FROST is the

observation that while an arbitrary t out of n entities are required

to participate in a signing operation, a simpler t-out-of-t scheme

will suffice to generate the random nonce k.

While Shamir secret sharing and derived constructions require shares

to be points on a secret polynomial f where f(0)=s, an additive

secret sharing scheme allows t participants to jointly compute a

shared secret s by each participant P  contributing a value s  such

that the resulting shared secret is s=SUM(s , i=1...t), the summation

of each participant's share. Consequently, this t-out-of-t secret

sharing can be performed non-interactively; each participant

directly chooses their own s .

Benaloh and Leichter [BL88] generalize this scheme to arbitrary

monotone access structures, and Cramer, Damgaerd, and Ishai [CDI05]

present a non-interactive mechanism for participants to locally

convert additive shares generated via the Benaloh and Leichter t-

out-of-n additive secret sharing construction to polynomial (Shamir)

form. In our work, we use the simplest t-out-of-t case of this

transformation, in which, if s  are additive secret shares of s, so

that s is the sum of the s , then (s )/(L ) are Shamir secret shares

of the same s, where the L  are Lagrange coefficients.

In FROST, participants use this technique during signing operations

to non-interactively generate a one-time secret nonce (as is

required by Schnorr signatures, described in Section 2.4) that is

Shamir secret shared among all t signing participants.

2.6. Attacks on Parallelized Schnorr Multisignatures

Attack via Wagner's Algorithm. We next describe an attack recently

introduced by Drijvers et al. [DEF_19] against some two-round

Schnorr multisignature schemes and describe how this attack applies

to a threshold setting. This attack can be performed when the
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adversary has control over either choosing the message m to be

signed, or the ability to adaptively choose its own individual

commitments used to determine the group commitment R after seeing

commitments from all other signing parties.

Successfully performing the Drijvers attack requires finding a hash

output c  = H(m , R ) that is the sum of T other hash outputs c  =

SUM(H(m , R ), j=1...T) (where c  is the challenge, m  the message,

and R  the commitment corresponding to a standard Schnorr signature

as described in Section 2.4). To find T hash outputs that sum to c ,

the adversary can open many (say T number of) parallel simultaneous

signing operations, varying in each of the T parallel executions

either its individual commitment used to determine R  or the message

being signed m . Drijvers et al. use the k-tree algorithm of

Wagner [Wag02] to find such hashes and perform the attack in time

O(K * b * 2 ), where K = T + 1, and b is the bitlength of the

order of the group.

Although this attack was proposed in a multisignature n-out-of-n

setting, this attack applies similarly in a threshold t-out-of-n

setting with the same parameters for an adversary that controls up

to t-1 participants. We note that the threshold scheme instantiated

using Pedersen's DKG by Gennaro et al. [GJKR03] is likewise affected

by this technique and so similarly has an upper bound to the amount

of parallelism that can be safely allowed.

In Section 4.2 we discuss how FROST avoids the attack by ensuring

that an attacker will not gain an advantage by adaptively choosing

its own commitment (or that of any other of the signing

participants) used to determine R , or adaptively selecting the

message being signed.

Drijvers et al. [DEF_19] also present a metareduction for the proofs

of several Schnorr multisignature schemes in the literature that use

a generalization of the forking lemma with rewinding, proving that

the security demonstrated in a single-party setting does not extend

when applying this proof technique to a multi-party setting.

Attack via ROS Solver. Benhamouda et al. [BLOR20] recently present

an efficient algorithm solving the ROS (Random inhomogeneities in a

Overdetermined Solvable system of linear equations) problem. The

authors demonstrate that threshold schemes using Gennaro et al.'s

DKG [GJKR07] and multisignature schemes such as two-round

MuSig [MPSW19] are not secure against their ROS-solving algorithm.

However, the authors conclude that (the current version of) FROST is

not affected by their ROS-solving algorithm.
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3. Preliminaries

Let G be a group of prime order q in which the Decisional Diffie-

Hellman problem is hard, and let g be a generator of G. Let H be a

cryptographic hash function mapping to Z . We denote by x <-$- S

that x is uniformly randomly selected from S.

Let n be the number of participants in the signature scheme, and t

denote the threshold of the secret-sharing scheme. Let i denote the 

participant identifier for participant P  where 1 <= i <= n. Let s

be the long-lived secret share for participant P . Let Y denote the

long-lived public key shared by all participants in the threshold

signature scheme, and let Y  = g^{s } be the public key share for the

participant P . Finally, let m be the message to be signed.

For a fixed set S = {p ,...,p } of t participant identifiers in the

signing operation, let L  = PROD( (p )/(p  - p ), j=1...t, j != i)

denote the ith Lagrange coefficient for interpolating over S. Note

that the information to derive these values depends on which t (out

of n) participants are selected, and uses only the participant 

identifiers, and not their shares. (Note that if n is small, the L

for every possible S can be precomputed by each participant during

the key generation phase of the protocol as a performance

optimization to avoid re-computing these values for each signing

operation.)

Security Assumptions. We maintain the following assumptions, which

implementations need to account for in practice.

Message Validation. We assume every participant checks the

validity of the message m to be signed before issuing its

signature share. If the message is invalid, the participant

should take actions to discard the message and report the

misbehaviour to other participants.

Reliable Message Delivery. We assume messages are sent between

participants using a reliable network channel.

Participant Identification. In order to report misbehaving

participants, we require that values submitted by participants to

be identifiable within the signing group. Our protocols assume

participants are not forging messages by other participants, but

implementations can enforce this using a method of participant

authentication within the signing group. (For example,

authentication tokens or TLS certificates could serve to

authenticate participants to one another.)
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4. FROST: Flexible Round-Optimized Schnorr Threshold Signatures

We now describe the FROST protocol, a Flexible Round-Optimized

Schnorr Threshold signature scheme that minimizes the network

overhead of producing Schnorr signatures in a threshold setting

while allowing for unrestricted parallelism of signing operations

and only a threshold number of signing participants.

Efficiency over Robustness. Prior threshold signature

constructions [SS01] [GJKR03] provide the property of robustness; if

one participant misbehaves and provides malformed shares, the

remaining honest participants can detect the misbehaviour, exclude

the misbehaving participant, and complete the protocol, so long as

the number of remaining honest participants is at least the

threshold t. This kind of robust construction is appropriate in

settings where signing participants might be arbitrary entities from

the Internet, for example.

However, in settings where one can expect misbehaving participants

to be rare, threshold signing protocols can be relaxed to be more

efficient in the "optimistic" case that all participants honestly

follow the protocol. In the case that a participant does misbehave,

honest participants can identify the misbehaving participant and

abort the protocol. The honest participants can then simply re-run

the protocol amongst themselves, excluding the misbehaving

participant. Consequently, FROST trades off robustness in the

protocol for improved efficiency in this way.

Signature Aggregator Role. We instantiate FROST using a semi-trusted 

signature aggregator role, denoted as SA. Such a role is often

practical in a real-world setting; we include this role as it also

allows for improved efficiency. However, FROST can be instantiated

without a signature aggregator. To do so, each participant simply

performs a broadcast in place of SA performing coordination.

The signature aggregator role can be performed by any participant in

the protocol, or even an external party, provided they know the

participants' public-key shares Y . SA is trusted to report

misbehaving participants (we assume participants can authenticate

themselves to one another, as discussed in Section 3) and to publish

the group's signature at the end of the protocol. If SA deviates

from the protocol, the protocol remains secure against adaptive

chosen message attacks, as SA is not given any more of a privileged

view than the adversary we model. A malicious SA does have the power

to perform denial-of-service attacks and to falsely report

misbehaviour by participants, but cannot learn the private key or

cause improper messages to be signed. Note this signature aggregator

role is also used in prior threshold signature constructions in the

literature [GJKR03] as an optimization.
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2.
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2.

3.

4.

4.1. Key Generation

FROST KeyGen

Round 1

Every participant P  samples t random values (a , ..., a )

<-$- Z , and uses these values as coefficients to define a

polynomial f (x) = SUM(a  x , j=0...t-1) of degree t-1 over Z .

Every P  computes a proof of knowledge to the corresponding

secret a  by calculating a Schnorr signature SIG  = (w , c ) using

a  as the secret key, such that k <-$- Z , R  = g , c  = H(i, CTX,

g^{a }, R ), w  = k + a * c , with CTX being a context string to

prevent replay attacks.

Every participant P  computes a public commitment C  = <

A , ..., A  >, where A  = g^{a }, 0 <= j <= t-1

Every P  broadcasts C , SIG  to all other participants.

Upon receiving C , SIG  from participants 1 <= p <= n, p != i,

participant P  verifies SIG  = (w , c ), aborting on failure, by

checking: c  =?= H(p, CTX, A , g^{w } * A ^{-c })

Round 2

Each P  securely sends to each other participant P  a secret

share (p, f (p)), and keeps (i, f (i)) for themselves.

Each P  verifies their shares by calculating: g^{f (i)} =?=

PROD(A ,k=0...t-1), aborting if the check fails.

Each P  calculates their long-lived private signing share by

computing s  = SUM(f (i), p=1...n), and stores s  securely.

Each P  calculates their public verification share Y  = g^{s },

and the group's public key Y = PROD(A , j=1...n). Any participant

can compute the public verification share of any other

participant by calculating Y  = PROD( (A ) ), j=1...n,

k=0...t-1)

To generate long-lived key shares in our scheme's key generation

protocol, FROST builds upon Pedersen's DKG for key generation; we

detail these protocol steps in the above algorithm. Note that

Pedersen's DKG is simply where each participant executes Feldman's

VSS as the dealer in parallel, and derives their secret share as the

sum of the shares received from each of the n VSS executions. In

addition to the base Pedersen DKG protocol, FROST additionally

requires each participant to demonstrate knowledge of their secret
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a  by providing other participants with proof in zero knowledge,

instantiated as a Schnorr signature, to protect against rogue-key

attacks [BBS03] in the setting where t >= n/2.

To begin the key generation protocol, a set of participants must be

formed using some out-of-band mechanism decided upon by the

implementation. After participating in the Ped-DKG protocol, each

participant P  holds a value (i, s ) that is their long-lived secret

signing share. Participant P 's public key share Y  = g^{s } is used

by other participants to verify the correctness of P 's signature

shares in the following signing phase, while the group public key Y

can be used by parties external to the group to verify signatures

issued by the group in the future.

View of Commitment Values. As required for any multi-party protocol

using Feldman's VSS, the key generation stage in FROST similarly

requires participants to maintain a consistent view of commitments

C , 1 <= i <= n issued during the execution of Ped-DKG. In this work,

we assume participants broadcast the commitment values honestly

(e.g., participants do not provide different commitment values to a

subset of participants); recall Section 2.1 where we described

techniques to achieve this guarantee in practice.

Security tradeoffs. While Gennaro et al. [GJKR07] describe the

"Stop, Kill, and Rewind" variant of Ped-DKG (where the protocol

terminates and is re-run if misbehaviour is detected) as vulnerable

to influence by the adversary, we note that in a real-world setting,

good security practices typically require that the cause of

misbehaviour is investigated once it has been detected; the protocol

is not allowed to terminate and re-run continuously until the

adversary finds a desirable output. Further, many protocols in

practice do not prevent an adversary from aborting and re-executing

key agreement at any point in the protocol; adversaries in protocols

such as the widely used TLS protocol can skew the distribution of

the resulting key simply by re-running the protocol.

However, implementations wishing for a robust DKG can adapt our key

generation protocol to the robust construction presented by Gennaro

et al. [GJKR07]. Note that the efficiency of the DKG for the key

generation phase is not extremely critical, because this operation

must be done only once per key generation for long-lived keys. For

the per-signature operations, FROST optimizes the generation of

random values without utilizing a DKG, as discussed next.

4.2. Threshold Signing with Unrestricted Parallelism

We now introduce the signing protocol for FROST. This operation

builds upon known techniques in the literature [AAM20] [GJKR03] by

employing additive secret sharing and share conversion in order to
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1.

1.a

1.b

1.c

2.

non-interactively generate the nonce value for each signature.

However, signing operations in FROST additionally leverage a binding

technique to avoid known forgery attacks without limiting

concurrency. We present FROST signing in two parts: a pre-processing

phase and a single-round signing phase. However, these stages can be

combined for a simple two-round protocol if desired.

As a reminder, the attack of Drijvers et al. [DEF_19] requires the

adversary to either see the victim's T commitment values before

selecting their own commitment, or to adaptively choose the message

to be signed, so that the adversary can manipulate the resulting

challenge c for the set of participants performing a group signing

operation. To prevent this attack without limiting concurrency,

FROST binds each participant's response to a specific message as

well as the set of participants and their commitments used for that

particular signing operation. In doing so, combining responses over

different messages or participant/commitment pairs results in an

invalid signature, thwarting attacks such as those of Drijvers et

al.

Preprocess(Q) -> (i, D , E , ..., D , E )

Each participant P , i in {1, ..., n} performs this stage prior to

signing. Let j be a counter for a specific nonce/commitment share

pair, and Q be the number of pairs generated at a time, such that Q

signing operations can be performed before performing another

preprocess step.

Create an empty list L . Then, for 1 <= j <= Q, perform the

following:

Sample single-use nonces (d , e ) <-$- Z  x Z

Derive commitment shares (D , E ) = (g^{d }, g^{e }).

Append (D , E ) to L . Store ((d , D ), (e , E )) for

later use in signing operations.

Publish (i, L ) to a predetermined location, as specified by the

implementation.

Preprocessing Stage. We present above a preprocessing stage where

participants generate and publish Q commitments at a time. In this

setting, Q determines the number of nonces that are generated and

their corresponding commitments that are published in a single

preprocess step, and correspondingly the number of signing

operations that can be performed before the participant must perform

this preprocessing stage again. Note that implementations that do

not wish to cache commitments can instead use a two-round protocol,
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1.

2.

3.

4.

5.

6.

7.

where participants publish a single commitment to each other in the

first round.

Each participant P  begins by generating a list of single-use private

nonce pairs and corresponding public commitment shares ((d , D  =

g^{d }), (e , E  = g^{e })) for j=1,...,Q, where j is a counter

that identifies the next nonce/commitment share pair available to

use for signing. Each P  then publishes (i, L ), where L  is their

list of commitment shares L  = <(D , E ) for j=1,...,Q>. The

location where participants publish these values can depend on the

implementation; options include broadcasting to all other

participants or publishing to a centralized location that all

participants can access (we discuss these options further in Section

6). The set of (i, L ) tuples are then stored by any entity that

might perform the signature aggregator role during signing.

Sign(m) -> (m, SIG)

Let SA denote the signature aggregator (who themselves can be one of

the t signing participants). Let S be the set of participants

selected for use for this signing operation. Let B = < (i, D , E )

for i in S> denote the ordered list of participant indices

corresponding to each participant P , and L  be the set of available

commitment values for P  that were published during the Preprocess

stage. Each identifier i is coupled with the jth commitments (D ,

E ) published by P  that will be used for this particular signing

operation. Let H , H  be hash functions whose outputs are in Z .

SA begins by fetching the next available commitment for each

participant P  in S from L  and constructs B.

For each i in S, SA sends P  the tuple (m, B).

After receiving (m, B), each P  first validates the message m,

and then checks D , E  in G  for each commitment in B, aborting

if either check fails.

Each P  then computes the set of binding values r  = H (p, m, B),

p in S. Each P  then derives the group commitment R = PROD(D  *

(E )^{r }, p in S), and the challenge c = H (m, R).

Each P  computes their response using their long-lived secret

share s  by computing z  = d  + (e  * r ) + L  * s  * c, using S

to determine L .

Each P  securely deletes ((d , D ), (e , E )) from their local

storage, and then returns z  to SA.

The signature aggregator SA performs the following steps:
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7.a

7.b

7.c

7.d

Derive r  = H (i,m,B) and R  = D  * (E )^{r } for i in S,

and subsequently R=PROD(R , i in S) and c = H (m,R).

Verify the validity of each response by checking g^{z } =?=

R  * {Y }^{c * L } for each signing share z , i in S. If the

equality does not hold, first identify and report the

misbehaving participant, and then abort. Otherwise, continue.

Compute the group's response z = SUM(z , i in S)

Publish the signature SIG = (z, c) along with the message m.

Signing Protocol. At the beginning of the signing protocol above, SA

selects t participants (possibly including itself) to participate in

the signing. Let S be the set of those t participants. SA then

selects the next available commitment (D , E ) for each participant

in S, which are later used to generate a secret share to a random

commitment R for the signing group. (Each participant contributes to

the group commitment R, which corresponds to the commitment g  to the

nonce k in step 1 of the single-party Schnorr signature scheme in 

Section 2.4.) This technique is a t-out-of-t additive secret

sharing; the resulting secret nonce is k = SUM(k , i in S), where

each k  = d  + e  * r  (we next describe how participants calculate

r ), and (d , e ) correspond to the (D  = g^{d }, E =g^{e })

values published during the Preprocess stage. Recall from Section

2.5 that if the k  are additive shares of k, then each (k )/(L ) are

t-out-of-t Shamir shares of k.

After these steps, SA then creates the set B, where B is the ordered

list of tuples <(i, D , E ) for i in S>. SA then sends (m, B) to

every P , i in S.

After receiving (m, B) from SA to initialize a signing operation,

each participant checks that m is a message they are willing to

sign. Then, using m and B, all participants derive the "binding

values" r , i in S such that r  = H (i, m, B), where H  is a hash

function whose outputs are in Z .

Each participant can then compute the commitment R  for each

participant in S by deriving R  = D  * (E )^{r }. Doing so binds the

message, the set of signing participants, and each participant's

commitment to each signature share, such that signature shares on

one message cannot be used for another, assuming that (d , e )

remain secret and are used only once. This binding technique thwarts

the attack of Drijvers et al. described in Section 2.6 as attackers

cannot combine signature shares across disjoint signing operations

or permute the set of signers or published commitments for each

signer.
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The commitment for the set of signers is then simply R = PROD(R , i

in S). As in single-party Schnorr signatures, each participant

computes the challenge c = H (m,R).

Each participant's response z  to the challenge can be computed using

the single-use nonces (d , e ) and the long-term secret shares s ,

which are t-out-of-n (degree t-1) Shamir secret shares of the

group's long-lived secret key s. Recalling that (k )/(L ) are degree

t-1 Shamir secret shares of k, we see that (k )/(L ) + s  * c are

degree t-1 Shamir secret shares of the correct response z = k + s *

c for a plain (single-party) Schorr signature. Using share

conversion again, and that k  = d  + (e  * r ), we get that z  = d

+ (e  * r ) + L  * s  * c are t-out-of-t additive shares of z.

SA finally checks the consistency of each participant's reported z

with their commitment share (D , E ) and their public key share Y .

If every participant issued a correct z , then the sum of the z

values, along with c, forms the Schnorr signature on m. This

signature will verify properly to a verifier unaware that FROST was

used to generate the signature, and who checks it with the standard

single-party Schnorr verification equation with Y as the public key

(Section 2.4).

Handling Ephemeral Outstanding Shares. Because each nonce and

commitment share generated during the preprocessing stage described

in the Preprocess algorithm must be used at most once, participants

delete these values after using them in a signing operation, as

indicated in Step 5 in the Sign algorithm. An accidentally reused

(d , e ) can lead to exposure of the participant's long-term secret

s , so participants must securely delete them, and defend against

snapshot rollback attacks as in any implementation of Schnorr

signatures.

However, if SA chooses to re-use a commitment set (D , E ) during

the signing protocol, doing so simply results in the participant P

aborting the protocol, and consequently does not increase the power

of SA.

5. Security Considerations

5.1. Proof of Security Properties

We present proofs and arguments of security in our technical

report [KG20] to show that FROST is secure against chosen-message

attacks, assuming the discrete logarithm problem is hard and the

adversary controls fewer participants than the threshold. The

strategy is as follows. We first define an intermediate protocol

called FROST-Interactive that has one extra round of communication

in each of the Preprocess and Sign phases, and prove the security of
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FROST-Interactive in the random oracle model. We then give a

heuristic argument that the differences between FROST-Interactive

and FROST itself do not adversely affect its security.

5.2. Aborting on Misbehaviour

As discussed above, the goal of FROST is to save communication

rounds (particularly at signing time), at the cost of sacrificing

robustness. Consequently, FROST requires participants to abort once

they have detected misbehaviour.

If one of the signing participants provides an incorrect signature

share, SA will detect that and abort the protocol, if SA is itself

behaving correctly. The protocol can then be rerun with the

misbehaving party removed. If SA is itself misbehaving, and even if

up to t-1 participants are corrupted, SA still cannot produce a

valid signature on a message not approved by at least one honest

participant.

6. Operational Considerations

6.1. Publishing Commitments to a Commitment Server

The preprocessing step for FROST in Section 4.2 requires some

agreed-upon location for participants to publish their commitments

to. We now discuss choices for such a location for implementations,

and possible security implications.

While participants could simply broadcast commitments to each other,

this approach requires memory overhead and possibly coordination

effort. Alternatively, implementations may wish to employ a

commitment server specifically tasked with performing and managing

of participants' commitment shares. While the commitment server may

be a separate entity, we note that the signature aggregator SA can

also provide this service in addition to its other duties. In this

setting, the commitment server is trusted to provide the correct

(i.e, valid and unused) commitment shares upon request. If the

commitment server chose to act maliciously, it could either prevent

participants from performing the protocol by denial of service, or

it could provide stale or malformed commitment values on behalf of

honest participants, causing uncertainty as to whether the

commitment server or the participant was the misbehaving entity.

However, simply having access to the set of a participant's public

published commitments does not grant any additional powers, and a

misbehaving commitment server (or SA) that provides old commitment

values for a signing operation simply results in either a denial of

service or an invalid signature. If SA assumes the commitment server

role itself, any uncertainty as to who is the cause of misbehaviour
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can be avoided, and allows SA to carry out their role to report

misbehaviour when it occurs.

6.2. Adaptively Choosing the Set of Signing Participants

While FROST requires exactly t signers due to the structure of non-

interactively generating the nonce k (more specifically, so

participants can determine L  during signing), implementations can

still adaptively choose signing participants based on their

availability if the implementation does not wish to assume which t

signers are online and available when beginning a FROST signing

operation.

How implementations should determine the availability of

participants, and select which t participants will perform signing,

falls outside FROST, and will depend on the implementation details

of the communications among the participants. In the worst case,

however, implementations can simply add an additional round before

performing the FROST signing protocol, during which participants can

demonstrate their availability and coordinate how available signers

are selected to perform the signing round (such as using some simple

tie-breaking exercise or ordering rule).
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