
Light-Weight Implementation Guidance M. Kovatsch
Internet-Draft ETH Zurich
Intended status: Informational October 15, 2012
Expires: April 18, 2013

Implementing CoAP for Class 1 Devices
draft-kovatsch-lwig-class1-coap-00

Abstract

 The Constrained Application Protocol (CoAP) is designed for resource-
 constrained nodes and networks, e.g., sensor nodes in low-power lossy
 networks (LLNs). Still, to implement this Internet protocol on Class
 1 devices, i.e., ~10KiB of RAM and ~100KiB of ROM, light-weight
 implementation techniques are necessary. This document provides the
 lessons learned from implementing CoAP for Contiki, an operating
 system for tiny, battery-operated networked embedded systems. The
 information may become part of the Light-Weight Implementation
 Guidance document planned by the IETF working group LWIG.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 18, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Kovatsch Expires April 18, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Implementing CoAP for Class 1 Devices October 2012

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Implementing CoAP . 3
2.1. Memory Management . 4
2.2. Message Buffers . 4
2.3. Retransmissions . 5
2.4. Separate Responses . 5
2.5. Deduplication . 5
2.6. Observing . 6
2.7. Blockwise Transfers 6
2.8. Developer API . 7

3. Low-power Wireless . 7
3.1. Radio Duty Cycling . 8
3.2. Sleepy Nodes . 8

4. Security Considerations 9
5. Informative References . 9

 Author's Address . 10

Kovatsch Expires April 18, 2013 [Page 2]

Internet-Draft Implementing CoAP for Class 1 Devices October 2012

1. Introduction

 The Internet protocol suite is a suitable solution to realize an
 Internet of Things (IoT), a network of tiny networked embedded
 devices that create a link to the physical world. The narrow waist
 of IP can be used to directly access sensor readings throughout a
 sustainable city, acquire the necessary information for the smart
 grid, or control smart homes, buildings, and factories---seamlessly
 from the existing IT infrastructure. The layered architecture helps
 to manage the complexity, as multiple aspects such as routing over
 lossy links, link layer adaption, and low-power communication have to
 be addressed. Nonetheless, attention has to be given to achieve
 light-weight implementations that can run on resource-constrained
 devices such as sensor nodes with only microcontroller units (MCUs),
 ~10KiB of RAM, and ~100KiB of ROM [I-D.ietf-lwig-guidance]. Figure 1
 depicts a typical stack configuration for such Class 1 devices. This
 document discusses a light-weight implementation of CoAP at the
 application layer in Section 2 and techniques for energy-efficiency
 such as radio duty cycling in Section 3.

 +--------------------+--------------------------+
 | Layer | Protocol |
 +--------------------+--------------------------+
 | Application | CoAP |
 | Transport | UDP |
 | Network | IPv6 / RPL |
 | Adaptation | 6LoWPAN |
 | MAC | CSMA / link-layer bursts |
 | Radio Duty Cycling | ContikiMAC |
 | Physical | IEEE 802.15.4 |
 +--------------------+--------------------------+
 A typical stack configuration for Class 1 devices.

 Figure 1

2. Implementing CoAP

 The following experience stems from implementing CoAP for the Contiki
 operating system [ERBIUM], but is generalized for any embedded OS.
 The information is not meant to be a final solution, but a first step
 towards a Light-Weight Implementation Guidance contribution.
 Alternatives will be incorporated throughout the merging process.
 The document assumes detailed knowledge of CoAP, its message format
 and interaction model. For more information, please refer to to
 [I-D.ietf-core-coap], [I-D.ietf-core-block], and
 [I-D.ietf-core-observe].

Kovatsch Expires April 18, 2013 [Page 3]

Internet-Draft Implementing CoAP for Class 1 Devices October 2012

2.1. Memory Management

 For embedded systems, it is common practice to allocate memory
 statically to ensure stable behavior, as no memory management unit
 (MMU) or other abstractions are available. For a CoAP node, the two
 key parameters are the number of (re)transmission buffers and the
 maximum message size that must be supported by each buffer. It is
 common practice to set the maximum message size far below the 1280-
 byte MTU of 6LoWPAN to allow more than one open confirmable
 transmissions at a time (in particular for observe notifications).
 Note that implementations on constrained platforms often not even
 support the full MTU. Larger messages must then use blockwise
 transfers [I-D.ietf-core-block], while a good trade-off between
 6LoWPAN fragmentation and CoAP header overhead must be found.
 Usually the amount of available free RAM dominates this decision, on
 current platforms ending up at a maximum message size of 128 or 256
 bytes plus maximum estimated header size.

2.2. Message Buffers

 Class 1 devices usually run an OS or event loop system with
 cooperative multi-threading. This allows to optimize memory usage
 through in-place processing and reuse of buffers. Incoming payload
 and byte strings of the header can be directly accessed in the IP
 buffer, which is provided by the OS, using pointers. For numeric
 options, there are two alternatives: Either process the header on the
 fly when an option is accessed or initially parse/allocate all values
 into a local data structure. Although the latter choice requires an
 additional amount of memory, it is preferable. First, local
 processing anyway requires integers in host byte order and stored in
 a variable of corresponding type. Second, on-the-fly processing
 might force developers to set options for outgoing messages in a
 specific order or cause extensive memmove operations due to CoAP's
 delta encoding.

 CoAP servers can significantly benefit from in-place processing, as
 they can create responses directly in the incoming IP buffer. When a
 CoAP server only sends piggy-backed or non-confirmable responses, no
 additional buffer is required in the application layer. This,
 however, requires an elaborated timing so that no incoming data is
 overwritten before it was processed. Note that an embedded OS
 usually reuses a single buffer for incoming and outgoing IP packets.
 So, either care or a buffer to save the incoming data has to be spent
 in any case.

 For clients, this is only an option for non-reliable requests that do
 not need to be kept for retransmission. Using the IP also for
 retransmissions would require to forbid any packet reception during

Kovatsch Expires April 18, 2013 [Page 4]

Internet-Draft Implementing CoAP for Class 1 Devices October 2012

 an open request, but could be applied in some cases.

 Empty ACKs and RST messages can promptly be assembled and sent using
 the IP buffer. The first few bytes are usually parsed into the local
 data structure and can be overwritten without harm.

2.3. Retransmissions

 CoAP's reliable transmissions require the before-mentioned
 retransmission buffers. For clients, obviously the request has to be
 stored, preferably already serialized. For servers, retransmissions
 apply for confirmable separate responses and confirmable
 notifications [I-D.ietf-core-observe]. As separate responses stem
 from long-lasting resource handlers, the response should be stored
 for retransmission instead of re-dispatching a stored request (which
 would allow for updating the representation). For confirmable
 notifications, please see Section 2.6, as simply storing the response
 can break the concept of eventual consistency.

 String payloads such as JSON require a buffer to print to. By
 splitting the retransmission buffer into header and payload part, it
 can be reused. First to generate the payload and then storing the
 CoAP message by serializing into the same memory. Thus, providing a
 retransmission for any message type can save the need for a separate
 application buffer. This, however, requires an estimation about the
 maximum expected header size to split the buffer and a memmove to
 concatenate the two parts.

2.4. Separate Responses

 Separate responses are required for long-lasting resource handlers
 that are too expensive to continuously update in the background to
 instantly answer from a fresh cache. If possible, those handlers
 should be realized with split phase execution (e.g., enable a slow
 sensor, return, and wait for a callback) to not fully block the
 server during that time. A convenient mechanism to store required
 data such as the client address and to automatically send the empty
 ACK could be provided by the implementation. This avoids code
 duplication when the server has multiple separate resource handlers.

2.5. Deduplication

 Deduplication is heavy for Class 1 devices, as the number of peer
 addresses can be vast. Servers should be kept stateless, i.e., the
 REST API should be designed idempotent whenever possible. When this
 is not the case, the resource handler could perform an optimized
 deduplication by exploiting knowledge about the application.
 Another, server-wide strategy is to only keep track of non-idempotent

Kovatsch Expires April 18, 2013 [Page 5]

Internet-Draft Implementing CoAP for Class 1 Devices October 2012

 requests.

2.6. Observing

 At the server, the list of observers should be stored per resource to
 only have a handle per observable resource in a superordinate list
 instead of one resource handle per observer entry. Then for each
 observer, at least address, port, token, and the last outgoing
 message ID has to be stored. The latter is needed to match incoming
 RST messages and cancel the observe relationship.

 Besides the list of observers, it is best to have one retransmission
 buffer per observable resource. Each notification is serialized once
 into this buffer and only address, port, and token are changed when
 iterating over the observer list (note that different token lengths
 might require realignment). The advantage becomes clear for
 confirmable notifications: Instead of one retransmission buffer per
 observer, only one buffer and only individual retransmission counters
 and timers in the list entry need to be stored. When the
 notifications can be sent fast enough, even a single timer would
 suffice. Furthermore, per-resource buffers simplify the update with
 a new resource state during open deliveries.

2.7. Blockwise Transfers

 Blockwise transfers have the main purpose of providing fragmentation
 at the application layer, where partial information can be processed.
 This is not possible at lower layers such as 6LoWPAN, as only
 assembled packets can be passed up the stack. While
 [I-D.ietf-core-block] also anticipates atomic handling of blocks,
 i.e., only fully received CoAP messages, this is not possible on
 Class 1 devices.

 When receiving a blockwise transfer, each blocks is usually passed to
 a handler function that for instance performs stream processing or
 writes the blocks to external memory such as flash. Although there
 are no restrictions in [I-D.ietf-core-block], it is beneficial for
 Class 1 devices to only allow ordered transmission of blocks.
 Otherwise on-the-fly processing would not be possible.

 When sending a blockwise transfer, Class 1 devices usually do not
 have sufficient memory to print the full message into a buffer, and
 slice and send it in a second step. When transferring the CoRE Link
 Format from /.well-known/core for instance, a generator function is
 required that generates slices of a large string with a specific
 offset length (a 'sonprintf()'). This functionality is required
 recurrently and should be included in a library.

Kovatsch Expires April 18, 2013 [Page 6]

Internet-Draft Implementing CoAP for Class 1 Devices October 2012

2.8. Developer API

 Bringing a Web transfer protocol to constrained environments does not
 only change the networking of the corresponding systems, but also the
 way they should be programmed. A CoAP implementation should provide
 a developer API similar to REST frameworks in traditional computing.
 A server should not be created around an event loop with several
 function calls, but rather by implementing handlers following the
 resource abstraction.

 So far, the following types of RESTful resources were identified:

 NORMAL A normal resource defined by a static Uri-Path that is
 associated with a resource handler function. Allowed methods
 could already be filtered by the implementation based on flags.
 This is the basis for all other resource types.

 PARENT A parent resource manages several sub-resources by
 programmatically evaluating the Uri-Path, which may be longer than
 that of the parent resource. Defining a URI templates (see
 [RFC6570]) would be a convenient way to pre-parse arguments given
 in the Uri-Path.

 PERIODIC A resource that has an additional handler function that is
 triggered periodically by the CoAP implementation with a resource-
 defined interval. It can be used to sample a sensor or perform
 similar periodic updates. Usually, a periodic resource is
 observable and sends the notifications in the periodic handler
 function. These periodic tasks are quite common for sensor nodes,
 thus it makes sense to provide this functionality in the CoAP
 implementation and avoid redundant code in every resource.

 EVENT An event resource is similar to an periodic resource, only
 that the second handler is called by an irregular event such as a
 button.

3. Low-power Wireless

 The Internet of wireless things needs power-efficient protocols, but
 existing protocols have typically been designed without explicit
 power-efficiency. CoAP is optimized to run over low-power link
 layers such IEEE 802.15.4, but in low-power wireless systems,
 ultimate power-efficiency translates into the ability to keep the
 radio off as much as possible, as the radio transceiver is typically
 the most power-consuming component. This can be achieved in two
 ways: So called radio duty cycling (RDC) aims to keep the radio off
 as much as possible, but performs periodic channel checks to realize

https://datatracker.ietf.org/doc/html/rfc6570

Kovatsch Expires April 18, 2013 [Page 7]

Internet-Draft Implementing CoAP for Class 1 Devices October 2012

 a virtual always-on link. Sleepy nodes instead put the radio into
 hibernation for a long period during which the node is fully
 disconnected from the network.

3.1. Radio Duty Cycling

 RDC can be achieved through a separate, independent layer between PHY
 and MAC as depicted in Figure 1. The upper layers can remain more or
 less untouched and only experience a higher latency, which might
 require tweaking the timeout parameters. State-of-the-art RDC layers
 can achieve an idle duty cycling way below 1% while checking the
 channel several times per second. ContikiMAC for instance achieves a
 0.3% cycle with a channel check rate of 4 Hz, which results in a
 worst-case delay of 250ms per hop. While saving energy, ContikiMAC
 also makes link-layer transmissions more robust due to its
 retransmission policy. Please refer to [CONMAC] for details.

 In general, RDC can be divided into two approaches: sender initiated
 (e.g., ContikiMAC) and receiver initiated (e.g., A-MAC [AMAC]). In
 the first approach, the sender enables the radio first and
 continuously transmits its message in a strobe until a link-layer ACK
 is received (note that for IEEE 802.15.4 transceivers, transmitting
 consumes less energy than receiving). Receivers turn on their radio
 only periodically to check for these announcements. If they sense a
 busy channel, the radio is kept on to receive a potential message and
 finally acknowledge it. In the other approach, the receiver
 periodically announces that it will keep the radio on for receiving
 for a while. The senders turns on its radio and listens for an
 announcement of the recipient. When that is received, it transmits
 the message (following the scheme of the above MAC layer of course,
 while back-offs must match the awake time after announcements).
 Which approach is optimal mainly depends on the communication pattern
 of the application. Sender initiated RDCs are more efficient for
 IEEE 802.15.4, but the strobes can congest a busy channel.

3.2. Sleepy Nodes

 Going to sleep for a longer time is not transparent for the
 application layer, as nodes need to re-synchronize and maybe re-
 associate with the network. Several drafts in the IETF CoRE working
 group cover this strategy for low-power wireless networking (cf.
 [I-D.vial-core-mirror-proxy], [I-D.fossati-core-publish-option],
 [I-D.fossati-core-monitor-option], and [I-D.rahman-core-sleepy]).
 Such features will have to be integrated into the nodes CoAP
 implementation as well as the back-end systems. In addition,
 alternatives to standard diagnosis tools such as ICMP ping will have
 to be provided, e.g., heartbeats by the application.

Kovatsch Expires April 18, 2013 [Page 8]

Internet-Draft Implementing CoAP for Class 1 Devices October 2012

 This strategy is particular useful for communications other than IEEE
 802.15.4. Low-power Wi-Fi for instance is mainly based on long
 sleeping periods with short wake-up cycles. Although the data rate
 would be high enough for HTTP over TCP, low-power Wi-FI can greatly
 benefit from CoAP and its shorter round trip times. For further
 information about sleepy nodes based on low-power Wi-Fi see [LPWIFI].

4. Security Considerations

 T.B.D.

5. Informative References

 [AMAC] Dutta, P., Dawson-Haggerty, S., Y., A., Liang, C., and A.
 Terzis, "Designand Evaluation of a Versatile and Efficient
 Receiver-Initiated Link Layer for Low-Power Wireless",
 In Proceedings of the International Conference on Embedded
 Networked Sensor Systems (SenSys 2010). Zurich,
 Switzerland, November 2010.

 [CONMAC] Dunkels, A., "The ContikiMAC Radio Duty Cycling Protocol",
 SICS Technical Report T2011:13, ISSN 1100-3154,
 December 2011.

 [ERBIUM] Kovatsch, M., Duquennoy, S., and A. Dunkels, "A Low-Power
 CoAP for Contiki", In Proceedings of the 8th IEEE
 International Conference on Mobile Ad-hoc and Sensor
 Systems (MASS 2011). Valencia, Spain, October 2011.

 [I-D.fossati-core-monitor-option]
 Fossati, T., Giacomin, P., and S. Loreto, "Monitor Option
 for CoAP", draft-fossati-core-monitor-option-00 (work in
 progress), July 2012.

 [I-D.fossati-core-publish-option]
 Fossati, T., Giacomin, P., and S. Loreto, "Publish Option
 for CoAP", draft-fossati-core-publish-option-00 (work in
 progress), July 2012.

 [I-D.ietf-core-block]
 Bormann, C. and Z. Shelby, "Blockwise transfers in CoAP",

draft-ietf-core-block-09 (work in progress), August 2012.

 [I-D.ietf-core-coap]
 Shelby, Z., Hartke, K., Bormann, C., and B. Frank,
 "Constrained Application Protocol (CoAP)",

https://datatracker.ietf.org/doc/html/draft-fossati-core-monitor-option-00
https://datatracker.ietf.org/doc/html/draft-fossati-core-publish-option-00
https://datatracker.ietf.org/doc/html/draft-ietf-core-block-09

Kovatsch Expires April 18, 2013 [Page 9]

Internet-Draft Implementing CoAP for Class 1 Devices October 2012

draft-ietf-core-coap-12 (work in progress), October 2012.

 [I-D.ietf-core-observe]
 Hartke, K., "Observing Resources in CoAP",

draft-ietf-core-observe-06 (work in progress),
 September 2012.

 [I-D.ietf-lwig-guidance]
 Bormann, C., "Guidance for Light-Weight Implementations of
 the Internet Protocol Suite", draft-ietf-lwig-guidance-02
 (work in progress), August 2012.

 [I-D.rahman-core-sleepy]
 Rahman, A., "Enhanced Sleepy Node Support for CoAP",

draft-rahman-core-sleepy-00 (work in progress), July 2012.

 [I-D.vial-core-mirror-proxy]
 Vial, M., "CoRE Mirror Server",

draft-vial-core-mirror-proxy-01 (work in progress),
 July 2012.

 [LPWIFI] Ostermaier, B., Kovatsch, M., and S. Santini, "Connecting
 Things to the Web using Programmable Low-power WiFi
 Modules", In Proceedings of the 2nd International Workshop
 on the Web of Things (WoT 2011). San Francisco, CA, USA,
 June 2011.

 [RFC6550] Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R.,
 Levis, P., Pister, K., Struik, R., Vasseur, JP., and R.
 Alexander, "RPL: IPv6 Routing Protocol for Low-Power and
 Lossy Networks", RFC 6550, March 2012.

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570, March 2012.

Author's Address

 Matthias Kovatsch
 ETH Zurich
 Universitaetstrasse 6
 Zurich, CH-8092
 Switzerland

 Phone: +41 44 632 06 87
 Email: kovatsch@inf.ethz.ch

https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-12
https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-06
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-guidance-02
https://datatracker.ietf.org/doc/html/draft-rahman-core-sleepy-00
https://datatracker.ietf.org/doc/html/draft-vial-core-mirror-proxy-01
https://datatracker.ietf.org/doc/html/rfc6550
https://datatracker.ietf.org/doc/html/rfc6570

Kovatsch Expires April 18, 2013 [Page 10]

