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Abstract

   The Constrained Application Protocol (CoAP) is designed for resource-
   constrained nodes and networks, e.g., sensor nodes in low-power lossy
   networks (LLNs).  Still, to implement this Internet protocol on Class
   1 devices, i.e., ~10KiB of RAM and ~100KiB of ROM, light-weight
   implementation techniques are necessary.  This document provides the
   lessons learned from implementing CoAP for Contiki, an operating
   system for tiny, battery-operated networked embedded systems.  The
   information may become part of the Light-Weight Implementation
   Guidance document planned by the IETF working group LWIG.

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 18, 2013.

Copyright Notice

   Copyright (c) 2012 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
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   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   The Internet protocol suite is a suitable solution to realize an
   Internet of Things (IoT), a network of tiny networked embedded
   devices that create a link to the physical world.  The narrow waist
   of IP can be used to directly access sensor readings throughout a
   sustainable city, acquire the necessary information for the smart
   grid, or control smart homes, buildings, and factories---seamlessly
   from the existing IT infrastructure.  The layered architecture helps
   to manage the complexity, as multiple aspects such as routing over
   lossy links, link layer adaption, and low-power communication have to
   be addressed.  Nonetheless, attention has to be given to achieve
   light-weight implementations that can run on resource-constrained
   devices such as sensor nodes with only microcontroller units (MCUs),
   ~10KiB of RAM, and ~100KiB of ROM [I-D.ietf-lwig-guidance].  Figure 1
   depicts a typical stack configuration for such Class 1 devices.  This
   document discusses a light-weight implementation of CoAP at the
   application layer in Section 2 and techniques for energy-efficiency
   such as radio duty cycling in Section 3.

             +--------------------+--------------------------+
             | Layer              | Protocol                 |
             +--------------------+--------------------------+
             | Application        | CoAP                     |
             | Transport          | UDP                      |
             | Network            | IPv6 / RPL               |
             | Adaptation         | 6LoWPAN                  |
             | MAC                | CSMA / link-layer bursts |
             | Radio Duty Cycling | ContikiMAC               |
             | Physical           | IEEE 802.15.4            |
             +--------------------+--------------------------+
            A typical stack configuration for Class 1 devices.

                                 Figure 1

2.  Implementing CoAP

   The following experience stems from implementing CoAP for the Contiki
   operating system [ERBIUM], but is generalized for any embedded OS.
   The information is not meant to be a final solution, but a first step
   towards a Light-Weight Implementation Guidance contribution.
   Alternatives will be incorporated throughout the merging process.
   The document assumes detailed knowledge of CoAP, its message format
   and interaction model.  For more information, please refer to to
   [I-D.ietf-core-coap], [I-D.ietf-core-block], and
   [I-D.ietf-core-observe].
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2.1.  Memory Management

   For embedded systems, it is common practice to allocate memory
   statically to ensure stable behavior, as no memory management unit
   (MMU) or other abstractions are available.  For a CoAP node, the two
   key parameters are the number of (re)transmission buffers and the
   maximum message size that must be supported by each buffer.  It is
   common practice to set the maximum message size far below the 1280-
   byte MTU of 6LoWPAN to allow more than one open confirmable
   transmissions at a time (in particular for observe notifications).
   Note that implementations on constrained platforms often not even
   support the full MTU.  Larger messages must then use blockwise
   transfers [I-D.ietf-core-block], while a good trade-off between
   6LoWPAN fragmentation and CoAP header overhead must be found.
   Usually the amount of available free RAM dominates this decision, on
   current platforms ending up at a maximum message size of 128 or 256
   bytes plus maximum estimated header size.

2.2.  Message Buffers

   Class 1 devices usually run an OS or event loop system with
   cooperative multi-threading.  This allows to optimize memory usage
   through in-place processing and reuse of buffers.  Incoming payload
   and byte strings of the header can be directly accessed in the IP
   buffer, which is provided by the OS, using pointers.  For numeric
   options, there are two alternatives: Either process the header on the
   fly when an option is accessed or initially parse/allocate all values
   into a local data structure.  Although the latter choice requires an
   additional amount of memory, it is preferable.  First, local
   processing anyway requires integers in host byte order and stored in
   a variable of corresponding type.  Second, on-the-fly processing
   might force developers to set options for outgoing messages in a
   specific order or cause extensive memmove operations due to CoAP's
   delta encoding.

   CoAP servers can significantly benefit from in-place processing, as
   they can create responses directly in the incoming IP buffer.  When a
   CoAP server only sends piggy-backed or non-confirmable responses, no
   additional buffer is required in the application layer.  This,
   however, requires an elaborated timing so that no incoming data is
   overwritten before it was processed.  Note that an embedded OS
   usually reuses a single buffer for incoming and outgoing IP packets.
   So, either care or a buffer to save the incoming data has to be spent
   in any case.

   For clients, this is only an option for non-reliable requests that do
   not need to be kept for retransmission.  Using the IP also for
   retransmissions would require to forbid any packet reception during
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   an open request, but could be applied in some cases.

   Empty ACKs and RST messages can promptly be assembled and sent using
   the IP buffer.  The first few bytes are usually parsed into the local
   data structure and can be overwritten without harm.

2.3.  Retransmissions

   CoAP's reliable transmissions require the before-mentioned
   retransmission buffers.  For clients, obviously the request has to be
   stored, preferably already serialized.  For servers, retransmissions
   apply for confirmable separate responses and confirmable
   notifications [I-D.ietf-core-observe].  As separate responses stem
   from long-lasting resource handlers, the response should be stored
   for retransmission instead of re-dispatching a stored request (which
   would allow for updating the representation).  For confirmable
   notifications, please see Section 2.6, as simply storing the response
   can break the concept of eventual consistency.

   String payloads such as JSON require a buffer to print to.  By
   splitting the retransmission buffer into header and payload part, it
   can be reused.  First to generate the payload and then storing the
   CoAP message by serializing into the same memory.  Thus, providing a
   retransmission for any message type can save the need for a separate
   application buffer.  This, however, requires an estimation about the
   maximum expected header size to split the buffer and a memmove to
   concatenate the two parts.

2.4.  Separate Responses

   Separate responses are required for long-lasting resource handlers
   that are too expensive to continuously update in the background to
   instantly answer from a fresh cache.  If possible, those handlers
   should be realized with split phase execution (e.g., enable a slow
   sensor, return, and wait for a callback) to not fully block the
   server during that time.  A convenient mechanism to store required
   data such as the client address and to automatically send the empty
   ACK could be provided by the implementation.  This avoids code
   duplication when the server has multiple separate resource handlers.

2.5.  Deduplication

   Deduplication is heavy for Class 1 devices, as the number of peer
   addresses can be vast.  Servers should be kept stateless, i.e., the
   REST API should be designed idempotent whenever possible.  When this
   is not the case, the resource handler could perform an optimized
   deduplication by exploiting knowledge about the application.
   Another, server-wide strategy is to only keep track of non-idempotent



Kovatsch                 Expires April 18, 2013                 [Page 5]



Internet-Draft    Implementing CoAP for Class 1 Devices     October 2012

   requests.

2.6.  Observing

   At the server, the list of observers should be stored per resource to
   only have a handle per observable resource in a superordinate list
   instead of one resource handle per observer entry.  Then for each
   observer, at least address, port, token, and the last outgoing
   message ID has to be stored.  The latter is needed to match incoming
   RST messages and cancel the observe relationship.

   Besides the list of observers, it is best to have one retransmission
   buffer per observable resource.  Each notification is serialized once
   into this buffer and only address, port, and token are changed when
   iterating over the observer list (note that different token lengths
   might require realignment).  The advantage becomes clear for
   confirmable notifications: Instead of one retransmission buffer per
   observer, only one buffer and only individual retransmission counters
   and timers in the list entry need to be stored.  When the
   notifications can be sent fast enough, even a single timer would
   suffice.  Furthermore, per-resource buffers simplify the update with
   a new resource state during open deliveries.

2.7.  Blockwise Transfers

   Blockwise transfers have the main purpose of providing fragmentation
   at the application layer, where partial information can be processed.
   This is not possible at lower layers such as 6LoWPAN, as only
   assembled packets can be passed up the stack.  While
   [I-D.ietf-core-block] also anticipates atomic handling of blocks,
   i.e., only fully received CoAP messages, this is not possible on
   Class 1 devices.

   When receiving a blockwise transfer, each blocks is usually passed to
   a handler function that for instance performs stream processing or
   writes the blocks to external memory such as flash.  Although there
   are no restrictions in [I-D.ietf-core-block], it is beneficial for
   Class 1 devices to only allow ordered transmission of blocks.
   Otherwise on-the-fly processing would not be possible.

   When sending a blockwise transfer, Class 1 devices usually do not
   have sufficient memory to print the full message into a buffer, and
   slice and send it in a second step.  When transferring the CoRE Link
   Format from /.well-known/core for instance, a generator function is
   required that generates slices of a large string with a specific
   offset length (a 'sonprintf()').  This functionality is required
   recurrently and should be included in a library.
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2.8.  Developer API

   Bringing a Web transfer protocol to constrained environments does not
   only change the networking of the corresponding systems, but also the
   way they should be programmed.  A CoAP implementation should provide
   a developer API similar to REST frameworks in traditional computing.
   A server should not be created around an event loop with several
   function calls, but rather by implementing handlers following the
   resource abstraction.

   So far, the following types of RESTful resources were identified:

   NORMAL  A normal resource defined by a static Uri-Path that is
      associated with a resource handler function.  Allowed methods
      could already be filtered by the implementation based on flags.
      This is the basis for all other resource types.

   PARENT  A parent resource manages several sub-resources by
      programmatically evaluating the Uri-Path, which may be longer than
      that of the parent resource.  Defining a URI templates (see
      [RFC6570]) would be a convenient way to pre-parse arguments given
      in the Uri-Path.

   PERIODIC  A resource that has an additional handler function that is
      triggered periodically by the CoAP implementation with a resource-
      defined interval.  It can be used to sample a sensor or perform
      similar periodic updates.  Usually, a periodic resource is
      observable and sends the notifications in the periodic handler
      function.  These periodic tasks are quite common for sensor nodes,
      thus it makes sense to provide this functionality in the CoAP
      implementation and avoid redundant code in every resource.

   EVENT  An event resource is similar to an periodic resource, only
      that the second handler is called by an irregular event such as a
      button.

3.  Low-power Wireless

   The Internet of wireless things needs power-efficient protocols, but
   existing protocols have typically been designed without explicit
   power-efficiency.  CoAP is optimized to run over low-power link
   layers such IEEE 802.15.4, but in low-power wireless systems,
   ultimate power-efficiency translates into the ability to keep the
   radio off as much as possible, as the radio transceiver is typically
   the most power-consuming component.  This can be achieved in two
   ways: So called radio duty cycling (RDC) aims to keep the radio off
   as much as possible, but performs periodic channel checks to realize

https://datatracker.ietf.org/doc/html/rfc6570
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   a virtual always-on link.  Sleepy nodes instead put the radio into
   hibernation for a long period during which the node is fully
   disconnected from the network.

3.1.  Radio Duty Cycling

   RDC can be achieved through a separate, independent layer between PHY
   and MAC as depicted in Figure 1.  The upper layers can remain more or
   less untouched and only experience a higher latency, which might
   require tweaking the timeout parameters.  State-of-the-art RDC layers
   can achieve an idle duty cycling way below 1% while checking the
   channel several times per second.  ContikiMAC for instance achieves a
   0.3% cycle with a channel check rate of 4 Hz, which results in a
   worst-case delay of 250ms per hop.  While saving energy, ContikiMAC
   also makes link-layer transmissions more robust due to its
   retransmission policy.  Please refer to [CONMAC] for details.

   In general, RDC can be divided into two approaches: sender initiated
   (e.g., ContikiMAC) and receiver initiated (e.g., A-MAC [AMAC]).  In
   the first approach, the sender enables the radio first and
   continuously transmits its message in a strobe until a link-layer ACK
   is received (note that for IEEE 802.15.4 transceivers, transmitting
   consumes less energy than receiving).  Receivers turn on their radio
   only periodically to check for these announcements.  If they sense a
   busy channel, the radio is kept on to receive a potential message and
   finally acknowledge it.  In the other approach, the receiver
   periodically announces that it will keep the radio on for receiving
   for a while.  The senders turns on its radio and listens for an
   announcement of the recipient.  When that is received, it transmits
   the message (following the scheme of the above MAC layer of course,
   while back-offs must match the awake time after announcements).
   Which approach is optimal mainly depends on the communication pattern
   of the application.  Sender initiated RDCs are more efficient for
   IEEE 802.15.4, but the strobes can congest a busy channel.

3.2.  Sleepy Nodes

   Going to sleep for a longer time is not transparent for the
   application layer, as nodes need to re-synchronize and maybe re-
   associate with the network.  Several drafts in the IETF CoRE working
   group cover this strategy for low-power wireless networking (cf.
   [I-D.vial-core-mirror-proxy], [I-D.fossati-core-publish-option],
   [I-D.fossati-core-monitor-option], and [I-D.rahman-core-sleepy]).
   Such features will have to be integrated into the nodes CoAP
   implementation as well as the back-end systems.  In addition,
   alternatives to standard diagnosis tools such as ICMP ping will have
   to be provided, e.g., heartbeats by the application.
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   This strategy is particular useful for communications other than IEEE
   802.15.4.  Low-power Wi-Fi for instance is mainly based on long
   sleeping periods with short wake-up cycles.  Although the data rate
   would be high enough for HTTP over TCP, low-power Wi-FI can greatly
   benefit from CoAP and its shorter round trip times.  For further
   information about sleepy nodes based on low-power Wi-Fi see [LPWIFI].

4.  Security Considerations

   T.B.D.
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