FEC Framework U. Kozat Internet-Draft DoCoMo USA Labs

Intended status: Standards Track

Expires: January 8, 2009

A. Begen Cisco Systems July 7, 2008

Pseudo Content Delivery Protocol (CDP) for Protecting Multiple Source Flows in FEC Framework draft-kozat-fecframe-pseudo-cdp-00

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with <u>Section 6 of BCP 79</u>.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/lid-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 8, 2009.

Copyright Notice

Copyright (C) The IETF Trust (2008).

Abstract

This document provides a pseudo Content Delivery Protocol (CDP) to protect multiple source flows with one or more repair flows based on the FEC Framework document and the Session Description Protocol (SDP) elements defined for the framework. The purpose of the document is not to provide a full-pledged protocol, but to show how the defined framework and SDP elements can be combined together to design a CDP.

Internet-Draft Pseud	lo CDP	for	Multiple	e Source	Flows
----------------------	--------	-----	----------	----------	-------

July 2008

Table of Contents

<u>1</u> .	Introduction	3
<u>2</u> .	Requirements Notation	<u>3</u>
<u>3</u> .	Definitions/Abbreviations	<u>3</u>
<u>4</u> .	Construction of a Repair Flow from Multiple Source Flows	4
4.	1. Example: Two Source Flows Protected by a Single Repair	
	Flow	6
<u>5</u> .	Reconstruction of Source Flows from Repair Flow(s)	<u>10</u>
5.	1. Example: Multiple Source Flows Protected by a Single	
	Repair Flow	<u>10</u>
<u>6</u> .	Security Considerations	<u>11</u>
<u>7</u> .	IANA Considerations	<u>11</u>
<u>8</u> .	Acknowledgments	<u>11</u>
<u>9</u> .	Normative References	11
Auth	ors' Addresses	<u>12</u>
Inte	ellectual Property and Copyright Statements	13

1. Introduction

The Forward Error Correction (FEC) Framework (described in [I-D.ietf-fecframe-framework]) and SDP Elements for FEC Framework (described in [I-D.ietf-fecframe-sdp-elements]) together define mechanisms sufficient enough to build an actual Content Delivery Protocol (CDP). This document aims at providing a guideline on how the mechanisms defined in each document become useful over a nontrivial scenario, namely protection of multiple source flows with one or more repair flows.

In particular, we provide clarifications and descriptions on how:

- o source and repair flows may be uniquely identified,
- o source blocks may be generated from one or more source flows,
- o repair flows may be paired with the source flows,
- o the receiver explicitly and implicitly identifies individual flows,
- o source blocks are regenerated at the receiver and the missing source symbols in a source block are recovered.

2. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

3. Definitions/Abbreviations

This document uses the following definitions. For further definitions that apply to FEC Framework in general, see [I-D.ietf-fecframe-framework].

CDP: Content Delivery Protocol.

FEC: Forward Error Correction.

Source Flow: The packet flow or flows to which FEC protection is to be applied.

Repair Flow: The packet flow or flows carrying FEC data.

Transport Protocol: The protocol used for transport of the source data flow being protected.

FEC Scheme: A specification which defines the additional protocol aspects required to use a particular FEC code with the FEC framework.

Source Block: The group of source data packets which are to be FEC protected as a single block.

Source FEC Payload ID: An FEC Payload ID specifically for use with source packets.

Repair FEC Payload ID: An FEC Payload ID specifically for use with repair packets.

4. Construction of a Repair Flow from Multiple Source Flows

At the sender side, CDP constructs the source blocks (SB) by multiplexing transport payloads from multiple flows (See Figure 1 and Figure 2). According to the FEC Framework, each source block is FEC protected separately. Each source block is given to the specific FEC encoder used within the CDP as input and as the outputs Explicit Source FEC Payload ID, Repair FEC Payload ID, and Repair Payloads corresponding to that source block are generated. Note that Explicit Source FEC payload ID is optional and if CDP has implicit means of constructing the source block at the sender/receiver (e.g., by using any existing sequence numbers in the payload), the Explicit Source FEC payload ID might not be output.

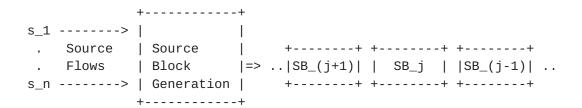


Figure 1: Source Block generation for an FEC scheme

Figure 2 shows the structure of a source block. A CDP MUST clearly specify which payload corresponds to which source flow and the length of each payload.

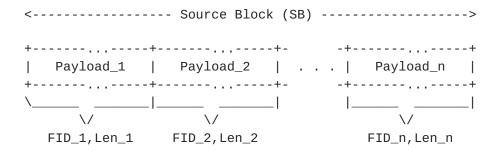


Figure 2: Structure of a Source Block

Flow ID (FID) value provides a unique short-hand identifier for the source flows. FID is specified and associated with the possibly wildcarded tuple of {Source IP Address, Destination IP Address, Source Transport Port, Destination Transport Port, Transport Protocol} in the SDP file. When wildcarded, certain fields in the tuple are not needed for distinguishing the source flows. The tuple is carried in the IP and transport headers of the source packets. Since FID is utilized by the CDP and FEC scheme to distinguish between the source packets, the tuple MUST have a one-to-one mapping to a valid FID. This point will be clearer in the specific example given later in this section. The length of FID must be a priori fixed and known to both the receiver and sender. Alternatively, it might be specified in the FEC-Scheme-Specific Information field in the SDP element [I-D.ietf-fecframe-sdp-elements].

The payload length (Len) information is needed to figure out how many bits, bytes, or symbols (depending on the FEC scheme) from a particular source flow are included in the source block. If the payload is not an integer multiple of the specified symbol length, the remaining portion is padded with zeros (See Figure 3 and Figure 4).

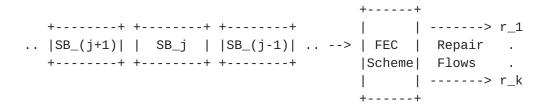


Figure 3: Repair flow generation by an FEC scheme

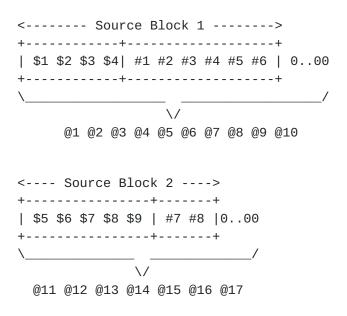
```
<----> Source Block (SB) ----->
+----+ ----+ |
| Payload_1 | Payload_2 | . . . | Payload_n |0|
+----+
Symbol_1,..,Symbol_m => | FEC | => Symbol_u,..,Symbol_1
        | Enc. |
        +----+
```

Figure 4: Repair flow payload generation

FEC schemes typically expect a source block of certain size, say m symbols. Therefore, the FEC encoder divides each source block into m symbols (with some padding if the source block is shorter than the expected m symbols) and generates u repair symbols which are functions of the m symbols in the original source block. The repair symbols are grouped by the FEC scheme into repair payloads with each repair payload assigned a Repair FEC Payload ID in order to associate each repair payload with a particular source block at the receiver. If the payloads in a given source block have sequence numbers that can uniquely specify their location in the source block, an Explicit Source FEC Payload ID may not be generated for these payloads. Otherwise, Explicit Source FEC Payload IDs are generated for each payload and indicate the order the payloads appear in the source block.

Note that FID and length information are not actually transmitted with the source payloads since both information can be gathered by other means as it will be clear in the next sections.

4.1. Example: Two Source Flows Protected by a Single Repair Flow


In this subsection, we present an example of source flow and repair flow generation by the CDP. We have two source flows with flow IDs of 0 and 1 to be protected by a single repair flow (See Figure 5). The first source flow is multicast to 224.1.1.1 and the second source flow is multicast to 224.1.1.2. Both flows use the port number 30000. The SDP description below states that the source flow defined by the tuple $\{*,224.1.1.1,*,30000\}$ is identified with FID=0 and the source flow defined by the tuple {*,224.1.1.2,*,30000} is identified with FID=1. The SDP description also states that the repair flow is to be received at the multicast address of 224.1.2.1 and at port 30000.

```
SOURCE FLOWS
                       | INSTANCE #1
0: Source Flow |____| 2: Repair Flow
1: Source Flow |
```

Figure 5: Example: Two source flows and one repair flow

```
v=0
o=ali 1122334455 1122334466 IN IP4 fec.rocks.com
s=FEC Framework Examples
t=0 0
a=group:FEC S1 S2 R1
m=video 30000 RTP/AVP 100
c=IN IP4 224.1.1.1/127
a=rtpmap:100 MP2T/90000
a=fec-source-flow: id=0
a=mid:S1
m=video 30000 RTP/AVP 101
c=IN IP4 224.1.1.2/127
a=rtpmap:101 MP2T/90000
a=fec-source-flow: id=1
a=mid:S2
m=application 30000 RTP/AVP 110
c=IN IP4 224.1.2.1/127
a=rtpmap:110 1d-interleaved-parityfec/90000
a=fec-repair-flow: encoding-id=0; ss-fssi=1Q2A3Z; rs-fssi=4W5S6X
a=repair-window: 200
a=mid:R1
```

Figure 7 shows the first and the second source blocks (SB_1 and SB_2) generated from these two source flows. In this example, SB_1 is of length 10000 bytes. Suppose that the FEC scheme uses a symbol length of 512 bytes. Then SB_1 can be divided into 20 symbols after padding the source block for 240 bytes. Assume that the FEC scheme is rate-2/3 erasure code, hence, it generates 10 repair symbols from 20 original symbols for SB_1. On the other hand, SB_2 is 7000-byte long and can be divided into 14 symbols after padding 168 bytes. Using the same encoder, suppose that 7 repair symbols are generated for SB_2.

#: 1000-byte payload from source flow 2 @: Repair symbol

\$: 1000-byte payload from source flow 1

Figure 7: Source block with two source flows

The information on the unit of payload length, FEC scheme, symbol size, and coding rates can be specified in the FEC Scheme Specific Information (FSSI) field of the SDP element. If the values of the payload lengths from each source flow and the order of appearance of source flows in every source block are fixed during the session, these values may be also provided in the FSSI field. In our example, we will consider the case where the ordering is fixed and known both at the sender and the receiver, but the payload lengths will be variable from one source block to another. We assume that the payload of a source flow with an FID smaller than another flow's FID precedes other payloads in a source block.

The FEC scheme gets the source blocks as input and generates the parity blocks for each source block to protect the whole source block. In the example, the repair payloads for SB_1 consist of 512byte symbols, denoted by @1 to @10. Similarly @11 to @17 constitute the repair payloads for SB_2. The FEC scheme outputs the repair payloads along with the Repair FEC Payload IDs. In our example, Repair FEC Payload ID provides information on the source block sequence number and the order the repair symbols are generated. For instance @3 is the third FEC repair symbol for SB_1 and the three tuple {@3, SB_1,3} can uniquely deliver this information. In our example, the FEC scheme also provides Explicit Source FEC Payload IDs that carry information to indicate which source symbols correspond to which source block sequence number and its relative position in the

source block. For instance the two tuple {SB_2,2} can be attached to \$6 as the Explicit Source FEC Payload ID to indicate that \$6 is protected together with packets belonging to SB_2, and \$6 is the second payload in SB_2.

The source packets are generated from the source symbols by concatenating consecutive symbols in one packet. There SHOULD NOT be any fragmentation of a source symbol, e.g., symbols #7 and #8 can be concatenated in one transport payload of 2000-bytes (The implementation SHOULD make sure that the size of the resulting source packet - payload plus the overhead - is not larger than the path MTU), but one portion of symbol #7 SHOULD NOT be put in one source packet and the remaining portion in another source packet. The simplest implementation is to place each source symbol in a different source packet as shown in Figure 8.

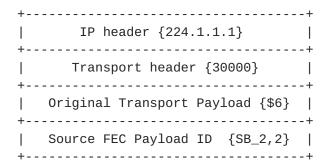


Figure 8: Example of a source packet

The repair packets are generated from the repair symbols belonging to the same source block by grouping consecutive symbols in one packet. There should not be any fragmentation of a repair symbol, e.g., symbols @4, @5, and @6 can be concatenated in one transport payload of 1536-bytes, but @6 SHOULD NOT be divided into smaller sub-symbols and spread over multiple repair packets. The Repair FEC Payload ID MUST carry sufficient information for the decoding process and in our example indicating source block sequence number, length of each source payload, and the order that the first parity block in a repair packet is generated are sufficient. The exact header format of Repair FEC Payload ID may be specified in the FSSI field of the SDP element. In Figure 9 for instance, the repair symbols @4, @5, and @6 are concatenated together. The Payload ID {SB_1,4,4,6} states that the repair symbols protect SB_1, the first repair symbol in the payload is generated as the 4th symbol and the source block consists of two source flows carrying 4 and 6 packets from each.

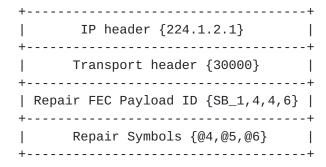


Figure 9: Example of a repair packet

Reconstruction of Source Flows from Repair Flow(s)

5.1. Example: Multiple Source Flows Protected by a Single Repair Flow

At the receiver, source flows 1 and 2 are received at {224.1.1.1,30000} and {224.1.1.2,30000}, while the repair flow is received at {224.1.2.1,30000}. The CDP can map these tuples to the flow IDs using the SDP elements. Accordingly, the payloads received at {224.1.1.1,30000} and {224.1.1.2,30000} are mapped to flow IDs 0 and 1, respectively.

The CDP passes the flow IDs and received payloads along with the Explicit Source FEC Payload ID to the FEC scheme defined in the SDP description. The CDP also passes the received repair packet payloads and Repair FEC Payload ID to the FEC scheme. The FEC scheme can construct the original source block with missing packets by using the information given in the FEC Payload IDs. The FEC Repair Payload ID provides the information that SB_1 has packets from two flows with 4 packets from the first one and 6 packets from the second one. Flow IDs state that the packets from source flow 0 precedes the packets from source flow 1. Explicit Source FEC Payload IDs on the other hand provide the information about which source payload appears in what order. Therefore, the FEC scheme can depict an source block with exact locations of the missing packets. Figure 10 depicts the case for SB_1. Since the original source block with missing packets can be constructed at the decoder and the FEC scheme knows the coding rate (e.g., it might be carried in the FSSI field in the SDP description), a proper decoding operation can start as soon as the repair symbols are provided to the FEC scheme.

0: Symbols received from the source flow 1 for SB_1
#: Symbols received from the source flow 2 for SB_1

X: Lost source symbols

Figure 10: Source block regeneration

When the FEC scheme can recover any missing block while more repair symbols are arriving, it provides the recovered blocks along with the source flow IDs of the recovered blocks as outputs to the CDP. The receiver knows how long to wait to repair the remaining missing packets (e.g., specified by the 'repair-window' attribute in the SDP description). After the associated timer expires, the CDP hands over whatever could be recovered from the source flow to the application layer and continues with processing the next source block.

6. Security Considerations

TBC.

7. IANA Considerations

TBC.

Acknowledgments

TBC.

9. Normative References

```
[I-D.ietf-fecframe-sdp-elements]

Begen, A., "SDP Elements for FEC Framework",

draft-ietf-fecframe-sdp-elements-00 (work in progress),
February 2008.
```

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", <u>BCP 14</u>, <u>RFC 2119</u>, March 1997.

Authors' Addresses

Ulas C. Kozat DoCoMo USA Labs 3240 Hillview Avenue Palo Alto, CA 94304-1201 USA

Phone: +1 650 496 4739

Email: kozat@docomolabs-usa.com

Ali Begen Cisco Systems 170 West Tasman Drive San Jose, CA 95134 USA

Email: abegen@cisco.com

Full Copyright Statement

Copyright (C) The IETF Trust (2008).

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in $\underline{BCP 78}$ and $\underline{BCP 79}$.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

Acknowledgment

Funding for the RFC Editor function is provided by the IETF Administrative Support Activity (IASA).