
Workgroup: TODO Working Group

Internet-Draft: draft-kpugin-rush-01

Published: 7 March 2022

Intended Status: Informational

Expires: 8 September 2022

Authors: K. Pugin

Facebook

A. Frindell

Facebook

J. Cenzano

Facebook

J. Weissman

Facebook

RUSH - Reliable (unreliable) streaming protocol

Abstract

RUSH is an application-level protocol for ingesting live video. This

document describes the protocol and how it maps onto QUIC.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the mailing list (),

which is archived at .

Source for this draft and an issue tracker can be found at https://

github.com/afrind/draft-rush.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 8 September 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/afrind/draft-rush
https://github.com/afrind/draft-rush
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Conventions and Definitions

3. Theory of Operations

3.1. Connection establishment

3.2. Sending Video Data

3.3. Receiving data

3.4. Reconnect

4. Wire Format

4.1. Frame Header

4.2. Frames

4.2.1. Connect frame

4.2.2. Connect Ack frame

4.2.3. End of Video frame

4.2.4. Error frame

4.2.5. Video frame

4.2.6. Audio frame

4.2.7. GOAWAY frame

4.3. QUIC Mapping

4.3.1. Normal mode

4.3.2. Multi Stream Mode

5. Error Handling

5.1. Connection Errors

5.2. Frame errors

6. Extensions

7. Security Considerations

8. IANA Considerations

9. Normative References

Acknowledgments

Authors' Addresses

1. Introduction

RUSH is a bidirectional application level protocol designed for live

video ingestion that runs on top of QUIC.

RUSH was built as a replacement for RTMP (Real-Time Messaging

Protocol) with the goal to provide support for new audio and video

codecs, extensibility in the form of new message types, and multi-

track support. In addition, RUSH gives applications option to

control data delivery guarantees by utilizing QUIC streams.

¶

¶

¶

Frame/Message:

PTS:

DTS:

AAC:

NALU:

VPS:

SPS:

PPS:

ADTS header:

ASC:

GOP:

This document describes the RUSH protocol, wire format, and QUIC

mapping.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

logical unit of information that client and server

can exchange

presentation timestamp

decoding timestamp

advanced audio codec

network abstract layer unit

video parameter set (H265 video specific NALU)

sequence parameter set (H264/H265 video specific NALU)

picture parameter set (H264/H265 video specific NALU)

Audio Data Transport Stream Header

Audio specific config

Group of pictures, specifies the order in which intra- and

inter-frames are arranged.

3. Theory of Operations

3.1. Connection establishment

In order to live stream using RUSH, the client establishes a QUIC

connection using the ALPN token "rush".

After the QUIC connection is established, client creates a new

bidirectional QUIC stream, choses starting frame ID and sends

Connect frame Section 4.2.1 over that stream. This stream is called

the Connect Stream.

The client sends mode of operation setting in Connect frame payload,

format of the payload is TBD.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

One connection SHOULD only be used to send one video.

3.2. Sending Video Data

The client can choose to wait for the ConnectAck frame Section 4.2.2

or it can start sending data immediately after sending the Connect

frame.

A track is a logical organization of the data, for example, video

can have one video track, and two audio tracks (for two languages).

The client can send data for multiple tracks simultaneously.

The encoded audio or video data of each track is serialized into

frames (see Section 4.2.6 or Section 4.2.5) and transmitted from the

client to the server. Each track has its own monotonically

increasing frame ID sequence. The client MUST start with initial

frame ID = 1.

Depending on mode of operation (Section 4.3), the client sends audio

and video frames on the Connect stream or on a new QUIC stream for

each frame.

In Multi Stream Mode (Section 4.3.2), the client can stop sending a

frame by resetting the corresponding QUIC stream. In this case,

there is no guarantee that the frame was received by the server.

3.3. Receiving data

Upon receiving Connect frame, the server replies with ConnectAck

frame Section 4.2.2 and prepares to receive audio/video data.

It's possible that in Multi Stream Mode (Section 4.3.2), the server

receives audio or video data before it receives the Connect frame.

The implementation can choose whether to buffer or drop the data.

The audio/video data cannot be interpreted correctly before the

arrival of the Connect frame.

In Normal Mode (Section 4.3.1), it is guaranteed by the transport

that frames arrive into the application layer in order they were

sent.

In Multi Stream Mode, it's possible that frames arrive at the

application layer in a different order than they were sent,

therefore the server MUST keep track of last received frame ID for

every track that it receives. A gap in the frame sequence ID on a

given track can indicate out of order delivery and the server MAY

wait until missing frames arrive. The server must consider frame

lost if the corresponding QUIC stream was reset.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Length(64)`:

Upon detecting a gap in the frame sequence, the server MAY wait for

the missing frames to arrive for an implementation defined time. If

missing frames don't arrive, the server SHOULD consider them lost

and continue processing rest of the frames. For example if the

server receives the following frames for track 1: 1 2 3 5 6 and

frame #4 hasn't arrived after implementation defined timeout, thee

server SHOULD continue processing frames 5 and 6.

When the client is done streaming, it sends the End of Video frame

(Section 4.2.3) to indicate to the server that there won't be any

more data sent.

3.4. Reconnect

If the QUIC connection is closed at any point, client MAY reconnect

by simply repeat the Connection establishment process (Section 3.1)

and resume sending the same video where it left off. In order to

support termination of the new connection by a different server, the

client SHOULD resume sending video frames starting with I-frame, to

guarantee that the video track can be decoded.

Reconnect can be initiated by the server if it needs to "go away"

for maintenance. In this case, the server sends a GOAWAY frame

(Section 4.2.7) to advise the client to gracefully close the

connection. This allows client to finish sending some data and

establish new connection to continue sending without interruption.

4. Wire Format

4.1. Frame Header

The client and server exchange information using frames. There are

different types of frames and the payload of each frame depends on

its type.

Generic frame format:

Each frame starts with length field, 64 bit size that

tells size of the frame in bytes (including predefined fields, so

if LENGTH is 100 bytes, then PAYLOAD length is 100 - 8 - 8 - 1 =

82 bytes).

¶

¶

¶

¶

¶

¶

0 1 2 3 4 5 6 7

+--+

| Length (64) |

+--+

| ID (64) |

+-------+--+

|Type(8)| Payload ... |

+-------+--+

¶

¶

ID(64):

Type(8):

64 bit frame sequence number, every new frame MUST have a

sequence ID greater than that of the previous frame within the

same track. Track ID would be specified in each frame. If track

ID is not specified it's 0 implicitly.

1 byte representing the type of the frame.

Predefined frame types:

Frame Type Frame

0x0 connect frame

0x1 connect ack frame

0x2 reserved

0x3 reserved

0x4 end of video frame

0x5 error frame

0x6 reserved

0x7 reserved

0x8 reserved

0x9 reserved

0xA reserved

0XB reserved

0xC reserved

0xD video frame

0xE audio frame

0XF reserved

0X10 reserved

0x11 reserved

0x12 reserved

0x13 reserved

0x14 GOAWAY frame

Table 1

¶

¶

¶

Version:

Video Timescale:

Audio Timescale:

Live Session ID:

Payload:

4.2. Frames

4.2.1. Connect frame

version of the protocol (initial version is 0x0).

timescale for all video frame timestamps on this

connection. Recommended value 30000

timescale for all audio samples timestamps on this

connection, recommended value same as audio sample rate, for

example 44100

identifier of broadcast, when reconnect, client

MUST use the same live session ID

application and version specific data that can be used by

the server. OPTIONAL

This frame is used by the client to initiate broadcasting. The

client can start sending other frames immediately after "Connect

frame" without waiting acknowledgement from the server.

If server doesn't support VERSION sent by the client, the server

sends an Error frame with code UNSUPPORTED VERSION.

If audio timescale or video timescale are 0, the server sends error

frame with error code INVALID FRAME FORMAT and closes connection.

If the client receives a Connect frame from the server, the client

sends an Error frame with code TBD.

+--+

| Length (64) |

+--+

| ID (64) |

+-------+-------+---------------+---------------+--------------+

| 0x0 |Version|Video Timescale|Audio Timescale| |

+-------+-------+---------------+---------------+--------------+

| Live Session ID(64) |

+--+

| Payload ... |

+--+

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

4.2.2. Connect Ack frame

The server sends the "Connect Ack" frame in response to "Connect"

frame indicating that server accepts "version" and is ready to

receive data.

If the client doesn't receive "Connect Ack" frame from the server

within a timeout, it will close the connection. The timeout value is

chosen by the implementation.

There can be only one "Connect Ack" frame sent over lifetime of the

QUIC connection.

If the server receives a Connect Ack frame from the client, the

client sends an Error frame with code TBD.

4.2.3. End of Video frame

End of Video frame is sent by a client when it's done sending data

and is about to close the connection. The server SHOULD ignore all

frames sent after that.

0 1 2 3 4 5 6 7

+--+

| 17 |

+--+

| ID (64) |

+-------+--+

| 0x1 |

+-------+

¶

¶

¶

¶

¶

+--+

| 17 |

+--+

| ID (64) |

+-------+--+

| 0x4 |

+-------+

¶

¶

Sequence ID:

Error Code:

Codec:

PTS:

DTS:

4.2.4. Error frame

ID of the frame sent by the client that error is

generated for, ID=0x0 indicates connection level error.

32 bit unsigned integer

Error frame can be sent by the client or the server to indicate that

an error occurred.

Some errors are fatal and the connection will be closed after

sending the Error frame.

4.2.5. Video frame

specifies codec that was used to encode this frame.

presentation timestamp in connection video timescale

decoding timestamp in connection video timescale

Supported type of codecs:

+--+

| 29 |

+--+

| ID (64) |

+-------+--+

| 0x5 |

+-------+--+

| Sequence ID (64) |

+------------------------------+-------------------------------+

| Error Code (32) |

+------------------------------+

¶

¶

¶

¶

¶

+--+

| Length (64) |

+--+

| ID (64) |

+-------+-------+--+

| 0xD | Codec |

+-------+-------+--+

| PTS (64) |

+--+

| Track ID (64) |

+---------------+--+

| I-Frame ID Offset | Video Data ... |

+---------------+--+

¶

¶

¶

¶

¶

Track ID:

I-Frame ID Offset:

Video Data:

Codec:

Type Codec

0x1 H264

0x2 H265

0x3 VP8

0x4 VP9

Table 2

ID of the track that this frame is on

Distance from sequence ID of the I-frame that is

required before this frame can be decoded. This can be useful to

decide if frame can be dropped.

variable length field, that carries actual video frame

data that is codec dependent

For h264/h265 codec, "Video Data" are 1 or more NALUs in AVCC

format:

EVERY h264 video key-frame MUST start with SPS/PPS NALUs. EVERY h265

video key-frame MUST start with VPS/SPS/PPS NALUs.

Binary concatenation of "video data" from consecutive video frames,

without data loss MUST produce VALID h264/h265 bitstream.

4.2.6. Audio frame

specifies codec that was used to encode this frame.

¶

¶

¶

¶

0 1 2 3 4 5 6 7

+--+

| NALU Length (64) |

+--+

| NALU Data ...

+--+

¶

¶

¶

+--+

| Length (64) |

+--+

| ID (64) |

+-------+--+

| 0xE | Codec |

+-------+-------+--+

| Timestamp (64) |

+-------+--+

|TrackID|

+-------+--+

| Audio Data ...

+--+

¶

¶

Timestamp:

Track ID:

Audio Data:

Supported type of codecs:

Type Codec

0x1 AAC

0x2 OPUS

Table 3

timestamp of first audio sample in Audio Data.

ID of the track that this frame is on

variable length field, that carries 1 or more audio

frames that is codec dependent.

For AAC codec, "Audio Data" are 1 or more AAC samples, prefixed with

ADTS HEADER:

Binary concatenation of all AAC samples in "Audio Data" from

consecutive audio frames, without data loss MUST produce VALID AAC

bitstream.

For OPUS codec, "Audio Data" are 1 or more OPUS samples, prefixed

with OPUS header as defined in [RFC7845]

4.2.7. GOAWAY frame

The GOAWAY frame is used by the server to initiate graceful shutdown

of a connection, for example, for server maintenance.

Upon receiving GOAWAY, the client MUST send frames remaining in

current GOP and stop sending new frames on this connection. The

client SHOULD establish a new connection and resume sending frames

there.

¶

¶

¶

¶

¶

152 158 ... N

+---+---+---+---+---+---+---+...

| ADTS(56) | AAC SAMPLE |

+---+---+---+---+---+---+---+...

¶

¶

¶

0 1 2 3 4 5 6 7

+--+

| 17 |

+--+

| ID (64) |

+-------+--+

| 0x14 |

+-------+

¶

¶

¶

After sending a GOAWAY frame, the server continues processing

arriving frames for an implementation defined time, after which the

server SHOULD close the connection.

4.3. QUIC Mapping

One of the main goals of the RUSH protocol was ability to provide

applications a way to control reliability of delivering audio/video

data. This is achieved by using a special mode Section 4.3.2.

4.3.1. Normal mode

In normal mode, RUSH uses one bidirectional QUIC stream to send data

and receive data. Using one stream guarantees reliable, in-order

delivery - applications can rely on QUIC transport layer to

retransmit lost packets. The performance characteristics of this

mode are similar to RTMP over TCP.

4.3.2. Multi Stream Mode

In normal mode, if packet belonging to video frame is lost, all

packets sent after it will not be delivered to application, even

though those packets may have arrived at the server. This introduces

head of line blocking and can negatively impact latency.

To address this problem, RUSH defines "Multi Stream Mode", in which

one QUIC stream is used per audio/video frame.

Connection establishment follows the normal procedure by client

sending Connect frame, after that Video and Audio frames are sent

using following rules:

Each new frame is sent on new bidirectional QUIC stream

Frames within same track must have IDs that are monotonically

increasing, such that ID(n) = ID(n-1) + 1

The receiver reconstructs the track using the frames IDs.

Response Frames (Connect Ack and Error), will be in the response

stream of the stream that sent it.

The client MAY control delivery reliability by setting a delivery

timer for every audio or video frame and reset the QUIC stream when

the timer fires. This will effectively stop retransmissions if the

frame wasn't fully delivered in time.

Timeout is implementation defined, however future versions of the

draft will define a way to negotiate it.

¶

¶

¶

¶

¶

¶

* ¶

*

¶

¶

¶

¶

¶

5. Error Handling

An endpoint that detects an error SHOULD signal the existence of

that error to its peer. Errors can affect an entire connection (see

Section 5.1), or a single frame (see Section 5.2).

The most appropriate error code SHOULD be included in the error

frame that signals the error.

5.1. Connection Errors

There is one error code defined in core of the protocol that

indicates connection error:

1 - UNSUPPORTED VERSION - indicates that the server doesn't support

version specified in Connect frame

5.2. Frame errors

There are two error codes defined in core protocol that indicate a

problem with a particular frame:

2 - UNSUPPORTED CODEC - indicates that the server doesn't support

the given audio or video codec

3 - INVALID FRAME FORMAT - indicates that the receiver was not able

to parse the frame or there was an issue with a field's value.

6. Extensions

RUSH permits extension of the protocol.

Extensions are permitted to use new frame types (Section 4), new

error codes (Section 4.2.4), or new audio and video codecs (Section

4.2.6, Section 4.2.5).

Implementations MUST ignore unknown or unsupported values in all

extensible protocol elements, except codec id, which returns an

UNSUPPORTED CODEC error. Implementations MUST discard frames that

have unknown or unsupported types.

7. Security Considerations

RUSH protocol relies on security guarantees provided by the

transport.

Implementation SHOULD be prepare to handle cases when sender

deliberately sends frames with gaps in sequence IDs.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC7845]

[RFC8174]

Implementation SHOULD be prepare to handle cases when server never

receives Connect frame (Section 4.2.1).

A frame parser MUST ensure that value of frame length field (see

Section 4.1) matches actual length of the frame, including the frame

header.

Implementation SHOULD be prepare to handle cases when sender sends a

frame with large frame length field value.

8. IANA Considerations

TODO: add frame type registry, error code registry, audio/video

codecs registry

9. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Terriberry, T., Lee, R., and R. Giles, "Ogg Encapsulation

for the Opus Audio Codec", RFC 7845, DOI 10.17487/

RFC7845, April 2016, <https://www.rfc-editor.org/rfc/

rfc7845>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Acknowledgments

This draft is the work of many people: Vlad Shubin, Nitin Garg,

Milen Lazarov, Benny Luo, Nick Ruff, Konstantin Tsoy, Nick Wu.

Authors' Addresses

Kirill Pugin

Facebook

Email: ikir@fb.com

Alan Frindell

Facebook

Email: afrind@fb.com

Jordi Cenzano

Facebook

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc7845
https://www.rfc-editor.org/rfc/rfc7845
https://www.rfc-editor.org/rfc/rfc8174
mailto:ikir@fb.com
mailto:afrind@fb.com

Email: jcenzano@fb.com

Jake Weissman

Facebook

Email: jakeweissman@fb.com

mailto:jcenzano@fb.com
mailto:jakeweissman@fb.com

	RUSH - Reliable (unreliable) streaming protocol
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. Theory of Operations
	3.1. Connection establishment
	3.2. Sending Video Data
	3.3. Receiving data
	3.4. Reconnect

	4. Wire Format
	4.1. Frame Header
	4.2. Frames
	4.2.1. Connect frame
	4.2.2. Connect Ack frame
	4.2.3. End of Video frame
	4.2.4. Error frame
	4.2.5. Video frame
	4.2.6. Audio frame
	4.2.7. GOAWAY frame

	4.3. QUIC Mapping
	4.3.1. Normal mode
	4.3.2. Multi Stream Mode

	5. Error Handling
	5.1. Connection Errors
	5.2. Frame errors

	6. Extensions
	7. Security Considerations
	8. IANA Considerations
	9. Normative References
	Acknowledgments
	Authors' Addresses

