
Workgroup: Network Working Group

Internet-Draft:

draft-kpw-iab-privacy-partitioning-00

Published: 21 October 2022

Intended Status: Informational

Expires: 24 April 2023

Authors: M. Kühlewind

Ericsson Research

T. Pauly

Apple

C. A. Wood

Cloudflare

Partitioning as an Architecture for Privacy

Abstract

This document describes the principle of privacy partitioning, which

selectively spreads data and communication across multiple parties

as a means to improve the privacy by separating user identity from

user data. This document describes emerging patterns in protocols to

partition what data and metadata is revealed through protocol

interactions, provides common terminology, and discusses how to

analyze such models.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the Internet Architecture

Board Internet Engineering Task Force mailing list (iab@iab.org),

which is archived at .

Source for this draft and an issue tracker can be found at https://

github.com/intarchboard/draft-obliviousness.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 24 April 2023.

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/intarchboard/draft-obliviousness
https://github.com/intarchboard/draft-obliviousness
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document.

Table of Contents

1. Introduction

2. Privacy Partitioning

2.1. Privacy Contexts

2.2. Context Separation

3. A Survey of Protocols using Partitioning

3.1. CONNECT Proxying and MASQUE

3.2. Oblivious HTTP and DNS

3.3. Privacy Pass

3.4. Privacy Preserving Measurement

4. Applying Privacy Partioning

5. Limits of Privacy Partitioning

5.1. Violations by Collusion

5.2. Violations by Insufficient Partitioning

6. Impacts of Partitioning

7. Security Considerations

8. IANA Considerations

9. Informative References

Acknowledgments

Authors' Addresses

1. Introduction

Protocols such as TLS and IPsec provide a secure (authenticated and

encrypted) channel between two endpoints over which endpoints

transfer information. Encryption and authentication of data in

transit is necessary to protect information from being seen or

modified by parties other than the intended protocol participants.

As such, this kind of security is necessary for ensuring that

information transferred over these channels remain private.

However, a secure channel between two endpoints is insufficient for

privacy of the endpoints themselves. In recent years, privacy

requirements have expanded beyond the need to protect data in

¶

¶

¶

https://trustee.ietf.org/license-info

transit between two endpoints. Some examples of this expansion

include:

A user accessing a service on a website might not consent to

reveal their location, but if that service is able to observe the

client's IP address, it can learn inforamtion about the user's

location. This is problematic for privacy since the service can

link user data to the user's location.

A user might want to be able to access content for which they are

authorized, such as a news article, without needing to have which

specific articles they read on their account being recorded. This

is problematic for privacy since the service can link user

activity to the user's account.

A client device that needs to upload metrics to an aggregation

service might want to be able to contribute data to the system

without having their specific contributions being attribued to

them. This is problematic for privacy since the service can link

client contributions to the specific client.

The commonality in these examples is that clients want to interact

with or use a service without exposing too much user-specific or

identifying information to that service. In particular, separating

the user-specific identity information from user-specific data is

necessary for privacy. Thus, order to protect user privacy, it is

important to keep identity (who) and data (what) separate.

This document defines "privacy partitioning" as the general

technique used to separate the data and metadata visible to various

parties in network communication, with the aim of improving user

privacy. Partitioning is a spectrum and not a panacea. It is

difficult to guarantee there is no link between user-specific

identity and user-specific data. However, applied properly, privacy

partitioning helps ensure that user privacy violations becomes more

technically difficult to achieve over time.

Several IETF working groups are working on protocols or systems that

adhere to the principle of privacy partitioning, including OHAI,

MASQUE, Privacy Pass, and PPM. This document summarizes work in

those groups and describes a framework for reasoning about the

resulting privacy posture of different endpoints in practice.

2. Privacy Partitioning

For the purposes of user privacy, this document focuses on user-

specific information. This might include any identifying information

that is specific to a user, such as their email address or IP

address, or data about the user, such as their date of birth.

Informally, the goal of privacy partitioning is to ensure that each

¶

*

¶

*

¶

*

¶

¶

¶

¶

party in a system beyond the user themselves only has access to one

type of user-specific information.

This is a simple application of the principle of least privilege,

wherein every party in a system only has access to the minimum

amount of information needed to fulfill their function. Privacy

partitioning advocates for this minimization by ensuring that

protocols, applications, and systems only reveal user-specific

information to parties that need access to the information for their

intended purpose.

Put simply, privacy partitioning aims to separate who someone is

from what they do. In the rest of this section, we describe how

privacy partitioning can be used to achieve this goal.

2.1. Privacy Contexts

Each piece of user-specific information exists within some context,

where a context is abstractly defined as a set of data and metadata

and the entities that share access to that information. In order to

prevent correlation of user-specific information across contexts,

partitions need to ensure that any single entity (other than the

client itself) does not participate in more than one context where

the information is visible.

[RFC6973] discusses the importance of identifiers in reducing

correlation as a way of improving privacy:

"Correlation is the combination of various pieces of information

related to an individual or that obtain that characteristic when

combined... Correlation is closely related to identification.

Internet protocols can facilitate correlation by allowing

individuals' activities to be tracked and combined over time."

"Pseudonymity is strengthened when less personal data can be linked

to the pseudonym; when the same pseudonym is used less often and

across fewer contexts; and when independently chosen pseudonyms are

more frequently used for new actions (making them, from an

observer's or attacker's perspective, unlinkable)."

Context separation is foundational to privacy partitioning and

reducing correlation. As an example, consider an unencrypted HTTP

session over TCP, wherein the context includes both the content of

the transaction as well as any metadata from the transport and IP

headers; and the participants include the client, routers, other

network middleboxes, intermediaries, and server.

¶

¶

¶

¶

¶

¶

¶

¶

Figure 1: Diagram of a basic unencrypted client-to-server connection

with middleboxes

Adding TLS encryption to the HTTP session is a simple partitioning

technique that splits the previous context into two separate

contexts: the content of the transaction is now only visible to the

client, TLS-terminating intermediaries, and server; while the

metadata in transport and IP headers remain in the original context.

In this scenario, without any further partitioning, the entities

that participate in both contexts can allow the data in both

contexts to be correlated.

Figure 2: Diagram of how adding encryption splits the context into two

Another way to create a partition is to simply use separate

connections. For example, to split two separate HTTP requests from

one another, a client could issue the requests on separate TCP

connections, each on a different network, and at different times;

and avoid including obvious identifiers like HTTP cookies across the

requests.

+---+

| Context A |

| +--------+ +-----------+ +--------+ |

| | |------HTTP------| |--------------| | |

| | Client | | Middlebox | | Server | |

| | |------TCP-------| |--------------| | |

| +--------+ flow +-----------+ +--------+ |

| |

+---+

¶

+---+

| Context A |

| +--------+ +--------+ |

| | | | | |

| | Client |-------------------HTTPS-------------------| Server | |

| | | | | |

| +--------+ +--------+ |

| |

+---+

| Context B |

| +--------+ +-----------+ +--------+ |

| | | | | | | |

| | Client |-------TCP------| Middlebox |--------------| Server | |

| | | flow | | | | |

| +--------+ +-----------+ +--------+ |

| |

+---+

¶

Figure 3: Diagram of making separate connections to generate separate

contexts

2.2. Context Separation

In order to define and analyze how various partitioning techniques

work, the boundaries of what is being partitioned need to be

established. This is the role of context separation. In particular,

in order to prevent correlation of user-specific information across

contexts, partitions need to ensure that any single entity (other

than the client itself) does not participate in contexts where both

identities are visible.

Context separation can be achieved in different ways, e.g. over

time, across network paths, based on (en)coding, etc. The privacy-

oriented protocols described in this document generally involve more

complex partitioning, but the techniques to partition communication

contexts still employ the same techniques:

Encryption allows partitioning of contexts within a given

network path.

Using separate connections across time or space allow

partitioning of contexts for different application

transactions.

These techniques are frequently used in conjunction for context

separation. For example, encrypting an HTTP exchange might prevent a

network middlebox that sees a client IP address from seeing the user

account identity, but it doesn't prevent the TLS-terminating server

from observing both identities and correlating them. As such,

+---+

| Context A |

| +--------+ +-----------+ +--------+ |

| | | IP A | | | | |

| | Client |-------TCP------| Middlebox |--------------| Server | |

| | | flow A | A | | | |

| +--------+ +-----------+ +--------+ |

| |

+---+

| Context B |

| +--------+ +-----------+ +--------+ |

| | | IP B | | | | |

| | Client |-------TCP------| Middlebox |--------------| Server | |

| | | flow B | B | | | |

| +--------+ +-----------+ +--------+ |

| |

+---+

¶

¶

1.

¶

2.

¶

preventing correlation requires separating contexts, such as by

using proxying to conceal a client IP address that would otherwise

be used as an identifier.

3. A Survey of Protocols using Partitioning

The following section discusses currently on-going work in the IETF

that is applying privacy partitioning.

3.1. CONNECT Proxying and MASQUE

HTTP forward proxies, when using encryption, provide privacy

partitioning by separating a connection into multiple segments. When

connections over the proxy themselves are encrypted, the proxy

cannot see the end-to-end content. HTTP has historically supported

forward proxying for TCP-like streams via the CONNECT method. More

recently, the MASQUE working group has developed protocols to

similarly proxy UDP [CONNECT-UDP] and IP packets [CONNECT-IP] based

on tunneling.

In a single-proxy setup there is a tunnel connection between the

client and proxy and an end-to-end connection that is tunnelled

between the client and target. This setup, as shown in the figure

below, partitions communication into a Client-to-Proxy context (the

transport metadata between the client and the target, and the

request to the proxy to open a connection to the target), and a

Client-to-Target context (the end-to-end data, which generally would

be a TLS-encrypted connection). There is also a Proxy-to-Target

context; in case of MASQUE this context only contains any

(unprotected) packet header information that is added or modified by

the proxy, e.g., the IP and UDP headers.

¶

¶

¶

¶

Figure 4: Diagram of one-hop proxy contexts

Using two (or more) proxies provides better privacy partitioning. In

particular, with two proxies, each proxy sees the Client metadata,

but not the Target; the Target, but not the Client metadata; or

neither.

+---+

| Client-to-Target Context |

| +--------+ +-----------+ +--------+ |

| | | | | | | |

| | Client |----Proxied-----| Proxy |--------------| Server | |

| | | flow | | | | |

| +--------+ +-----------+ +--------+ |

| |

+---+

| Client-to-Proxy Context |

| +--------+ +-----------+ |

| | | | | |

| | Client |---Transport----| Proxy | |

| | | flow | | |

| +--------+ +-----------+ |

| |

+---+

| Proxy-to-Target Context |

| +-----------+ +--------+ |

| | | | | |

| | Proxy |--Transport---| Server | |

| | | flow | | |

| +-----------+ +--------+ |

| |

+---+

¶

Figure 5: Diagram of two-hop proxy contexts

Forward proxying, such as the protocols developed in MASQUE, uses

both encryption (via TLS) and separation of connections (via proxy

hops that see only the next hop) to achieve privacy partitioning.

+---+

| Client-to-Target Context |

| +--------+ +-------+ +--------+ |

| | | | | | | |

| | Client |----------Proxied----------| Proxy |-------| Server | |

| | | flow | B | | | |

| +--------+ +-------+ +--------+ |

| |

+---+

| Client-to-Proxy B Context |

| +--------+ +-------+ +-------+ |

| | | | | | | |

| | Client |---------| Proxy |---------| Proxy | |

| | | | A | | B | |

| +--------+ +-------+ +-------+ |

| |

+---+

| Client-to-Proxy A Context |

| +--------+ +-------+ |

| | | | | |

| | Client |---------| Proxy | |

| | | | A | |

| +--------+ +-------+ |

| |

+---+

| Proxy A-to-Proxy B Context |

| +-------+ +-------+ |

| | | | | |

| | Proxy |---------| Proxy | |

| | A | | B | |

| +-------+ +-------+ |

| |

+---+

| Proxy B-to-Target Context |

| +-------+ +--------+ |

| | | | | |

| | Proxy |-------| Server | |

| | B | | | |

| +-------+ +--------+ |

| |

+---+

¶

3.2. Oblivious HTTP and DNS

Oblivious HTTP [OHTTP], developed in the OHAI working group, adds

per-message encryption to HTTP exchanges through a relay system.

Clients send requests through an Oblivious Relay, which cannot read

message contents, to an Oblivious Gateway, which can decrypt the

messages but cannot communicate directly with the client or observe

client metadata like IP address. Oblivious HTTP relies on Hybrid

Public Key Encryption [HPKE] to perform encryption.

Oblivious HTTP uses both encryption and separation of connections to

achieve privacy partitioning. The end-to-end messages are encrypted

between the Client and Gateway (forming a Client-to-Gateway

context), and the connections are separated into a Client-to-Relay

context and a Relay-to-Gateway context. It is also important to note

that the Relay-to-Gateway connection can be a single connection,

even if the Relay has many separate Clients. This provides better

anonymity by making the pseudonym presented by the Relay to be

shared across many Clients.

Figure 6: Diagram of Oblivious HTTP contexts

¶

¶

+---+

| Client-to-Target Context |

| +--------+ +---------+ +--------+ |

| | | | | | | |

| | Client |---------------------------| Gateway |-----| Target | |

| | | | | | | |

| +--------+ +---------+ +--------+ |

| |

+---+

| Client-to-Gateway Context |

| +--------+ +-------+ +---------+ |

| | | | | | | |

| | Client |---------| Relay |---------| Gateway | |

| | | | | | | |

| +--------+ +-------+ +---------+ |

| |

+---+

| Client-to-Relay Context |

| +--------+ +-------+ |

| | | | | |

| | Client |---------| Relay | |

| | | | | |

| +--------+ +-------+ |

| |

+---+

Oblivious DNS over HTTPS [ODOH] applies the same principle as

Oblivious HTTP, but operates on DNS messages only. As a precursor to

the more generalized Oblivious HTTP, it relies on the same HPKE

cryptographic primatives, and can be analyzed in the same way.

3.3. Privacy Pass

Privacy Pass is an architecture [PRIVACYPASS] and set of protocols

being developed in the Privacy Pass working group that allow clients

to present proof of verification in an anonymous and unlinkable

fashion, via tokens. These tokens originally were designed as a way

to prove that a client had solved a CAPTCHA, but can be applied to

other types of user or device attestation checks as well. In Privacy

Pass, clients interact with an attester and issuer for the purposes

of issuing a token, and clients then interact with an origin server

to redeeem said token.

In Privacy Pass, privacy partitioning is achieved with cryptographic

protection (in the form of blind signature protocols or similar) and

separation of connections across two contexts: a "redemption

context" between clients an origins (servers that request and

receive tokens), and an "issuance context" between clients,

attestation servers, and token issuance servers. The cryptographic

protection ensures that information revealed during the issuance

context is separated from information revealed during the redemption

context.

Figure 7: Diagram of contexts in Privacy Pass

¶

¶

¶

+---+

| Redemption Context |

| +--------+ +--------+ |

| | | | | |

| | Origin |---------| Client | |

| | | | | |

| +--------+ +--------+ |

| |

+---+

| Issuance Context |

| +--------+ +----------+ +--------+ |

| | | | | | | |

| | Client |------| Attester |------| Issuer | |

| | | | | | | |

| +--------+ +----------+ +--------+ |

| |

+---+

3.4. Privacy Preserving Measurement

The Privacy Preserving Measurement (PPM) working group is chartered

to develop protocols and systems that help a data aggregation or

collection server (or multiple, non-colluding servers) compute

aggregate values without learning the value of any one client's

individual measurement. Distributed Aggregation Protocol (DAP) is

the primary working item of the group.

At a high level, DAP uses a combination of cryptographic protection

(in the form of secret sharing amongst non-colluding servers) to

establish two contexts: an "upload context" between clients and non-

colluding aggregation servers wherein aggregation servers possibly

learn client identity but nothing about their individual measurement

reports, and a "collect context" wherein a collector learns

aggregate measurement results and nothing about individual client

data.

Figure 8: Diagram of contexts in DAP

4. Applying Privacy Partioning

Applying privacy partitioning to an existing or new system or

protocol requires the following steps:

Identify the types of information used or exposed in a system

or protocol, some of which can be used to identify a user or

correlate to other contexts.

Partition data to minimize the amount of user-identifying or

correlatable information in any given context to only include

what is necessary for that context, and prevent sharing of data

across contexts wherever possible.

The most impactful types of information to partition are (a) user

identity or identities (such as an account name or IP address) that

¶

¶

+-------------------------------------+--------------------+

| Upload Context | Collect Context |

| +------------+ | |

| +------> Helper | | |

| +--------+ | +------^-----+ | |

| | +---+ | | +-----------+ |

| | Client | | | | Collector | |

| | +---+ | | +-----+-----+ |

| +--------+ | +------V-----+ | | |

| +------> Leader <------------+ |

| +------------+ | |

+-------------------------------------+--------------------+

¶

1.

¶

2.

¶

can be linked and (b) user data (such as the content a user is

accessing), which can be often sensitive when combined with user

identity. Note that user data can itself be user-identifying, in

which case it should be treated as an identifier. For example,

Oblivious DoH and Oblivious HTTP partition the client IP address and

client request data into separate contexts, thereby ensuring that no

entity beyond the client can observe both. Collusing across contexts

may reverses this partition process, but can also promote non-user-

identifying information to user-identifying. For example, in CONNECT

proxy systems that use QUIC, the QUIC connection ID is inherently

non-user-identifying since it is generated randomly [QUIC],

Section 5.1. However, if combined with another context that has

user-identifying information such as the client IP address, the QUIC

connection ID can become user-identifying information.

This partitioning process can be applied incorrectly or

incompletely. Contexts may contain more user-identifying information

than desired, or some information in a context may be more user-

identifying than intended. Moreover, splitting user-identifying

information over multiple contexts has to be done with care, as

creating more contexts can increase the number of entities that need

to be trusted to not collude. Nevertheless, partitions can help

improve the client's privacy posture when applied carefully.

Evaluating and qualifying the resulting privacy of a system or

protocol that applies privacy partitioning depends on the contexts

that exist and types of user-identifying information in each

context. Such evaluation is helpful for identifying ways in which

systems or protocols can improve their privacy posture. For example,

consider DNS-over-HTTPS [DOH], which produces a single context which

contains both the client IP address and client query. One

application of privacy partitioning results in ODoH, which produces

two contexts, one with the client IP address and the other with the

client query.

Recognizing potential appliations of privacy partitoning requires

identifying the contexts in use, the information exposed in a

context, and the intent of information exposed in a context.

Unfortunately, determing what information to include in a given

context is a nontrivial task. In principle, the information

contained in a context should be fit for purpose. As such, new

systems or protocols developed should aim to ensure that all

information exposed in a context serves as few purposes as possible.

Designing with this principle from the start helps mitigate issues

that arise if users of the system or protocol inadvertently ossify

on the information available in contexts. Legacy systems that have

ossified on information available in contexts may be difficult to

change in practice. As an example, many existing anti-abuse systems

depend on some notion of client identity such as client IP address,

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-5.1

coupled with client data, to provide value. Partitioning contexts in

these systems such that they no longer see the client identity

requires new solutions to the anti-abuse problem.

5. Limits of Privacy Partitioning

Privacy Partitioning aims to increase user privacy, though as stated

is not a panacea. The privacy properties depend on numerous factors,

including, though not limited to:

Non-collusion across contexts; and

The type of information exposed in each context.

We elaborate on each below.

5.1. Violations by Collusion

Privacy partitions ensure that only the client, i.e., the entity

which is responsible for partitioning, can link all user-specific

information together up to collusion. No other entity individually

knows how to link all the user-specific information as long as they

do not collude with each other across contexts. This is why non-

collusion is a fundamental requirement for privacy partitioning to

offer meaningful privacy for end-users.

As an example, consider OHTTP, wherein the Oblivious Relay knows the

Client identity but not the Client data, and the Oblivious Gateway

knows the Client data but not the Client identity. If the Oblivious

Relay and Gateway collude, they can link Client identity and data

together for each request and response transaction by simply

observing the requests in transit.

It is not currently possible to guarantee with technical protocol

measure that two entities are not colluding. However, there are some

mitigations that can be applied to reduce the risk of collusion

happening in practice:

Policy and contractual agreements between entities involved in

partitioning, to disallow logging or sharing of data, or to

require auditing.

Protocol requirements to make collusion or data sharing more

difficult.

Adding more partitions and contexts, to make it increasingly

difficult to collude with enough parties to recover identities.

¶

¶

* ¶

* ¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

5.2. Violations by Insufficient Partitioning

It is possible to define contexts that contain more than one type of

user-specific information, despite effort to do otherwise. As an

example, consider OHTTP used for the purposes of hiding client-

identifying information for a browser telemetry system. It is

entirely possible for reports in such a telemetry system to contain

both client-specific telemetry data, such as information about their

specific browser instance, as well as client-identifying

inforamtion, such as the client's location or IP address. Even

though OHTTP separates the client IP address from the server via a

relay, the server still learns this directly from the client.

Other relevant examples of insufficient partitioning include TLS and

Encrypted Client Hello (ECH) [I-D.ietf-tls-esni] and VPNs. TLS and

ECH use cryptographic protection (encryption) to hide information

from unauthorized parties, but both clients and servers (two

entities) can link user-specific data to user-specific identity (IP

address). Similarly, while VPNs hide identity from end servers, the

VPN server has still can see the identity of both the client and

server. Applying privacy partitioning would advocate for at least

two additional entities to avoid revealing both (identity (who) and

user actions (what)) from each involved party.

While straightforward violations of user privacy like this may seem

straightforward to mitigate, it remains an open problem to determine

whether a certain set of information reveals "too much" about a

specific user. There is ample evidence of data being assumed

"private" or "anonymous" but, in hindsight, winds up revealing too

much information such that it allows one to link back to individual

clients; see [DataSetReconstruction] and [CensusReconstruction] for

more examples of this in the real world, and see Section 7 for more

discussion.

6. Impacts of Partitioning

Applying privacy partitioning to communication protocols lead to a

substantial change in communication patterns. For example, instead

of sending traffic directly to a service, essentially all user

traffic is routed through a set of intermediaries, possibly adding

more end-to-end round trips in the process (depending on the system

and protocol). This has a number of practical implications,

described below.

Service operational or management challenges. Information that

is traditionally passively observed in the network or metadata

that has been unintentionally revealed to the service provider

cannot be used anymore for e.g. existing security procedures

such as application rate limiting or DDoS mitigation. However,

¶

¶

¶

¶

1.

[CensusReconstruction]

network management techniques deployed at present often rely on

information that is exposed by most traffic but without any

guarantees that the information is accurate. Privacy

partitioning provides an opportunity for improvements in these

management techniques by providing opportunities to actively

exchange information with each entity in a privacy-preserving

way and requesting exactly the information needed for a

specific task or function rather then relying on assumption

that are derived on a limited set of unintentionally revealed

information which cannot be guaranteed to be present and may

disappear any time in future.

Varying performance effects. Depending on how context

separation is done, privacy partitioning may affect application

performance. As an example, Privacy Pass introduces an entire

end-to-end round trip to issue a token before it can be

redeemed, thereby decreasing perormance. In contrast, while

systems like CONNECT proxying may seem like they would regress

performance, often times the highly optimized nature of proxy-

to-proxy paths leads to improved perforamnce. In general, while

performance and privacy tradeoffs are often cast as a zero sum

game, in reality this is often not the case.

7. Security Considerations

Section 5 discusses some of the limitations of privacy partitioning

in practice. In general, privacy is best viewed as a spectrum and

not a binary state (private or not). Applied correctly, partitioning

helps improve an end-users privacy posture, thereby making

violations harder to do via technical, social, or policy means. For

example, side channels such as traffic analysis

[I-D.irtf-pearg-website-fingerprinting] or timing analysis are still

possible and can allow an unauthorized entity to learn information

about a context they are not a participant of. Proposed mitigations

for these types of attacks, e.g., padding application traffic or

generating fake traffic, can be very expensive and are therefore not

typically applied in practice. Nevertheless, privacy partitioning

moves the threat vector from one that has direct access to user-

specific information to one which requires more effort, e.g.,

computational resources, to violate end-user privacy.

8. IANA Considerations

This document has no IANA actions.

9. Informative References

"The Census Bureau's Simulated

Reconstruction-Abetted Re-identification Attack on the

¶

2.

¶

¶

¶

[CONNECT-IP]

[CONNECT-UDP]

[DataSetReconstruction]

[DOH]

[HPKE]

[I-D.ietf-tls-esni]

[I-D.irtf-pearg-website-fingerprinting]

[ODOH]

[OHTTP]

2010 Census", n.d., <https://www.census.gov/data/academy/

webinars/2021/disclosure-avoidance-series/simulated-

reconstruction-abetted-re-identification-attack-on-

the-2010-census.html>.

Pauly, T., Schinazi, D., Chernyakhovsky, A., Kühlewind,

M., and M. Westerlund, "IP Proxying Support for HTTP",

Work in Progress, Internet-Draft, draft-ietf-masque-

connect-ip-03, 27 September 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-masque-connect-

ip-03>.

Schinazi, D. and L. Pardue, "HTTP Datagrams and the

Capsule Protocol", RFC 9297, DOI 10.17487/RFC9297, August

2022, <https://www.rfc-editor.org/rfc/rfc9297>.

Narayanan, A. and V. Shmatikov, "Robust De-

anonymization of Large Sparse Datasets", 2008 IEEE

Symposium on Security and Privacy (sp 2008), DOI 10.1109/

sp.2008.33, May 2008, <https://doi.org/10.1109/sp.

2008.33>.

Hoffman, P. and P. McManus, "DNS Queries over HTTPS

(DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,

<https://www.rfc-editor.org/rfc/rfc8484>.

Barnes, R., Bhargavan, K., Lipp, B., and C. Wood, "Hybrid

Public Key Encryption", RFC 9180, DOI 10.17487/RFC9180,

February 2022, <https://www.rfc-editor.org/rfc/rfc9180>.

Rescorla, E., Oku, K., Sullivan, N., and C. A.

Wood, "TLS Encrypted Client Hello", Work in Progress,

Internet-Draft, draft-ietf-tls-esni-15, 3 October 2022,

<https://datatracker.ietf.org/doc/html/draft-ietf-tls-

esni-15>.

Goldberg, I., Wang, T., and

C. A. Wood, "Network-Based Website Fingerprinting", Work

in Progress, Internet-Draft, draft-irtf-pearg-website-

fingerprinting-01, 8 September 2020, <https://

datatracker.ietf.org/doc/html/draft-irtf-pearg-website-

fingerprinting-01>.

Kinnear, E., McManus, P., Pauly, T., Verma, T., and C.A.

Wood, "Oblivious DNS over HTTPS", RFC 9230, DOI 10.17487/

RFC9230, June 2022, <https://www.rfc-editor.org/rfc/

rfc9230>.

Thomson, M. and C. A. Wood, "Oblivious HTTP", Work in

Progress, Internet-Draft, draft-ietf-ohai-ohttp-05, 26

https://www.census.gov/data/academy/webinars/2021/disclosure-avoidance-series/simulated-reconstruction-abetted-re-identification-attack-on-the-2010-census.html
https://www.census.gov/data/academy/webinars/2021/disclosure-avoidance-series/simulated-reconstruction-abetted-re-identification-attack-on-the-2010-census.html
https://www.census.gov/data/academy/webinars/2021/disclosure-avoidance-series/simulated-reconstruction-abetted-re-identification-attack-on-the-2010-census.html
https://www.census.gov/data/academy/webinars/2021/disclosure-avoidance-series/simulated-reconstruction-abetted-re-identification-attack-on-the-2010-census.html
https://datatracker.ietf.org/doc/html/draft-ietf-masque-connect-ip-03
https://datatracker.ietf.org/doc/html/draft-ietf-masque-connect-ip-03
https://datatracker.ietf.org/doc/html/draft-ietf-masque-connect-ip-03
https://www.rfc-editor.org/rfc/rfc9297
https://doi.org/10.1109/sp.2008.33
https://doi.org/10.1109/sp.2008.33
https://www.rfc-editor.org/rfc/rfc8484
https://www.rfc-editor.org/rfc/rfc9180
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-15
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-15
https://datatracker.ietf.org/doc/html/draft-irtf-pearg-website-fingerprinting-01
https://datatracker.ietf.org/doc/html/draft-irtf-pearg-website-fingerprinting-01
https://datatracker.ietf.org/doc/html/draft-irtf-pearg-website-fingerprinting-01
https://www.rfc-editor.org/rfc/rfc9230
https://www.rfc-editor.org/rfc/rfc9230

[PRIVACYPASS]

[QUIC]

[RFC6973]

September 2022, <https://datatracker.ietf.org/doc/html/

draft-ietf-ohai-ohttp-05>.

Davidson, A., Iyengar, J., and C. A. Wood, "The

Privacy Pass Architecture", Work in Progress, Internet-

Draft, draft-ietf-privacypass-architecture-08, 17 October

2022, <https://datatracker.ietf.org/doc/html/draft-ietf-

privacypass-architecture-08>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,

Morris, J., Hansen, M., and R. Smith, "Privacy

Considerations for Internet Protocols", RFC 6973, DOI

10.17487/RFC6973, July 2013, <https://www.rfc-editor.org/

rfc/rfc6973>.

Acknowledgments

TODO acknowledge.

Authors' Addresses

Mirja Kühlewind

Ericsson Research

Email: mirja.kuehlewind@ericsson.com

Tommy Pauly

Apple

Email: tpauly@apple.com

Christopher A. Wood

Cloudflare

Email: caw@heapingbits.net

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ohai-ohttp-05
https://datatracker.ietf.org/doc/html/draft-ietf-ohai-ohttp-05
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-architecture-08
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-architecture-08
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc6973
https://www.rfc-editor.org/rfc/rfc6973
mailto:mirja.kuehlewind@ericsson.com
mailto:tpauly@apple.com
mailto:caw@heapingbits.net

	Partitioning as an Architecture for Privacy
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Privacy Partitioning
	2.1. Privacy Contexts
	2.2. Context Separation

	3. A Survey of Protocols using Partitioning
	3.1. CONNECT Proxying and MASQUE
	3.2. Oblivious HTTP and DNS
	3.3. Privacy Pass
	3.4. Privacy Preserving Measurement

	4. Applying Privacy Partioning
	5. Limits of Privacy Partitioning
	5.1. Violations by Collusion
	5.2. Violations by Insufficient Partitioning

	6. Impacts of Partitioning
	7. Security Considerations
	8. IANA Considerations
	9. Informative References
	Acknowledgments
	Authors' Addresses

