
QUIC C. Krasic
Internet-Draft Google
Intended status: Standards Track July 17, 2017
Expires: January 18, 2018

Header Compression for HTTP over QUIC
draft-krasic-quic-qcram-01

Abstract

 The design of the core QUIC transport and the mapping of HTTP
 semantics over it subsume many HTTP/2 features, prominent among them
 stream multiplexing and HTTP header compression. A key advantage of
 the QUIC transport is that provides stream multiplexing free of HoL
 blocking between streams, while in HTTP/2 multiplexed streams can
 suffer HoL blocking primarily due to HTTP/2's layering above TCP.
 However, assuming HPACK is used for header compression, HTTP over
 QUIC is still vulnerable to HoL blocking, because of how HPACK
 exploits header redundancies between multiplexed HTTP transactions.
 This draft defines QCRAM, a variation of HPACK and mechanisms in the
 QUIC HTTP mapping that allow QUIC implementations the flexibility to
 avoid header-compression induced HoL blocking.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 18, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Krasic Expires January 18, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft QCRAM July 2017

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. QCRAM overview . 3
2.1. Example of HoL blocking 3
2.2. How QCRAM avoids HoL blocking 4
2.2.1. Splitting writes from reads 4
2.2.2. HPACK Fallback 5
2.2.3. Header Blocks, Fragments, Frames, Packets... 5

3. HPACK extensions . 6
3.1. HPACK fallback . 6
3.2. QCRAM . 6
3.2.1. Indexing . 7
3.2.2. HoL blocking logic 7
3.2.3. Table evictions 8
3.2.4. Manditory De-duplication for equivilant entries . . . 8

4. HTTP Mapping changes . 8
4.1. Encode epoch . 9
4.2. Commit epoch . 9
4.3. Packet epoch . 9

5. Performance considerations 9
5.1. Memory footprint . 10
5.2. Table evictions . 10
5.3. Speculative table updates 10
5.4. Eliminating sequence numbers 10
5.5. Fixed overhead. 10

6. Security Considerations 11
7. IANA Considerations . 11
8. Acknowledgments . 11
9. Normative References . 11

 Author's Address . 12

1. Introduction

 The QUIC transport protocol was designed from the outset to support
 HTTP semantics, and its design subsumes most of the features of
 HTTP/2. Two of those features, stream multiplexing and header
 compression come into some conflict in QUIC. A key goal of the
 design of QUIC is to improve stream multiplexing relative to HTTP/2,
 by eliminating HoL (head of line) blocking that can occur in HTTP/2.

http://trustee.ietf.org/license-info

Krasic Expires January 18, 2018 [Page 2]

Internet-Draft QCRAM July 2017

 HoL blocking can happen because HTTP/2 streams are multiplexed onto a
 single TCP connection with its in-order semantics. QUIC can maintain
 independence between streams because it implements core transport
 functionality in a fully stream-aware manner. However, the HTTP over
 QUIC mapping is still subject to HoL blocking if HPACK is used
 directly as in HTTP/2. HPACK exploits multiplexing for greater
 compression, shrinking the representation of headers that have
 appeared earlier on the same connection. In the context of QUIC,
 this imposes a vulnerability to HoL blocking as will be described
 more below (Section 2.1).

 QUIC is described in [QUIC-TRANSPORT]. The HTTP over QUIC mapping is
 described in [QUIC-HTTP]. For a full description of HTTP/2, see
 [RFC7540]. The description of HPACK is [RFC7541].

2. QCRAM overview

 Readers may wish to refer to [RFC7540] Section 1.4 to review HPACK
 terminology, and [QUIC-HTTP], Sections 4 on "HTTP over QUIC stream
 mapping" and 4.2.1 on "Header Compression".

 This draft extends HPACK and the HTTP over QUIC mapping with the
 option to avoid HoL blocking. QCRAM is intended to be a relatively
 non-intrusive extension to HPACK, an implementation should be easily
 shared within stacks supporting both HTTP/2 and HTTP over QUIC.

 QCRAM strives to solve HoL blocking in the simplest way possible. To
 that end, the mechanisms QCRAM defines are largely at the granularity
 of header blocks, as opposed to individual header field
 representations. QCRAM also employs HPACK fallback modes that
 simplify certain edge cases and offer flexibilty.

 For greatest performance, QCRAM requires QUIC specific mechanisms
 that leverage tight integration between transport and HTTP layers, as
 will be described in Section 2.2.3.

2.1. Example of HoL blocking

 The following is an example of how HPACK can induce HoL blocking in
 QUIC. Assume two HTTP message exchange streams "A" and "B", and
 corresponding header blocks "HA" and "HB". Stream "B" experiences
 HoL blocking due to "A" as follows:

 1. HPACK encodes header field "HB[i]" using an index that refers to
 a table entry that resulted from header field "HA[j]".

 2. "HA" and "HB" are delivered via distinct packets that are
 inflight in the same round trip.

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7541
https://datatracker.ietf.org/doc/html/rfc7540#section-1.4

Krasic Expires January 18, 2018 [Page 3]

Internet-Draft QCRAM July 2017

 3. "HB"'s packet is delivered but "HA"'s is dropped. HPACK can not
 decode "HB" until "HA"'s packet is successfully retransmitted.

2.2. How QCRAM avoids HoL blocking

 Continuing the example, QCRAM's approach is as follows.

 1. "HB[i]" can refer to "HA[j]" if "HA[j]" was delivered in a prior
 round trip.

 2. "HB[i]" can refer to "HA[j]" if "HA" and "HB" are to be delivered
 in the same packet.

 3. Otherwise, HB is vulnerable to HoL blocking due to HA. "HB[i]"
 should be represented using an HPACK literal. Alternatively, HB
 should use HPACK fallback (Section 2.2.2).

 Some degree of coordination between the HTTP mapping and core QUIC
 transport is required to distinguish the above cases. The first case
 can be supported if the transport has some method to notify as
 previously written data are acknowledged Section 4.2. The second
 case can be approximate or precise, depending on whether the
 transport interface allows packet granularity coordination

Section 2.2.3.

2.2.1. Splitting writes from reads

 _Note: this draft assumes the HTTP mapping uses a single QUIC stream
 per HTTP message exchange._

 HPACK indexed entries refer to an entry by its current position in
 the dynamic table. As Figure 1 of [RFC7541] illustrates, newest
 entries have smallest indices, and oldest entries are evicted first
 if the table is full. Under this scheme, each insertion to the table
 causes the index of all existing entries to change (implicitly). The
 approach is acceptable for HTTP/2 because TCP is totally ordered, but
 it is is problematic in the out-of-order context of QUIC.

 QCRAM partitions HPACK Header Field Representations (refer to
[RFC7540] Section 6.2) data into _writes_ and _reads_. The writes

 are made up of Literal Header Fields with Incremental Indexing (refer
 to [RFC7540] Section 6.2.1), all others are reads.

 1. Writes are delivered on the on the Connection Control Stream
 (refer to [QUIC-HTTP] Section 1). This primary purpose of this
 separation is to ensure that stream resets can not drop HPACK
 data that is required to keep the encoder and decoder versions of
 the dynamic table synchronized. Since all writes are on the same

https://datatracker.ietf.org/doc/html/rfc7541
https://datatracker.ietf.org/doc/html/rfc7540#section-6.2
https://datatracker.ietf.org/doc/html/rfc7540#section-6.2.1

Krasic Expires January 18, 2018 [Page 4]

Internet-Draft QCRAM July 2017

 stream, they have the same ordering properties as in HTTP/2, and
 HPACK's implicit positioning can remain unchanged for writes.

 2. Reads are delivered on the HTTP Message Exchange Streams. QCRAM
 uses a hybrid absolute-relative indexing approach for reads. The
 purpose is to ensure that indexed header field representations
 remain coherent under out-of-order delivery. QCRAM header block
 fragments for reads start with an integer that conveys an
 absolute base index (defined in Section Section 3.2.1). The
 format of individual indexed representations does not change
 (from HPACK), but their semantics become absolute in combination
 with the base index. Processing of reads MUST block if the
 corresponding entry has not been added to the table yet. To
 protect against buggy or malicious implementations, a timer
 should be used to set an upper bound on such blocking and in the
 event of a timeout SHOULD reset the stream with
 HTTP_HPACK_DECOMPRESSION_TIMEOUT.

2.2.2. HPACK Fallback

 There are two modes of HPACK fallback for a given header block HX:

 1. HX is delivered on the HTTP request-response stream, but may only
 contain indexed entries that reference the static HPACK table.
 This mode is HoL free, but looses the compression benefit of the
 HPACK dynamic table.

 2. HX is delivered on the Connection Control Stream. In this case,
 the implemenation must take care to ensure that headers and body
 data are surfaced to the application in the correct sequence.
 This mode favors compression, accepting vulnerability to HoL
 blocking.

 Both modes are immune to reference-after-eviction races, discussed in
Section 3.2.3.

2.2.3. Header Blocks, Fragments, Frames, Packets...

 _Note: this section describes mechanisms for optimal coordination
 compression with packetization. It remains an open issue whether
 such coordination adds more complexity than is worthwhile._

 As with other aspects of QUIC, QCRAM aims to leverage opportunities
 for tighter integration between layers, in ways that may not have
 been practical in HTTP/2 due to various forms of ossification. The
 two specific instance of this are coordination of framing with packet
 generation, as described in the following paragraph, and use of

Krasic Expires January 18, 2018 [Page 5]

Internet-Draft QCRAM July 2017

 transport acknowledgments to reason about encoder-decoder state
 synchronization, which will be described in Section 4.

 QCRAM header compression framing differs slightly from HTTP/2.
Section 4.3 of [RFC7540] declares that:

 Header lists are collections of zero or more header fields. When
 transmitted over a connection, a header list is serialized into a
 header block using HTTP header compression [RFC7541]. The
 serialized header block is then divided into one or more octet
 sequences, called header block fragments, and transmitted within
 the payload of HEADERS (Section 6.2), PUSH_PROMISE (Section 6.6),
 or CONTINUATION (Section 6.10) frames.

 Where RFC 7540 suggests that HPACK serialize a complete header list
 into a single header block, QCRAM header encoding MAY be progressive:
 compression of a Header List happens iteratively, where each
 iteration produces a single Header Block Fragment constrained to fit
 within the space available in the current transport packet. _Each
 iteration informs the progressive HPACK encoder of available space
 and the encoder generates only as many HPACK representations as fit_.
 The resulting header block fragment is encapsulated by an HTTP
 mapping headers frame (HEADERS or PUSH_PROMISE or CONTINUATION), and
 the headers frame will be encapsulated by a QUIC transport-level
 STREAM frame. This combined with the logic of Section 3.2.2, favors
 compression within a packet and avoids vulnerability to HoL blocking
 between packets concurrently in flight.

3. HPACK extensions

3.1. HPACK fallback

 In QCRAM, the HPACK encoder interface needs to support the HoL-free
 HPACK fallback, causing it to operate in mode that disables
 references to the dynamic table.

3.2. QCRAM

 The encoder interface should allow writes and reads returned in
 separate destinations, to be written to the Connection Control Stream
 and the HTTP message exchanges streams respectively. For the writes,
 the encoder should emit only Literal Header Fields with Incremental
 Indexing, and skip other entries. For the reads, the complete header
 field set should be represented. For each of the write entries,
 there will be a corresponding indexed entry in the reads.

 The interfaces should also specify whether HPACK fallback is desired.
 If so, then if an entry is found to be vulnerable to HoL blocking

https://datatracker.ietf.org/doc/html/rfc7540#section-4.3
https://datatracker.ietf.org/doc/html/rfc7541
https://datatracker.ietf.org/doc/html/rfc7540

Krasic Expires January 18, 2018 [Page 6]

Internet-Draft QCRAM July 2017

 (see Section 3.2.2), the QCRAM encode should be aborted, and the
 block re-encoded using an HPACK fallback mode.

 Finally, if progressive encoding is supported, the encoder interface
 should allow iteration, with the number of bytes available in the
 current packet specified at each iteration.

3.2.1. Indexing

 The read data should be prefixed by the absolute index to allow out
 of order processing. The prefix is a single HPACK integer (8-bit
 prefix) that encodes the value of the base index, defined as the
 total number of entries that had been inserted to the dynamic table
 thus far.

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |Base Index (8+)|
 +-+-+-+-+-+-+-+-+

 Figure 1: Base Index

3.2.2. HoL blocking logic

 QCRAM adds three integer _epochs_ to HPACK state, provided by the
 HTTP mapping layer:

 1. "encode_epoch": the count of header block fragments encoded thus
 far. When entries are added to they dynamic table, the current
 encode epoch is stored with the entry.

 2. "packet_epoch": the first encode epoch in the current QUIC
 packet.

 3. "commit_epoch": the highest in-order encode epoch acknowledged to
 the encoder side.

 The following must hold: "encode_epoch >= packet_epoch >
 commit_epoch". Section 3.2 describes how the epoch values are
 computed.

 QCRAM encode conceptually works by first generating the writes, and
 then processing the header list again to generate the reads. For
 reads, the encoder will emit an indexed representation only if it is
 not vulnerable to HoL blocking, that is if there is a matching entry
 in the dynamic table such that: "entry.encode_epoch <= commit_epoch
 or entry.encode_epoch >= packet_epoch". If not, it either generate a
 incremental indexed literal, or abort the encode if HPACK fallback is

Krasic Expires January 18, 2018 [Page 7]

Internet-Draft QCRAM July 2017

 enabled. For aborted encodes, the HTTP mapping should re-encode
 using one of the HPACK fallback modes.

3.2.3. Table evictions

 Since QCRAM allows headers to be processed out of order, it is
 possible that a header block fragment may contain references to
 entries that have been evicted by the time it arrives. The decoder
 can detect this because the absolute index of the most recent
 eviction is known. If the decoder does not have the referenced entry
 it MUST reset the stream with "HTTP_HPACK_EVICTION_TOO_LATE". See

Section 5.2 for performance considerations.

3.2.4. Manditory De-duplication for equivilant entries

 HPACK allows duplicate table entries, that is entries that have the
 same name and value. QCRAM's HoL blocking logic could lead to a
 large number of duplicates. For example, if many headers are sent in
 the same round trip that all contain the same new header field
 (potentially large), QCRAM's logic may result in many duplicate table
 insertions leading to a form of table explosion. Contrast with HPACK
 where all but the first entry would have been (non-incremental)
 indexed representations. To help mitigate such cases, HPACK for
 QCRAM is required to de-duplicate strings in the dynamic table. The
 table insertion logic should check if the new entry matches any
 existing entries (name and value), and if so, table accounting MUST
 charge only the overhead portion ([RFC7541] Section 4.1) to the new
 entry. De-duplication is left as an exercise of the implementation,
 but using reference counted pointers to strings in table entries
 would be typical. De-duplication MUST be used for QCRAM and HPACK
 fallback modes.

4. HTTP Mapping changes

 This draft assumes the HTTP mapping uses a single QUIC stream per
 HTTP message exchange. As described above, some header data will be
 sent on the Connection Control Stream, and other on the HTTP message
 exchange streams.

 Header frames will be sent on the Connection Control Stream for:

 1. Writes of QCRAM headers.

 2. Speculative writes to the table (see Section 5.3).

 3. The HTTP fallback mode that favors compression ratio. In this
 case, the header must indicate the stream-id to which the header

https://datatracker.ietf.org/doc/html/rfc7541#section-4.1

Krasic Expires January 18, 2018 [Page 8]

Internet-Draft QCRAM July 2017

 applies. _TBD: Describe wire format changes to add optional
 stream-id to headers frames._

 Header frames will be sent on the HTTP message exchange stream for:

 1. Reads of QCRAM headers.

 2. The HTTP fallback mode that favors resilience to HoL blocking.

 The HPACK encoder interface is extended for QCRAM. When encoding
 headers, the HTTP mapping indicates QCRAM or HPACK fallback. The
 HTTP mapping also provides the commit, packet, and encoding epoch.
 For QCRAM encodes, the interface includes separate outputs for the
 writes and reads, and a return value that indicates when a header
 should be re-encoded with HPACK fallback (see Section 2.2).

4.1. Encode epoch

 "encode_epoch" increments for every new header block fragment
 encoded.

4.2. Commit epoch

 "commit_epoch", the highest in-order acknowledged encode epoch. An
 encode epoch is considered acknowledged when all the bytes of the
 corresponding header frame have been acknowledged. The mapping layer
 keeps a _commit queue_, to track of header frames by their encode
 epochs, and monitors transport acknowledgments to determine when to
 advance "commit_epoch". This monitoring should only apply to the
 header frames sent on the Connection Control Stream. Header frames
 on the HTTP message exchange streams are read only with respect to
 the dynamic table, hence do not result in commits. The calculation
 of "commit_epoch" piggybacks on existing QUIC transport mechanisms,
 no corresponding wire format changes are needed.

4.3. Packet epoch

 "packet_epoch" is the first encode epoch in the current QUIC packet.
 If packet coordination is not employed, this may be approximated. A
 simple approximation would be to set "packet_epoch = encode_epoch"
 for each header frame written to the Connection Control Stream.

5. Performance considerations

Krasic Expires January 18, 2018 [Page 9]

Internet-Draft QCRAM July 2017

5.1. Memory footprint

 The progressive compression regime described in Section 2.2.3 would
 change the memory footprint associated with header processing,
 potentially for better and worse:

 o Delaying compression until there is space on the wire might
 necessitate some form of additional copying and buffering.

 o Delaying compression might mean that uncompressed headers are
 retained longer and consume more memory.

 o Progressive compression might save memory if accumulating the full
 header in the first place takes significant time, as might be the
 case with larger headers transiting proxy or front end servers.

5.2. Table evictions

 HTTP_HPACK_EVICTION_TOO_LATE resets should be rare in practice,
 nevertheless there are strategies the might further reduce their
 likelihood. Encoder implementations could uses heuristics to assess
 vulnerabiltiy to such errors, and employ HPACK fallback to headers
 deemed at high risk. Decoder implemenations may choose to reserve
 extra table space, delaying evictions relative to the encoder.

5.3. Speculative table updates

 Implementations can _speculatively_ send header frames on the HTTP
 Connection Control Stream. Such headers would not be associated with
 any HTTP transaction, but could be used strategically to improve
 performance. For instance, the encoder might decide to resend
 entries for the most popular header fields, to ensure they have the
 small indices and hence minimal size on the wire.

5.4. Eliminating sequence numbers

 Due to the hybrid indexing scheme, and the HPACK fallbacks, the
 sequence numbers currently defined by the HTTP Mapping in the wire
 format of "HEADERS" and "PUSH_PROMISE" frames are unnecessary with
 QCRAM.

5.5. Fixed overhead.

 HPACK defines overhead as 32 bytes ([RFC7541] Section 4.1). QCRAM
 adds the encode epoch per table entry, and requires mechanisms to de-
 duplicate strings. A larger value than 32 might be more accurate for
 QCRAM.

https://datatracker.ietf.org/doc/html/rfc7541#section-4.1

Krasic Expires January 18, 2018 [Page 10]

Internet-Draft QCRAM July 2017

6. Security Considerations

 TBD.

7. IANA Considerations

 This document currently makes no request of IANA, and might not need
 to.

8. Acknowledgments

 This draft draws heavily on the text of [RFC7541]. The indirect
 input of those authors is gratefully acknowledged, as well as ideas
 from:

 o Mike Bishop

 o Patrick McManus

 o Biren Roy

 o Alan Frindell

 o Ian Swett

9. Normative References

 [QUIC-HTTP]
 Bishop, M., Ed., "Hypertext Transfer Protocol (HTTP) over
 QUIC", July 2017.

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", July 2017.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

 [RFC7541] Peon, R. and H. Ruellan, "HPACK: Header Compression for
 HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,
 <http://www.rfc-editor.org/info/rfc7541>.

https://datatracker.ietf.org/doc/html/rfc7541
https://datatracker.ietf.org/doc/html/rfc7540
http://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc7541
http://www.rfc-editor.org/info/rfc7541

Krasic Expires January 18, 2018 [Page 11]

Internet-Draft QCRAM July 2017

Author's Address

 Charles 'Buck' Krasic
 Google

 Email: ckrasic@google.com

Krasic Expires January 18, 2018 [Page 12]

