
QUIC C. Krasic
Internet-Draft Google
Intended status: Standards Track January 23, 2018
Expires: July 27, 2018

Header Compression for HTTP over QUIC
draft-krasic-quic-qcram-04

Abstract

 The design of the core QUIC transport subsumes many HTTP/2 features,
 prominent among them stream multiplexing. A key advantage of the
 QUIC transport is stream multiplexing free of head-of-line (HoL)
 blocking between streams. In HTTP/2, multiplexed streams can suffer
 HoL blocking due to TCP.

 If HTTP/2's HPACK is used for header compression, HTTP/QUIC is still
 vulnerable to HoL blocking, because of HPACK's assumption of in-order
 delivery. This draft defines QCRAM, a variation of HPACK and
 mechanisms in the HTTP/QUIC mapping that allow the flexibility to
 avoid header-compression-induced HoL blocking.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 27, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

Krasic Expires July 27, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft QCRAM January 2018

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Head-of-Line Blocking in HPACK 3
1.2. Avoiding Head-of-Line Blocking in HTTP/QUIC 3

2. HTTP over QUIC mapping extensions 4
2.1. HEADERS and PUSH_PROMISE 4
2.2. HEADER_ACK . 4

3. HPACK extensions . 5
3.1. Allowed Instructions 5
3.2. Header Block Prefix 5
3.3. Hybrid absolute-relative indexing 6
3.4. Preventing Eviction Races 6
3.4.1. Blocked Evictions 7

3.5. Refreshing Entries with Duplication 7
4. Performance considerations 7
4.1. Speculative table updates 7
4.2. Fixed overhead. 8
4.3. Co-ordinated Packetization 8

5. Security Considerations 8
6. IANA Considerations . 8
7. Acknowledgments . 8
8. References . 9
8.1. Normative References 9
8.2. Informative References 9

 Author's Address . 9

1. Introduction

 The QUIC transport protocol was designed from the outset to support
 HTTP semantics, and its design subsumes many of the features of
 HTTP/2. QUIC's stream multiplexing comes into some conflict with
 header compression. A key goal of the design of QUIC is to improve
 stream multiplexing relative to HTTP/2 by eliminating HoL (head of
 line) blocking, which can occur in HTTP/2. HoL blocking can happen
 because all HTTP/2 streams are multiplexed onto a single TCP
 connection with its in-order semantics. QUIC can maintain
 independence between streams because it implements core transport
 functionality in a fully stream-aware manner. However, the HTTP/QUIC
 mapping is still subject to HoL blocking if HPACK is used directly.
 HPACK exploits multiplexing for greater compression, shrinking the

Krasic Expires July 27, 2018 [Page 2]

Internet-Draft QCRAM January 2018

 representation of headers that have appeared earlier on the same
 connection. In the context of QUIC, this imposes a vulnerability to
 HoL blocking (see Section 1.1).

 QUIC is described in [QUIC-TRANSPORT]. The HTTP/QUIC mapping is
 described in [QUIC-HTTP]. For a full description of HTTP/2, see
 [RFC7540]. The description of HPACK is [RFC7541], with important
 terminology in Section 1.3.

 QCRAM modifies HPACK to allow correctness in the presence of out-of-
 order delivery, with flexibility for implementations to balance
 between resilience against HoL blocking and optimal compression
 ratio. The design goals are to closely approach the compression
 ratio of HPACK with substantially less head-of-line blocking under
 the same loss conditions.

 QCRAM is intended to be a relatively non-intrusive extension to
 HPACK; an implementation should be easily shared within stacks
 supporting both HTTP/2 over (TLS+)TCP and HTTP/QUIC.

1.1. Head-of-Line Blocking in HPACK

 HPACK enables several types of header representations, one of which
 also adds the header to a dynamic table of header values. These
 values are then available for reuse in subsequent header blocks
 simply by referencing the entry number in the table.

 If the packet containing a header is lost, that stream cannot
 complete header processing until the packet is retransmitted. This
 is unavoidable. However, other streams which rely on the state
 created by that packet _also_ cannot make progress. This is the
 problem which QUIC solves in general, but which is reintroduced by
 HPACK when the loss includes a HEADERS frame.

1.2. Avoiding Head-of-Line Blocking in HTTP/QUIC

 In the example above, the second stream contained a reference to data
 which might not yet have been processed by the recipient. Such
 references are called "vulnerable," because the loss of a different
 packet can keep the reference from being usable.

 The encoder can choose on a per-header-block basis whether to favor
 higher compression ratio (by permitting vulnerable references) or HoL
 resilience (by avoiding them). This is signaled by the BLOCKING flag
 in HEADERS and PUSH_PROMISE frames (see Section 2).

 If a header block contains no vulnerable header fields, BLOCKING MUST
 be 0. This implies that the header fields are represented either as

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7541

Krasic Expires July 27, 2018 [Page 3]

Internet-Draft QCRAM January 2018

 references to dynamic table entries which are known to have been
 received, or as Literal header fields (see [RFC7541] Section 6.2).

 If a header block contains any header field which references dynamic
 table state which the peer might not have received yet, the BLOCKING
 flag MUST be set. If the peer does not yet have the appropriate
 state, such blocks might not be processed on arrival.

 The header block contains a prefix (Section 3.2). This prefix
 contains table offset information that establishes total ordering
 among all headers, regardless of reordering in the transport (see

Section 3.3). In blocking mode, the prefix additionally identifies
 the minimum state required to process any vulnerable references in
 the header block (see "Depends" in Section Section 3.3). When the
 necessary state has arrived, the header block can be processed.
 Notice that while blocked, HB's header field data remains in stream
 B's flow control window.

2. HTTP over QUIC mapping extensions

2.1. HEADERS and PUSH_PROMISE

 HEADERS and PUSH_PROMISE frames define a new flag.

 BLOCKING (0x01): Indicates the stream might need to wait for
 dependent headers before processing. If 0, the frame can be
 processed immediately upon receipt.

 HEADERS frames can be sent on the Connection Control Stream as well
 as on request / push streams.

2.2. HEADER_ACK

 The HEADER_ACK frame (type=0x8) is sent from the decoder to the
 encoder on the Control Stream when the decoder has fully processed a
 header block. It is used by the encoder to determine whether
 subsequent indexed representations that might reference that block
 are vulnerable to HoL blocking.

 The HEADER_ACK frame indicates the stream on which the header block
 was processed by encoding the Stream ID as a variable-length integer.
 The same Stream ID can be identified multiple times, as multiple
 header-containing blocks can be sent on a single stream in the case
 of intermediate responses, trailers, pushed requests, etc. as well as
 on the Control Streams.

 Since header frames on each stream are received and processed in
 order, this gives the encoder precise feedback on which header blocks

https://datatracker.ietf.org/doc/html/rfc7541#section-6.2

Krasic Expires July 27, 2018 [Page 4]

Internet-Draft QCRAM January 2018

 within a stream have been fully processed. This information can then
 be used to correctly track outstanding stream references to
 checkpoints.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | Stream ID [i] |
 +---+---------------------------+

 HEADER_ACK frame

 The HEADER_ACK frame does not define any flags.

3. HPACK extensions

3.1. Allowed Instructions

 HEADERS frames on the Control Streams SHOULD contain only Literal
 with Incremental Indexing representations. Frames on this stream
 modify the dynamic table state without generating output to any
 particular request.

 HEADERS and PUSH_PROMISE frames on request and push streams MUST NOT
 contain Literal with Incremental Indexing representations. Frames on
 these streams reference the dynamic table in a particular state
 without modifying it, but emit the headers for an HTTP request or
 response.

3.2. Header Block Prefix

 In HEADERS and PUSH_PROMISE frames, HPACK Header data is prefixed by
 an integer: "Base Index". "Base index" is the cumulative number of
 entries added to the table prior to encoding the current block, it is
 encoded as a single 8-bit prefix integer:

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |Base Index (8+)|
 +---------------+

 Figure 1: Absolute indexing (BLOCKING=0x0)

Section 3.3 describes the role of "Base Index".

 When the BLOCKING flag is 0x1, a the prefix additionally contains a
 second HPACK integer (8-bit prefix) 'Depends':

Krasic Expires July 27, 2018 [Page 5]

Internet-Draft QCRAM January 2018

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |Base Index (8+)|
 +---------------+
 |Depends (8+)|
 +---------------+

 Figure 2: Absolute indexing (BLOCKING=0x1)

 Depends is used to identify header dependencies, namely the largest
 table entry referred to by indexed representations within the
 following header block. Its usage is described in Section 1.2. The
 largest index referenced is "Base Index - Depends".

3.3. Hybrid absolute-relative indexing

 HPACK indexed entries refer to an entry by its current position in
 the dynamic table. As Figure 1 of [RFC7541] illustrates, newer
 entries have smaller indices, and older entries are evicted first if
 the table is full. Under this scheme, each insertion to the table
 causes the index of all existing entries to change (implicitly).
 Implicit index updates are acceptable for HTTP/2 because TCP is
 totally ordered, but are problematic in the out-of-order context of
 QUIC.

 QCRAM uses a hybrid absolute-relative indexing approach. The prefix
 defined in Section 3.2 is used by the decoder to interpret all
 subsequent HPACK instructions at absolute positions for indexed
 lookups and insertions.

 Since QCRAM handles blocking at the header block level, it is an
 error if the HPACK decoder encounters an indexed representation that
 refers to an entry missing from the table, and the connection MUST be
 closed with the "HTTP_HPACK_DECOMPRESSION_FAILED" error code.

3.4. Preventing Eviction Races

 Due to out-of-order arrival, QCRAM's eviction algorithm requires
 changes (relative to HPACK) to avoid the possibility that an indexed
 representation is decoded after the referenced entry has already been
 evicted. QCRAM employs a two-phase eviction algorithm, in which the
 encoder will not evict entries that have outstanding (unacknowledged)
 references.

https://datatracker.ietf.org/doc/html/rfc7541

Krasic Expires July 27, 2018 [Page 6]

Internet-Draft QCRAM January 2018

3.4.1. Blocked Evictions

 The decoder MUST NOT permit an entry to be evicted while a reference
 to that entry remains unacknowledged. If a new header to be inserted
 into the dynamic table would cause the eviction of such an entry, the
 encoder MUST NOT emit the insert instruction until the reference has
 been processed by the decoder and acknowledged.

 The encoder can emit a literal representation for the new header in
 order to avoid encoding delays, and MAY insert the header into the
 table later if desired.

 To ensure that the blocked eviction case is rare, references to the
 oldest entries in the dynamic table SHOULD be avoided. When one of
 the oldest entries in the table is still actively used for
 references, the encoder SHOULD emit an Indexed-Duplicate
 representation instead (see Section 3.5).

3.5. Refreshing Entries with Duplication

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |0|0|1|Index(5+)|
 +-+-+-+---------+

 Figure 3: Indexed Header Field with Duplication

 Indexed-Duplicates insert a new entry into the dynamic table which
 duplicates an existing entry. [RFC7541] allows duplicate HPACK table
 entries, that is entries that have the same name and value.

 This replaces the HPACK instruction for Dynamic Table Size Update
 (see Section 6.3 of [RFC7541], which is not supported by HTTP over
 QUIC.

4. Performance considerations

4.1. Speculative table updates

 Implementations can _speculatively_ send header frames on the HTTP
 Control Streams which are not needed for any current HTTP request or
 response. Such headers could be used strategically to improve
 performance. For instance, the encoder might decide to _refresh_ by
 sending Indexed-Duplicate representations for popular header fields
 (Section 3.2), ensuring they have small indices and hence minimal
 size on the wire.

https://datatracker.ietf.org/doc/html/rfc7541
https://datatracker.ietf.org/doc/html/rfc7541#section-6.3

Krasic Expires July 27, 2018 [Page 7]

Internet-Draft QCRAM January 2018

4.2. Fixed overhead.

 HPACK defines overhead as 32 bytes ([RFC7541] Section 4.1). QCRAM
 adds some per-entry state, to track acknowledgment status and
 eviction reference count. A larger value than 32 might be more
 accurate for QCRAM.

4.3. Co-ordinated Packetization

 When a dynamic table entry is both defined and referenced by header
 blocks within the same packet, there is no risk of HoL blocking and
 using an indexed representation is strictly better than using a
 literal. An implementation could attempt to exploit this exception
 by employing co-ordination between QCRAM compression and QUIC
 transport packetization. However, if the packet is lost, the
 transport might choose a different packetization when retransmitting
 the missing data.

5. Security Considerations

 TBD.

6. IANA Considerations

 This document registers a new frame type, HEADER_ACK, for HTTP/QUIC.
 This will need to be added to the IANA Considerations of [QUIC-HTTP].

7. Acknowledgments

 This draft draws heavily on the text of [RFC7541]. The indirect
 input of those authors is gratefully acknowledged, as well as ideas
 from:

 o Mike Bishop

 o Patrick McManus

 o Biren Roy

 o Alan Frindell

 o Ian Swett

 o Ryan Hamilton

https://datatracker.ietf.org/doc/html/rfc7541#section-4.1
https://datatracker.ietf.org/doc/html/rfc7541

Krasic Expires July 27, 2018 [Page 8]

Internet-Draft QCRAM January 2018

8. References

8.1. Normative References

 [QUIC-HTTP]
 Bishop, M., "Hypertext Transfer Protocol (HTTP) over
 QUIC", draft-ietf-quic-http-08 (work in progress),
 December 2017.

 [RFC7541] Peon, R. and H. Ruellan, "HPACK: Header Compression for
 HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,
 <https://www.rfc-editor.org/info/rfc7541>.

8.2. Informative References

 [QUIC-TRANSPORT]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-08 (work
 in progress), December 2017.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

Author's Address

 Charles 'Buck' Krasic
 Google

 Email: ckrasic@google.com

https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-08
https://datatracker.ietf.org/doc/html/rfc7541
https://www.rfc-editor.org/info/rfc7541
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-08
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540

Krasic Expires July 27, 2018 [Page 9]

