
IPSec Working Group T. Krovetz, Intel
INTERNET-DRAFT J. Black, UNR
Expires April 2001 S. Halevi, IBM
 A. Hevia, U.C. San Diego
 H. Krawczyk, Technion
 P. Rogaway, U.C. Davis
 October 2000

UMAC: Message Authentication Code using Universal Hashing
<draft-krovetz-umac-00.txt>

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This specification describes how to generate an authentication tag
 (also called a "MAC") using the UMAC message authentication code.
 UMAC is designed to be very fast to compute, in software, on
 contemporary processors. Measured speeds are as low as 1.0 cycles
 per byte. The heart of UMAC is a universal hash function, UHASH,
 which relies on addition and multiplication of 16-bit, 32-bit, or
 64-bit numbers, operations well-supported by contemporary machines.

 To generate the authentication tag on a given message, UHASH is
 applied to the message and key to produce a short, fixed-length, hash
 value, and this hash value is then XOR-ed with a key-derived
 pseudorandom pad. UMAC enjoys a rigorous security analysis and its
 only "cryptographic" use is a block cipher, AES, to generate the
 pseudorandom pads and internal key material.

Krovetz et al. Expires April 2001 [Page 0]

https://datatracker.ietf.org/doc/html/draft-krovetz-umac-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/shadow.html

INTERNET-DRAFT UMAC October 2000

 Table of Contents

1 Introduction . 2
1.1 Organization . 5

2 Named parameter sets: UMAC16 and UMAC32 5
2.1 Named parameters . 5
2.2 Alternative instantiations 6
2.3 Naming convention . 7

3 Notation and basic operations 7
3.1 Operations on strings 8
3.2 Operations on integers 10
3.3 String-Integer conversion operations 10
3.4 Mathematical operations on strings 11

4 Key and pad derivation functions 12
4.1 KDF: Key derivation function 12
4.2 PDF: Pad-derivation function 13

5 UHASH-32: Universal hash function for a 32-bit word size 15
5.1 NH-32: NH hashing with a 32-bit word size 16
5.2 L1-HASH-32: First-layer hash 17
5.3 POLY: Polynomial hash 19
5.4 L2-HASH-32: Second-layer hash 20
5.5 L3-HASH-32: Third-layer hash 22
5.6 UHASH-32: Three-layer universal hash 23

6 UHASH-16: Universal hash function for a 16-bit word size 24
6.1 NH-16: NH hashing with a 16-bit word size 24
6.2 L1-HASH-16: First-layer hash 25
6.3 L2-HASH-16: Second-layer hash 27
6.4 L3-HASH-16: Third-layer hash 28
6.5 UHASH-16: Three-layer universal hash 29

7 UMAC tag generation . 30
7.1 Interface . 30
7.2 Algorithm . 30

8 Security considerations . 31
8.1 Resistance to cryptanalysis 31
8.2 Tag lengths and forging probability 31
8.3 Selective-assurance authentication 33
8.4 Nonce considerations . 34
8.5 Guarding against replay attacks 35

9 Acknowledgments . 36
10 References . 36
11 Author contact information 37
A Suggested application programming interface (API) 38
B Reference code and test vectors 39

Krovetz et al. Expires April 2001 [Page 1]

INTERNET-DRAFT UMAC October 2000

1 Introduction

 This specification describes how to generate an authentication tag
 (also called a "MAC") using the UMAC message authentication code.
 Typically the authentication tag will be transmitted along with a
 message and a nonce to allow the receiver of the message to verify
 the message's authenticity. Generation and verification of the
 authentication tag depends on the message, the nonce, and on a secret
 key (typically, shared by sender and receiver).

 UMAC is designed to be very fast to compute, in software, on
 contemporary processors. The heart of UMAC is a universal hash
 function, UHASH, which relies on addition and multiplication of
 16-bit, 32-bit, and 64-bit numbers. These operations are supported
 well by contemporary machines.

 For many applications, especially ones with short-lived
 authentication needs, sufficient speed is already obtained by
 algorithms such as HMAC-SHA1 [2, 9] or the CBC-MAC of a block cipher
 [1, 8]. But for the most speed-demanding applications, UMAC may be a
 better choice: An optimized implementation of UMAC can achieve peak
 performance which is about an order of magnitude faster than what can
 be achieved with HMAC or CBC-MAC. Moreover, UMAC offers a tradeoff
 between forging probability and speed (it is possible to trade
 forging probability for speed). UMAC has been designed so that
 computing the prefix of a tag can be done faster than computing the
 entire tag. This feature allows for a receiver to verify the
 authenticity of a message to various levels of assurance depending on
 its needs and resources. Finally, UMAC enjoys better analytical
 security properties than many other constructions.

 Closely associated to this specification are the papers [3, 4, 10,
 11]. See those papers for descriptions of the ideas which underlie
 this algorithm, for performance data, and for proofs of the
 correctness and maximal forging probability of UMAC.

 The UMAC algorithms described in the papers [3, 4] are
 "parameterized". This means that various low-level choices, like the
 endian convention and the underlying cryptographic primitive, have
 not been fixed. One must choose values for these parameters before
 the authentication tag generated by UMAC (for a given message, key,
 and nonce) becomes fully-defined. In this document we provide two
 collections of parameter settings, and have named the sets UMAC16 and
 UMAC32. The parameter sets have been chosen based on experimentation
 and provide good performance on a wide variety of processors. UMAC16
 is designed to excel on processors which provide small-scale SIMD
 parallelism of the type found in Intel's MMX and Motorola's AltiVec
 instruction sets, while UMAC32 is designed to do well on processors

Krovetz et al. Expires April 2001 [Page 2]

INTERNET-DRAFT UMAC October 2000

 with good 32- and 64- bit support. UMAC32 may take advantage of SIMD
 parallelism in future processors.

 UMAC has been designed to allow implementations which accommodate
 "on-line" authentication. This means that pieces of the message may
 be presented to UMAC at different times (but in correct order) and an
 on-line implementation will be able to process the message correctly
 without the need to buffer more than a few dozen bytes of the
 message. For simplicity, the algorithms in this specification are
 presented as if the entire message being authenticated were available
 at once.

 The ideas which underlie UMAC go back to Wegman and Carter [12]. The
 sender and receiver share a secret key (the MAC key) which
 determines:

 * The key for a "universal hash function". This hash function is
 "non-cryptographic", in the sense that it does not need to have any
 cryptographic "hardness" property. Rather, it needs to satisfy
 some combinatorial property, which can be proven to hold without
 relying on unproven hardness assumptions. The concept of a
 universal hash function (family) is due to [5].

 * The key for a pseudorandom function. This is where one needs a
 cryptographic hardness assumption. The pseudorandom function may
 be obtained (for example) from a block cipher or cryptographic hash
 function. The concept of a pseudorandom function (family) is due
 to [6].

 To authenticate a message, Msg, one first applies the universal hash
 function, resulting in a string which is typically much shorter than
 the original message. The pseudorandom function is applied to a
 nonce, and the result is used in the manner of a Vernam cipher: the
 authentication tag is the xor of the output from the hash function
 and the output from the pseudorandom function. Thus, an
 authentication tag is generated as

 AuthTag = f(Nonce) xor h(Msg).

 Here f is the pseudorandom function shared between the sender and the
 receiver, and h is a universal hash function shared by the sender and
 the receiver. In UMAC, a shared key is used to key the pseudorandom
 function f, and then f is used for both tag generation and internally
 to generate all of the bits needed by the universal hash function.
 For a general discussion of the speed and assurance advantages of
 this approach see, for example, [3, 7].

 The universal hash function that we use is called UHASH. It combines

Krovetz et al. Expires April 2001 [Page 3]

INTERNET-DRAFT UMAC October 2000

 several software-optimized algorithms into a multi-layered structure.
 The algorithm is moderately complex. Some of this complexity comes
 from extensive speed optimizations.

 For the pseudorandom function we use the block cipher of the Advanced
 Encryption Standard (AES). (At the time of this working draft, the
 AES definition process is still in progress. Here AES refers to the
 final blok cipher defined by this process.) Any block cipher with
 the same block-length (128 bits) and key-length (128 bits) could
 trivially be substituted in place of what we call AES. With slightly
 more effort one can define UMAC using a pseudorandom function other
 than a block cipher.

 One unusual feature of UMAC is that authentication-tag generation
 depends on a nonce (in addition to depending on the message and key)
 It is imperative that the nonce not be reused when generating
 authentication tags under the same key. Thus the nonce will normally
 be implemented by a counter, though any other way to achieve a non-
 repeating value (or almost certainly non-repeating value) is
 acceptable.

 This document specifies the procedure for generating the
 authentication tag from the message, key and nonce. The exact way in
 which the message, nonce and authentication tag are transmitted
 between sender and receiver is not specified here. It is the
 responsibility of the particular applications using UMAC to specify
 how the message, nonce and tag are transmitted. For example, an
 application may choose to send the three values concatenated by some
 encoding scheme while others may choose not to transmit the nonce at
 all if it is known to both parties (e.g., when the nonce is a shared
 state used to detect replay of messages), or to send only part of the
 bits of the nonce.

Section 8 discusses security considerations that are important for
 the proper understanding and use of UMAC.

 To the authors' knowledge no ideas utilized in UMAC have been or will
 be patented. To the best of the authors' knowledge, it should be
 possible to use UMAC immediately, without any intellectual property
 concerns.

 Public-domain reference code for UMAC is available from the UMAC
 homepage: http://www.cs.ucdavis.edu/~rogaway/umac/ Other information,
 like timing data and papers, are distributed from the same URL.

http://www.cs.ucdavis.edu/~rogaway/umac/

Krovetz et al. Expires April 2001 [Page 4]

INTERNET-DRAFT UMAC October 2000

1.1 Organization

 The rest of this document is organized as follows: In Section 2
 parameters of the named parameter sets UMAC16 and UMAC32 are
 described. In Section 3 we introduce the basic notations used
 throughout the rest of the document. Section 4 describes the methods
 used for generating the Vernam pad and the pseudorandom strings
 needed internally for hashing. In Sections 5 and 6 the universal
 hash function is described. Finally, in Section 7 we describe how
 all these components fit together in the UMAC construction. Some
 readers may prefer to read sections 4-7 backwards, in order to get a
 top-down description. Section 8 describes some security
 considerations in the use of UMAC.

2 Named parameter sets: UMAC16 and UMAC32

 As described in [3, 4], a concrete instantiation of UMAC requires the
 setting of many parameters. We have chosen two sets of values for
 all of these parameters which allow for good performance on a wide
 variety of processors. For maximum performance we offer UMAC16 which
 is designed to exploit the vector-parallel instructions on the Intel
 MMX and Motorola AltiVec instruction sets. For good performance on
 processors which support 32- and 64-bit quantities well, we offer
 UMAC32.

2.1 Named parameters

 Throughout the algorithms described in this document, we have
 integrated most of the parameters required for a concrete UMAC
 instantiation as unnamed numeric constants. However, we have named
 six parameters and assign them the following values depending on
 whether one wishes to use UMAC16 or UMAC32.

 UMAC16 UMAC32
 ------ ------
 WORD-LEN 2 4
 UMAC-OUTPUT-LEN 8 8
 L1-KEY-LEN 1024 1024
 UMAC-KEY-LEN 16 16
 ENDIAN-FAVORITE LITTLE LITTLE
 L1-OPERATIONS-SIGN SIGNED UNSIGNED

 Here we give a brief explanation of the role each named parameter
 plays.

Krovetz et al. Expires April 2001 [Page 5]

INTERNET-DRAFT UMAC October 2000

 WORD-LEN: Specifies the size in bytes of a "word". UMAC
 will be significantly faster in execution if
 the executing machine supports well certain
 operations on datatypes of this size. Note
 that WORD-LEN is not necessarily the native
 wordsize of the target machine (and on some
 machines a smaller value turns out to be
 preferable).

 UMAC-OUTPUT-LEN: Specifies the length of the authentication tag
 generated by UMAC, in bytes.

 L1-KEY-LEN: Specifies the "block length," in bytes, on
 which the hash-function initially operates.
 This much storage (and then some) will be
 needed in the run-time environment for UMAC's
 internal keys.

 UMAC-KEY-LEN: Specifies the length in bytes of the user-sup-
 plied UMAC key.

 ENDIAN-FAVORITE: Specifies which endian-orientation will be fol-
 lowed in the reading of data to be hashed.
 This need not be equal to the native endianess
 of any specific machine running UMAC.

 L1-OPERATIONS-SIGN: Specifies whether the strings manipulated in
 the hash-function are to be initially consid-
 ered as signed or unsigned integers.

2.2 Alternative instantiations

 Although this document only specifies two named parameter sets, the
 named parameters could be altered to suit specific authentication
 needs which are not adequately served by either UMAC16 or UMAC32.
 Below, we list alternatives that are supported by this specification
 for each of the named parameters.

 WORD-LEN ::= 2 | 4
 UMAC-OUTPUT-LEN ::= 1 | 2 | ... | 31 | 32
 L1-KEY-LEN ::= 32 | 64 | 128 | 256 | ... | 2^28
 UMAC-KEY-LEN ::= 16 | 32
 ENDIAN-FAVORITE ::= BIG | LITTLE
 L1-OPERATIONS-SIGN ::= SIGNED | UNSIGNED

 Roughly speaking, doubling UMAC-OUTPUT-LEN approximately doubles
 execution time and squares (ie. decreases) the probability of MAC

Krovetz et al. Expires April 2001 [Page 6]

INTERNET-DRAFT UMAC October 2000

 forgery. Setting ENDIAN-FAVORITE to BIG causes UMAC to perform
 better on big-endian processors rather than little-endian processors.
 Setting L1-OPERATIONS-SIGN to UNSIGNED slightly increases UMAC
 security at the expense of complicating implementations on systems
 which do not support unsigned integers well. This effectively
 disallows the use of Intel's MMX instructions which only support
 signed integers. Finally, increasing L1-KEY-LEN tends to speed tag
 generation on large messages, but requires more memory for processing
 and could potentially slow the processor by overflowing its cache.

2.3 Naming convention

 A concise shorthand may be used to specify an instance of UMAC. The
 word "UMAC" followed by up to six parameters specifies unambiguously
 an instance of UMAC. If only a prefix of the six parameters are
 written, it is implicitly specified that those missing parameters
 take on default values listed below. The format of the shorthand is
 "UMAC-w/l/n/k/s/e", and the meaning of the letters (and their
 defaults) is as follows:

 w = WORD-LEN (4)
 l = UMAC-OUTPUT-LEN (8)
 n = L1-KEY-LEN (1024)
 k = UMAC-KEY-LEN (16)
 s = L1-OPERATIONS-SIGN (UNSIGNED)
 e = ENDIAN-FAVORITE (LITTLE)

 Some examples

 UMAC-4/8/1024/16/UNSIGNED/LITTLE (Same as named set "UMAC32")
 UMAC-2/8/1024/16/SIGNED/LITTLE (Same as named set "UMAC16")
 UMAC-4/12 ("UMAC32" with 96-bit output)
 UMAC-2/8/4096 ("UMAC16" with 4K L1-key and)
 (unsigned L1-OPERATIONS)

3 Notation and basic operations

 The specification of UMAC involves the manipulation of both strings
 and numbers. String variables are denoted with initial capitals
 (upper-case), whereas numeric variables are denoted in all lower-
 case. Global parameters are denoted in all capital letters. Simple
 functions, like those for string-length and string-xor, are written
 with all lower-case, while the algorithms of UMAC are named in all
 upper-case.

 Whenever a variable is followed by an underscore ("_"), the

Krovetz et al. Expires April 2001 [Page 7]

INTERNET-DRAFT UMAC October 2000

 underscore is intended to denote a subscript, with the subscripted
 expression needing to be evaluated to resolve the meaning of the
 variable. For example, if i=2, then M_{2 * i} refers to the variable
 M_4.

 We now define some basic operations for manipulating strings and
 numbers, and for converting between the two.

3.1 Operations on strings

 In this specification, we view the messages to be hashed (as well as
 the keys used for hashing) as strings of bytes. A "byte" is an 8-bit
 string. The algorithms have been designed so that they are easily
 extendable to allow arbitrary bit-strings, if necessary. We use the
 following notation to manipulate these strings.

 length(S): The length of string S in bytes.

 zeroes(n): The string made of n zero-bytes.

 S xor T: The string which is the bitwise exclusive-or of S and
 T. Strings S and T must have the same length.

 S and T: The string which is the bitwise conjunction of S and
 T. Strings S and T must have the same length.

 S[i]: The i-th byte of the string S (indices begin at 1).

 S[i..j]: The substring of S consisting of bytes i through j.

 S || T: The string S concatenated with string T.

 zeropad(S,n): The string S, padded with zero-bytes to the nearest
 non-zero multiple of n bytes. Formally, zeropad(S,n)
 = S || zeroes(i), where i is the smallest nonnegative
 integer such that S || zeroes(i) is non-empty and n
 divides length(S)+i.

3.1.1 ENDIAN-SWAP: Adjusting endian orientation

 This routine is used to make the data input to UMAC conform to the
 ENDIAN-FAVORITE global parameter.

Krovetz et al. Expires April 2001 [Page 8]

INTERNET-DRAFT UMAC October 2000

3.1.1.1 Discussion

 The most time consuming portion of many UMAC computations involves
 the reading of key and message data from memory. Because big- and
 little-endian computers will read these bytes differently, specifying
 a particular endian-orientation for UMAC could have significant
 performance ramifications. If necessary, the key-bytes can be
 preprocessed once during key setup to eliminate the need for their
 reorientation during performance-critical tag generation. But,
 message data presumably cannot be preprocessed. Any reorientation
 needed for each message must be done during tag generation,
 introducing a significant penalty to computers whose native endian-
 orientation is opposite to that specified for UMAC. Therefore, UMAC
 defines a parameter, ENDIAN-FAVORITE, which allows UMAC to be
 specified to favor big- or little-endian memory conventions. If the
 parameter is set to favor little-endian computers, then we specify
 the reversal of the bytes of every word in the input message using
 the following support function. By reversing the data in the
 specification, an implementation on a little-endian machine would in
 fact do nothing but read the input data using native-endian word
 loads. The loads would automatically reverse the bytes within each
 word, fulfilling the requirements of the specification. Any other
 endian reorientation needed to comply with the specification requires
 an insignificant amount of time during each tag calculation.

3.1.1.2 Interface

 Function Name:
 ENDIAN-SWAP
 Input:
 S, string with length divisible by WORD-LEN bytes.
 Output:
 T, string S with each word endian-reversed.

3.1.1.3 Algorithm

 Compute T using the following algorithm.

 //
 // Break S into word-size chunks
 //
 n = length(S) / WORD-LEN
 Let S_1, S_2, ..., S_n be strings of length WORD-LEN bytes
 so that S_1 || S_2 || .. || S_n = S.

 //
 // Byte-reverse each chunk, and build-up T

Krovetz et al. Expires April 2001 [Page 9]

INTERNET-DRAFT UMAC October 2000

 //
 T = <empty string>
 for i = 1 to n do
 Let W_1, W_2, ..., W_{WORD-LEN} be bytes
 so that W_1 || W_2 || ... || W_{WORD-LEN} = S_i
 SReversed_i = W_{WORD-LEN} || W_{WORD-LEN - 1} || ... || W_1
 T = T || SReversed_i

 Return T

3.2 Operations on integers

 In this specification, we generally use standard notation for
 mathematical operations, such as "*" for multiplication, "+" for
 addition and "mod" for modular reduction. Some less standard
 notations are defined here.

 a^i: The integer a raised to the integer i-th power.

 lg a: The base-2 logarithm of integer a.

 floor(x): The largest integer less than or equal to x.

 ceil(x): The smallest integer greater than or equal to x.

 prime(n): The largest prime number less than 2^n.

 The prime numbers used in UMAC are:

 +-----+--------------------+---------------------------------------+
 | x | prime(x) [Decimal] | prime(x) [Hexadecimal] |
 +-----+--------------------+---------------------------------------+
 | 19 | 2^19 - 1 | 0x0007FFFF |
 | 32 | 2^32 - 5 | 0xFFFFFFFB |
 | 36 | 2^36 - 5 | 0x0000000F FFFFFFFB |
 | 64 | 2^64 - 59 | 0xFFFFFFFF FFFFFFC5 |
 | 128 | 2^128 - 159 | 0xFFFFFFFF FFFFFFFF FFFFFFFF FFFFFF61 |
 +-----+--------------------+---------------------------------------+

3.3 String-Integer conversion operations

 We convert between strings and integers using the following
 functions. Each function treats initial bits as more significant
 than later ones.

Krovetz et al. Expires April 2001 [Page 10]

INTERNET-DRAFT UMAC October 2000

 bit(S,n): Returns the integer 1 if the n-th bit of the string
 S is 1, otherwise returns the integer 0 (indices
 begin at 1). Here n must be between 1 and the bit-
 length of S.

 str2uint(S): The non-negative integer whose binary representation
 is the string S. More formally, if S is t bits long
 then str2uint(S) = 2^{t-1} * bit(S,1) + 2^{t-2} *
 bit(S,2) + ... + 2^{1} * bit(S,t-1) + bit(S,t).

 uint2str(n,i): The i-byte string S such that str2uint(S) = n. If
 no such string exists then uint2str(n,i) is unde-
 fined.

 str2sint(S): The integer whose binary representation in two's-
 complement is the string S. More formally, if S is
 t bits long then str2sint(S) = -2^{t-1} * bit(S,1) +
 2^{t-2} * bit(S,2) + ... + 2^{1} * bit(S,t-1) +
 bit(S,t).

 sint2str(n,i): The i-byte string S such that str2sint(S) = n. If
 no such string exists then sint2str(n,i) is unde-
 fined.

3.4 Mathematical operations on strings

 One of the primary operations in the universal hashing part of UMAC
 is repeated application of addition and multiplication on strings.
 We use "+_n" and "*_n" to denote the string operations which are
 equivalent to addition and multiplication modulo 2^n, respectively.
 These operations correspond exactly with the addition and
 multiplication operations which are performed efficiently on
 registers by modern computers. So, when n is 16, 32 or 64, these
 operations can be preformed by computers very quickly.

 There are two interpretations of the operators depending on whether
 the strings are interpreted as signed or unsigned integers. The
 global parameter L1-OPERATIONS-SIGN determines which interpretation
 is made.

 If strings S and T are interpreted as signed integers (that is,
 L1-OPERATIONS-SIGN == SIGNED) then

 "S *_n T" as uint2str(str2sint(S) * str2sint(T) mod 2^n, n/8), and

 "S +_n T" as uint2str(str2sint(S) + str2sint(T) mod 2^n, n/8).

Krovetz et al. Expires April 2001 [Page 11]

INTERNET-DRAFT UMAC October 2000

 If strings S and T are interpreted as unsigned integers (that is,
 L1-OPERATIONS-SIGN == UNSIGNED) then we define

 "S *_n T" as uint2str(str2uint(S) * str2uint(T) mod 2^n, n/8), and

 "S +_n T" as uint2str(str2uint(S) + str2uint(T) mod 2^n, n/8).

 In any case, the number n must be divisible by 8. In this document
 we use S *_16 T, S *_32 T, S *_64 T, S +_32 T and S +_64 T,
 corresponding to multiplication of 2, 4 and 8 byte numbers, and the
 addition of 4 and 8 byte numbers.

4 Key and pad derivation functions

 UMAC, as described in this document, requires either a 16- or 32-byte
 key which is used with a key-derivation function (KDF) to produce
 pseudorandom bits needed within the universal hash function.

4.1 KDF: Key derivation function

 Stretching the user-supplied key into pseudorandom bits used
 internally by UMAC is done with a key-derivation function (KDF). In
 this section we define a KDF which is efficiently instantiated with a
 block cipher. The Advanced Encryption Standard (AES) is used in
 output-feedback mode to produce the required bits. If UMAC-KEY-LEN
 is 16, then the 128-bit key/128-bit block-length variant of AES is
 used, and if UMAC-KEY-LEN is 32, then the 256-bit key/128-bit block-
 length variant is used. The KDF requires an "index" parameter.
 Using the same key, but different indices, generates different
 pseudorandom outputs.

4.1.1 Interface

 Function Name:
 KDF
 Input:
 K, string of length UMAC-KEY-LEN bytes // key to AES
 index, a non-negative integer less than 256.
 numbytes, a positive integer.
 Output:
 Y, string of length numbytes bytes.

Krovetz et al. Expires April 2001 [Page 12]

INTERNET-DRAFT UMAC October 2000

4.1.2 Algorithm

 Compute Y using the following algorithm.

 //
 // Calculate number of AES iterations, set indexed starting point
 //
 n = ceil(numbytes / 16)
 T = zeroes(15) || uint2str(index, 1)
 Y = <empty string>

 //
 // Build Y using AES in a feedback mode
 //
 for i = 1 to n do
 T = AES(K, T)
 Y = Y || T

 Y = Y[1..numbytes]

 Return Y

4.2 PDF: Pad-derivation function

 The Wegman-Carter MAC scheme used in UMAC requires the exclusive-or
 of a pseudorandom string with the output from the universal hash
 function. The pseudorandom string is obtained by applying a pad-
 derivation function (PDF) to a nonce which, for security reasons,
 must change with each authentication-tag computation. Nonces may be
 any number of bytes from 1 to 16, but all nonces in a single
 authentication session must be of equal length. In this section we
 define a PDF which is efficiently instantiated with a block cipher.
 Again we use AES with either 16- or 32-bytes keys depending on the
 value of UMAC-KEY-LEN.

4.2.1 Discussion

 The PDF output is exclusive-or'd with the result of the universal
 hash function. AES, however, may provide more or fewer bits per
 invocation than are needed for this purpose. For example, UMAC-
 OUTPUT-LEN is normally 8 bytes and AES produces an output of 16
 bytes. It would save processing time if half of the AES output bits
 could be used to generate one tag, and then the second half of the
 same AES output could be used for the tag of the next message. For
 this reason, we include an optimization which allows the use of
 different substrings of the same AES output. This optimization is

Krovetz et al. Expires April 2001 [Page 13]

INTERNET-DRAFT UMAC October 2000

 effective only when nonces are sequential. We do so by using the low
 bits of the nonce as an index into the AES output, which is generated
 using the higher bits of the nonce which are not used for indexing.
 This speeds message authentication by reducing the average time spent
 by AES for each authentication. Note that if a counter-variable is
 used to exploit this optimization, and the variable is stored in
 memory, then the variable must be treated as big-endian. If UMAC-
 OUTPUT-LEN is larger than 16, then two AES invocations are required
 to produce a sufficient number of bits.

4.2.2 Interface

 Function Name:
 PDF
 Input:
 K, string of length UMAC-KEY-LEN bytes // key for AES
 Nonce, string of length 1 to 16 bytes.
 Output:
 Y, string of length UMAC-OUTPUT-LEN bytes.

4.2.3 Algorithm

 Compute Y using the following algorithm.

 //
 // Make Nonce 16 bytes by prepending zeroes
 //
 Nonce = Nonce || zeroes(16 - length(Nonce))

 //
 // If one AES invocation is enough for more than one
 // PDF invocation.
 //
 if (UMAC-OUTPUT-LEN <= 8) then

 //
 // Compute number of index bits needed
 //
 i = floor(16 / UMAC-OUTPUT-LEN)
 numlowbits = floor(lg(i))

 //
 // Extract index bits and zero low bits of Nonce
 //
 nlowbitsnum = str2uint(Nonce) mod 2^numlowbits
 Nonce = Nonce xor uint2str(nlowbitsnum, 16)

Krovetz et al. Expires April 2001 [Page 14]

INTERNET-DRAFT UMAC October 2000

 //
 // Generate subkey, AES and extract indexed substring
 //
 K' = KDF(K, 128, UMAC-KEY-LEN)
 T = AES(K', Nonce)
 Y = T[nlowbitsnum * UMAC-OUTPUT-LEN + 1 ..
 (nlowbitsnum + 1) * UMAC-OUTPUT-LEN]

 else

 //
 // Repeated AES calls to build length
 //
 K_1 = KDF(K, 128, UMAC-KEY-LEN)
 K_2 = KDF(K, 129, UMAC-KEY-LEN)
 if (UMAC-OUTPUT-LEN <= 16)
 Y = AES(K_1, Nonce)
 else
 Y = AES(K_1, Nonce) || AES(K_2, Nonce)
 Y = Y[1..UMAC-OUTPUT-LEN]

 Return Y

5 UHASH-32: Universal hash function for a 32-bit word size

 UHASH is a keyed hash function, which takes as input a string of
 arbitrary length, and produces as output a string of fixed length
 (such as 8 bytes). The actual output length depends on the parameter
 UMAC-OUTPUT-LEN.

 UHASH has been shown to be epsilon-ASU ("Almost Strongly Universal"),
 where epsilon is a small (parameter-dependent) real number.
 Informally, saying that a keyed hash function is epsilon-ASU means
 that for any two distinct fixed input strings, the two outputs of the
 hash function with a random key "look almost like a pair of random
 strings". The number epsilon measures how non-random the output
 strings may be. For details, see [3, 4, 11].

 UHASH has been designed to be fast by exploiting several
 architectural features of modern commodity processors. It was
 specifically designed for use in UMAC. But UHASH is useful beyond
 that domain, and can be easily adopted for other purposes.

 UHASH does its work in three layers. First, a hash function called
 NH [3] is used to compress input messages into strings which are
 typically many times smaller than the input message. Second, the
 compressed message is hashed with an optimized "polynomial hash

Krovetz et al. Expires April 2001 [Page 15]

INTERNET-DRAFT UMAC October 2000

 function" into a fixed-length 16-byte string. Finally, the 16-byte
 string is hashed using an "inner-product hash" into a string of
 length WORD-LEN bytes. These three layers are repeated (with a
 modified key) until the outputs total UMAC-OUTPUT-LEN bytes.

 Note: Because the repetitions of the three-layer scheme are
 independent (aside from sharing some internal key), it follows that
 each "word" of the final output can be computed independently.
 Hence, to compute a prefix of a UMAC tag, one can simply repeat the
 three-layer scheme fewer times. Thus, computing a prefix of the tag
 can be done significantly faster than computing the whole tag.

5.1 NH-32: NH hashing with a 32-bit word size

 The first of the three hash-layers that UHASH uses is the NH hash
 function [3]. More than any other part of UHASH, NH is designed to
 be fast on modern processors, because it is where the bulk of the
 UHASH work is done. The NH universal hash function hashes an input
 string M using a key K by considering M and K to be arrays of
 integers, each WORD-LEN bytes in length, and performing a sequence of
 arithmetic operations on them. See [3] for definitions, proofs and
 rationale relating to NH.

 The NH-32 algorithm is designed to perform well on processors which
 support well multiplications of 32-bit operands into 64-bit results.
 NH-32 is also designed to exploit the recent trend of including
 instructions for small-scale vector parallelism in uniprocessor CPUs.
 Intel's Streaming SIMD 2 instruction set is a good example of this
 trend. It supports an instruction, which multiplies two pairs of
 32-bit operands into two 64-bit results, which can be used by
 UHASH-32 for accelerated hashing. To accommodate this parallelism,
 NH-32 accesses data-words in pairs which are 4 words (16 bytes)
 apart.

5.1.1 Interface

 Function Name:
 NH-32
 Input:
 K, string of length L1-KEY-LEN bytes.
 M, string with length divisible by 32 bytes.
 Output:
 Y, string of length 8 bytes.

Krovetz et al. Expires April 2001 [Page 16]

INTERNET-DRAFT UMAC October 2000

5.1.2 Algorithm

 Compute Y using the following algorithm.

 //
 // Break M and K into 4-byte chunks
 //
 t = length(M) / 4
 Let M_1, M_2, ..., M_t be 4-byte strings
 so that M = M_1 || M_2 || .. || M_t.
 Let K_1, K_2, ..., K_t be 4-byte strings
 so that K_1 || K_2 || .. || K_t is a prefix of K.

 //
 // Perform NH hash on the chunks, pairing words for multiplication
 // which are 4 apart to accommodate vector-parallelism.
 //
 Y = zeroes(8)
 i = 1
 while (i < t) do
 Y = Y +_64 ((M_{i+0} +_32 K_{i+0}) *_64 (M_{i+4} +_32 K_{i+4}))
 Y = Y +_64 ((M_{i+1} +_32 K_{i+1}) *_64 (M_{i+5} +_32 K_{i+5}))
 Y = Y +_64 ((M_{i+2} +_32 K_{i+2}) *_64 (M_{i+6} +_32 K_{i+6}))
 Y = Y +_64 ((M_{i+3} +_32 K_{i+3}) *_64 (M_{i+7} +_32 K_{i+7}))
 i = i + 8

 Return Y

5.2 L1-HASH-32: First-layer hash

 To limit the length of key required in the first layer of hashing,
 L1-HASH-32 breaks the input message into chunks no longer than
 L1-KEY-LEN and NH hashes each with a key of the same length.

5.2.1 Discussion

 The NH hash function requires a key which is just as long as the
 message being hashed. To limit the amount of key used in the NH
 hashing layer, we use a key of fixed length (defined by the parameter
 L1-KEY-LEN), and process the message in chunks of this length (or
 less). The L1-HASH-32 algorithm takes an input message and breaks it
 into chunks of L1-KEY-LEN bytes (except the last chuck, which may be
 shorter and may need to be zero-padded to an appropriate length).
 Each chunk is hashed with NH-32, and the outputs from all the NH
 invocations are annotated with some length information and
 concatenated to produce the final L1-HASH-32 result.

Krovetz et al. Expires April 2001 [Page 17]

INTERNET-DRAFT UMAC October 2000

 If ENDIAN-FAVORITE is LITTLE, then each word in the input message is
 required to be endian reversed.

5.2.2 Interface

 Function Name:
 L1-HASH-32
 Input:
 K, string of length L1-KEY-LEN bytes.
 M, string of length less than 2^64 bytes.
 Output:
 Y, string of length (8 * ceil(length(M)/L1-KEY-LEN)) bytes.

5.2.3 Algorithm

 Compute Y using the following algorithm.

 //
 // Break M into L1-KEY-LEN byte chunks (final chunk may be shorter)
 //
 t = ceil(length(M) / L1-KEY-LEN)
 Let M_1, M_2, ..., M_t be strings so that M = M_1 || M_2 || .. ||
 M_t, and length(M_i) = L1-KEY-LEN for all 0 < i < t.

 //
 // For each chunk, except the last: endian-adjust, NH hash
 // and add bit-length. Use results to build Y.
 //
 Len = uint2str(L1-KEY-LEN * 8, 8)
 Y = <empty string>
 for i = 1 to t-1 do
 if (ENDIAN-FAVORITE == LITTLE) then // See endian discussion
 ENDIAN-SWAP(M_i) // in section 3.1.1
 Y = Y || (NH-32(K, M_i) +_64 Len)

 //
 // For the last chunk: pad to 32-byte boundary, endian-adjust,
 // NH hash and add bit-length. Concatenate the result to Y.
 //
 Len = uint2str(length(M_t) * 8, 8)
 M_t = zeropad(M_t, 32)
 if (ENDIAN-FAVORITE == LITTLE) then
 ENDIAN-SWAP(M_t)
 Y = Y || (NH-32(K, M_t) +_64 Len)

 return Y

Krovetz et al. Expires April 2001 [Page 18]

INTERNET-DRAFT UMAC October 2000

5.3 POLY: Polynomial hash

 The output from L1-HASH is a string which is shorter than, but still
 proportional to, that of its input. The POLY hash algorithm takes an
 arbitrary message and hashes it to a fixed length.

5.3.1 Discussion

 Polynomial hashing treats an input message as a sequence of
 coefficients of a polynomial, and the hash-key is the point at which
 this polynomial is evaluated. The security guarantee assured by
 polynomial hashing degrades linearly in the length of the message
 being hashed. If two messages of n words are hashed, then the
 probability they collide when hashed by POLY with a prime modulus of
 p is no more than n / p. For more information on the polynomial
 hashing schemes used in UMAC see [10].

 The parameter 'wordbits' specifies the prime modulus used in the
 polynomial as well as the granularity (length of words) in which the
 input message should be broken. Because some strings of length
 wordbits are greater than prime(wordbits), a mechanism is needed to
 fix words which are not in the range 0 .. prime(wordbits) - 1. To
 this end, any word larger than 'maxwordrange' is split into two words
 guaranteed to be in range, and each is hashed by the polynomial hash.

5.3.2 Interface

 Function Name:
 POLY
 Input:
 wordbits, positive integer divisible by 8.
 maxwordrange, positive integer less than 2^wordbits.
 k, integer in the range 0 .. prime(wordbits) - 1.
 M, string with length divisible by (wordbits / 8) bytes.
 Output:
 y, integer in the range 0 .. prime(wordbits) - 1.

5.3.3 Algorithm

 Compute y using the following algorithm.

 //
 // Define constants used for fixing out-of-range words
 //
 wordbytes = wordbits / 8

Krovetz et al. Expires April 2001 [Page 19]

INTERNET-DRAFT UMAC October 2000

 p = prime(wordbits)
 offset = 2^wordbits - p
 marker = p - 1

 //
 // Break M into chunks of length wordbytes bytes
 //
 n = length(M) / wordbytes
 Let M_1, M_2, ..., M_n be strings of length wordbytes bytes
 so that M = M_1 || M_2 || .. || M_n

 //
 // For each input word, compare it with maxwordrange. If larger
 // then hash the words 'marker' and (m - offset), both in range.
 //
 y = 1
 for i = 1 to n do
 m = str2uint(M_i)
 if (m >= maxwordrange) then
 y = (k * y + marker) mod p
 y = (k * y + (m - offset)) mod p
 else
 y = (k * y + m) mod p

 Return y

5.4 L2-HASH-32: Second-layer hash

 Because L1-HASH may produce quite long strings, and POLY's security
 guarantee degrades linearly, a scheme is required to allow long
 strings while ensuring that the collision probability never grows
 beyond a certain pre-set bound. This is accomplished by dynamically
 increasing the prime modulus used in the polynomial hashing as the
 collision probability bound is approached.

5.4.1 Discussion

 The probability of two n-word messages hashing to the same result
 when polynomially hashed with prime modulus p is as much as (n / p).
 To maintain a limit on the maximum collision probability, a scheme is
 needed to disallow (n / p) growing too large. The scheme used here
 hashes a number of words n_1 under modulus p_1 until (n_1 / p_1)
 reaches a critical point. The result of the hash-so-far is prepended
 to the remaining message needing to be hashed, and the hashing
 continues, but under a prime modulus p_2 which is substantially
 larger than p_1. Hashing continues for n_2 more words until (n_2 /

Krovetz et al. Expires April 2001 [Page 20]

INTERNET-DRAFT UMAC October 2000

 p_2) also reaches a critical point, at which time a new larger prime
 p_3 could be used.

 Because polynomial hashing under a small prime modulus is often
 faster than hashing under a large one, this dynamic ramping-up of the
 polynomial's modulus provides a hash function which is faster on
 short messages, but still accommodates long ones.

 The keys used for polynomial hashing are restricted to particular
 subsets to allow for faster implementations on 32-bit architectures.
 The restrictions allow an implementor to disregard some potential
 arithmetic carries during computation.

 For more information see [10].

5.4.2 Interface

 Function Name:
 L2-HASH-32
 Input:
 K, string of length 24 bytes.
 M, string of length less than 2^64 bytes.
 Output:
 Y, string of length 16 bytes.

5.4.3 Algorithm

 Compute y using the following algorithm.

 //
 // Extract keys and restrict to special key-sets
 //
 Mask64 = uint2str(0x01ffffff01ffffff, 8)
 Mask128 = uint2str(0x01ffffff01ffffff01ffffff01ffffff, 16)
 k64 = str2uint(K[1..8] and Mask64)
 k128 = str2uint(K[9..24] and Mask128)

 //
 // If M no more than 2^17 bytes, hash under 64-bit prime,
 // otherwise, hash first 2^17 bytes under 64-bit prime and
 // remainder under 128-bit prime.
 //
 if (length(M) <= 2^17) then // 2^14 64-bit words

 //
 // View M as an array of 64-bit words, and use POLY modulo

Krovetz et al. Expires April 2001 [Page 21]

INTERNET-DRAFT UMAC October 2000

 // prime(64) (and with bound 2^64 - 2^32) to hash it.
 //
 y = POLY(64, 2^64 - 2^32, k64, M)

 else

 M_1 = M[1 .. 2^17]
 M_2 = M[2^17 + 1 .. length(M)]
 M_2 = zeropad(M_2 || uint2str(0x80,1), 16)
 y = POLY(64, 2^64 - 2^32, k64, M_1)
 y = POLY(128, 2^128 - 2^96, k128, uint2str(y, 16) || M_2)

 Y = uint2str(y, 16)

 Return Y

5.5 L3-HASH-32: Third-layer hash

 The output from L2-HASH-32 is 16 bytes long. This final hash
 function hashes the 16-byte string to a fixed length of 4 bytes using
 a simple inner-product hash with affine translation. A 36-bit prime
 modulus is used to improve security.

5.5.1 Interface

 Function Name:
 L3-HASH-32
 Input:
 K1, string of length 64 bytes.
 K2, string of length 4 bytes.
 M, string of length 16 bytes.
 Output:
 Y, string of length 4 bytes.

5.5.2 Algorithm

 Compute Y using the following algorithm.

 y = 0

 //
 // Break M and K1 into 8 chunks and convert to integers
 //
 for i = 1 to 8 do
 M_i = M [(i - 1) * 2 + 1 .. i * 2]
 K_i = K1[(i - 1) * 8 + 1 .. i * 8]

Krovetz et al. Expires April 2001 [Page 22]

INTERNET-DRAFT UMAC October 2000

 m_i = str2uint(M_i)
 k_i = str2uint(K_i) mod prime(36)

 //
 // Inner-product hash, extract last 32 bits and affine-translate
 //
 y = (m_1 * k_1 + ... + m_8 * k_8) mod prime(36)
 y = y mod 2^32
 Y = uint2str(y, 4)
 Y = Y xor K2

 Return Y

5.6 UHASH-32: Three-layer universal hash

 The hash functions L1-HASH, L2-HASH and L3-HASH are used together in
 a straightforward manner. A message is first hashed by L1-HASH, its
 output is then hashed by L2-HASH, whose output is then hashed by
 L3-HASH. If the message being hashed is no longer than L1-KEY-LEN
 bytes, then L2-HASH is skipped as an optimization. Because L3-HASH
 outputs a string whose length is only WORD-LEN bytes long, multiple
 iterations of this three-layer hash are used, with different keys
 each time, until UMAC-OUTPUT-LEN have been generated. To reduce
 memory requirements, L1-HASH and L3-HASH both reuse most of their
 key-material between iterations.

5.6.1 Interface

 Function Name:
 UHASH-32
 Input:
 K, string of length UMAC-KEY-LEN bytes.
 M, string of length less than 2^64 bytes.
 Output:
 Y, string of length UMAC-OUTPUT-LEN bytes.

5.6.2 Algorithm

 Compute Y using the following algorithm.

 //
 // Calculate iterations needed to make UMAC-OUTPUT-LEN bytes
 //
 streams = ceil(UMAC-OUTPUT-LEN / WORD-LEN)

 //

Krovetz et al. Expires April 2001 [Page 23]

INTERNET-DRAFT UMAC October 2000

 // Define total key needed for all iterations using KDF.
 // L1Key and L3Key1 both reuse most key between iterations.
 //
 L1Key = KDF(K, 0, L1-KEY-LEN + (streams - 1) * 16)
 L2Key = KDF(K, 1, streams * 24)
 L3Key1 = KDF(K, 2, streams * 64)
 L3Key2 = KDF(K, 3, streams * 4)

 //
 // For each iteration, extract key and three-layer hash.
 // If length(M) <= L1-KEY-LEN, then skip L2-HASH.
 //
 Y = <empty string>
 for i = 1 to streams do
 L1Key_i = L1Key [(i-1) * 16 + 1 .. (i-1) * 16 + L1-KEY-LEN]
 L2Key_i = L2Key [(i-1) * 24 + 1 .. i * 24]
 L3Key1_i = L3Key1[(i-1) * 64 + 1 .. i * 64]
 L3Key2_i = L3Key2[(i-1) * 4 + 1 .. i * 4]

 A = L1-HASH-32(L1Key_i, M)
 if (length(M) <= L1-KEY-LEN) then
 B = zeroes(8) || A
 else
 B = L2-HASH-32(L2Key_i, A)
 C = L3-HASH-32(L3Key1_i, L3Key2_i, B)
 Y = Y || C
 Y = Y[1 .. UMAC-OUTPUT-LEN]

 Return Y

6 UHASH-16: Universal hash function for a 16-bit word size

 See Section 5 (UHASH-32) for general discussion of the UHASH
 algorithm. Each sub-section of Section 6 will note only differences
 between UHASH-32 and UHASH-16.

6.1 NH-16: NH hashing with a 16-bit word size

 The NH-16 algorithm is designed to exploit the recent trend of
 including instructions for small-scale vector parallelism in
 uniprocessor CPUs. Intel's MMX and Mororola's AltiVec instruction
 sets are good examples of this trend. Both support single-
 instruction multiply-add instructions on vectors of 16-bit words
 which can be used by UHASH-16 for accelerated hashing. To
 accommodate this parallelism, NH-16 accesses data-words in pairs
 which are 8 words (16 bytes) apart.

Krovetz et al. Expires April 2001 [Page 24]

INTERNET-DRAFT UMAC October 2000

6.1.1 Interface

 Function Name:
 NH-16
 Input:
 K, string of length L1-KEY-LEN bytes.
 M, string with length divisible by 32 bytes.
 Output:
 Y, string of length 4 bytes.

6.1.2 Algorithm

 Compute Y using the following algorithm.

 //
 // Break M and K into 2-byte chunks
 //
 t = length(M) / 2
 Let M_1, M_2, ..., M_t be 2-byte strings
 so that M = M_1 || M_2 || .. || M_t.
 Let K_1, K_2, ..., K_t be 2-byte strings
 so that K_1 || K_2 || .. || K_t is a prefix of K.

 //
 // Perform NH hash on the chunks, pairing words for multiplication
 // which are 8 apart to accommodate vector-parallelism.
 //
 Y = zeroes(4)
 i = 1
 while (i < t) do
 Y = Y +_32 ((M_{i+0} +_16 K_{i+0}) *_32 (M_{i+ 8} +_16 K_{i+ 8}))
 Y = Y +_32 ((M_{i+1} +_16 K_{i+1}) *_32 (M_{i+ 9} +_16 K_{i+ 9}))
 Y = Y +_32 ((M_{i+2} +_16 K_{i+2}) *_32 (M_{i+10} +_16 K_{i+10}))
 Y = Y +_32 ((M_{i+3} +_16 K_{i+3}) *_32 (M_{i+11} +_16 K_{i+11}))
 Y = Y +_32 ((M_{i+4} +_16 K_{i+4}) *_32 (M_{i+12} +_16 K_{i+12}))
 Y = Y +_32 ((M_{i+5} +_16 K_{i+5}) *_32 (M_{i+13} +_16 K_{i+13}))
 Y = Y +_32 ((M_{i+6} +_16 K_{i+6}) *_32 (M_{i+14} +_16 K_{i+14}))
 Y = Y +_32 ((M_{i+7} +_16 K_{i+7}) *_32 (M_{i+15} +_16 K_{i+15}))
 i = i + 16

 Return Y

6.2 L1-HASH-16: First-layer hash

 To limit the length of key required in the first layer of hashing,
 L1-HASH-16 breaks the input message into chunks no longer than

Krovetz et al. Expires April 2001 [Page 25]

INTERNET-DRAFT UMAC October 2000

 L1-KEY-LEN bytes and NH hashes each with a key of that same length.

6.2.1 Interface

 Function Name:
 L1-HASH-16
 Input:
 K, string of length L1-KEY-LEN bytes.
 M, string of length less than 2^64 bytes.
 Output:
 Y, string of length (4 * ceil(length(M)/L1-KEY-LEN)) bytes.

6.2.2 Algorithm

 Compute Y using the following algorithm.

 //
 // Break M into L1-KEY-LEN byte chunks (final chunk may be shorter)
 //
 t = ceil(length(M) / L1-KEY-LEN)
 Let M_1, M_2, ..., M_t be strings so that M = M_1 || M_2 || .. ||
 M_t, and length(M_i) = L1-KEY-LEN for all 0 < i < t.

 //
 // For each chunk, except the last: endian-adjust, NH hash
 // and add bit-length. Use results to build Y.
 //
 Len = uint2str(L1-KEY-LEN * 8, 4)
 Y = <empty string>
 for i = 1 to t-1 do
 if (ENDIAN-FAVORITE == LITTLE) then // See endian discussion
 ENDIAN-SWAP(M_i) // in section 3.1.1
 Y = Y || (NH-16(K, M_i) +_32 Len)

 //
 // For the last chunk: pad to 32-byte boundary, endian-adjust,
 // NH hash and add bit-length. Concatenate the result to Y.
 //
 Len = uint2str(length(M_t) * 8, 4)
 M_t = zeropad(M_t, 32)
 if (ENDIAN-FAVORITE == LITTLE) then
 ENDIAN-SWAP(M_t)
 Y = Y || (NH-16(K, M_t) +_32 Len)

 return Y

Krovetz et al. Expires April 2001 [Page 26]

INTERNET-DRAFT UMAC October 2000

6.3 L2-HASH-16: Second-layer hash

 L2-HASH-16 differs from L2-HASH-32 by beginning the ramped hash with
 a smaller prime modulus. See Section 5.3 for the definition of POLY.

6.3.1 Interface

 Function Name:
 L2-HASH-16
 Input:
 K, string of length 28 bytes.
 M, string of length less than 2^64 bytes.
 Output:
 Y, string of length 16 bytes.

6.3.2 Algorithm

 Compute Y using the following algorithm.

 //
 // Extract keys and restrict to special key-sets
 //
 Mask32 = uint2str(0x1fffffff, 4)
 Mask64 = uint2str(0x01ffffff01ffffff, 8)
 Mask128 = uint2str(0x01ffffff01ffffff01ffffff01ffffff, 16)
 k_32 = str2uint(K[1..4] and Mask32)
 k64 = str2uint(K[5..12] and Mask64)
 k128 = str2uint(K[13..28] and Mask128)

 //
 // If M no more than 2^11 bytes, hash under 32-bit prime.
 // Otherwise, hash under increasingly long primes.
 //
 if (length(M) <= 2^11) then // 2^9 32-bit words

 y = POLY(32, 2^32 - 6, k_32, M)

 else if (length(M) <= 2^33) then // 2^31 32-bit words

 M_1 = M[1 .. 2^11]
 M_2 = M[2^11 + 1 .. length(M)]
 M_2 = zeropad(M_2 || uint2str(0x80,1), 8)
 y = POLY(32, 2^32 - 6, k_32, M_1)
 y = POLY(64, 2^64 - 2^32, k64, uint2str(y, 8) || M_2)

 else

Krovetz et al. Expires April 2001 [Page 27]

INTERNET-DRAFT UMAC October 2000

 M_1 = M[1 .. 2^11]
 M_2 = M[2^11 + 1 .. 2^33]
 M_3 = M[2^33 + 1 .. length(M)]
 M_3 = zeropad(M || uint2str(0x80,1), 16)
 y = POLY(32, 2^32 - 6, k_32, M_1)
 y = POLY(64, 2^64 - 2^32, k64, uint2str(y, 8) || M_2)
 y = POLY(128, 2^128 - 2^96, k128, uint2str(y, 16) || M_3)

 Y = uint2str(y, 16)

 Return Y

6.4 L3-HASH-16: Third-layer hash

 The L3-HASH-16 algorithm differs from L3-HASH-32 by hashing under a
 19-bit prime modulus (instead of a 36-bit prime modulus) and then
 returning a 2-byte result (instead of a 4-byte result).

6.4.1 Interface

 Function Name:
 L3-HASH-16
 Input:
 K1, string of length 32 bytes.
 K2, a string of length 2 bytes.
 M, a string of length 16 bytes.
 Output:
 Y, a string of length 2 bytes.

6.4.2 Algorithm

 Compute Y using the following algorithm.

 y = 0

 //
 // Break M and K1 into 8 chunks and convert to integers
 //
 for i = 1 to 8 do
 M_i = M[(i - 1) * 2 + 1 .. i * 2]
 K_i = K1[(i - 1) * 4 + 1 .. i * 4]
 m_i = str2uint(M_i)
 k_i = str2uint(K_i) mod prime(19)

 //

Krovetz et al. Expires April 2001 [Page 28]

INTERNET-DRAFT UMAC October 2000

 // Inner-product hash, extract last 32 bits and affine-translate
 //
 y = (m_1 * k_1 + ... + m_8 * k_8) mod prime(19)
 y = y mod 2^16
 Y = uint2str(y, 2)
 Y = Y xor K2

 Return Y

6.5 UHASH-16: Three-layer universal hash

 The algorithm UHASH-16 differs from UHASH-32 only in the size of its
 keys generated, and in that it refers to the 16-bit variants of the
 three-layer hash functions.

6.5.1 Interface

 Function Name:
 UHASH-16
 Input:
 K, string of length UMAC-KEY-LEN bytes.
 M, string of length less than 2^64 bytes.
 Output:
 Y, string of length UMAC-OUTPUT-LEN bytes.

6.5.2 Algorithm

 Compute Y using the following algorithm.

 //
 // Calculate iterations needed to make UMAC-OUTPUT-LEN bytes
 //
 streams = ceil(UMAC-OUTPUT-LEN / WORD-LEN)

 //
 // Define total key needed for all iterations using KDF.
 // L1Key and L3Key1 both reuse most key between iterations.
 //
 L1Key = KDF(K, 0, L1-KEY-LEN + (streams - 1) * 16)
 L2Key = KDF(K, 1, streams * 28)
 L3Key1 = KDF(K, 2, streams * 32)
 L3Key2 = KDF(K, 3, streams * 2)

 //
 // For each iteration, extract key and three-layer hash.

Krovetz et al. Expires April 2001 [Page 29]

INTERNET-DRAFT UMAC October 2000

 // If length(M) <= L1-KEY-LEN, then skip L2-HASH.
 //
 Y = <empty string>
 for i = 1 to streams do
 L1Key_i = L1Key [(i-1) * 16 + 1 .. (i-1) * 16 + L1-KEY-LEN]
 L2Key_i = L2Key [(i-1) * 28 + 1 .. i * 28]
 L3Key1_i = L3Key1[(i-1) * 32 + 1 .. i * 32]
 L3Key2_i = L3Key2[(i-1) * 2 + 1 .. i * 2]

 A = L1-HASH-16(L1Key_i, M)
 if (length(M) <= L1-KEY-LEN) then
 B = zeroes(12) || A
 else
 B = L2-HASH-16(L2Key_i, A)
 C = L3-HASH-16(L3Key1_i, L3Key2_i, B)
 Y = Y || C
 Y = Y[1 .. UMAC-OUTPUT-LEN]

 Return Y

7 UMAC tag generation

 Tag generation for UMAC proceeds as follows. Use UHASH to hash the
 message and apply the PDF to the nonce to produce a string to xor
 with the UHASH output. The resulting string is the authentication-
 tag.

7.1 Interface

 Function Name:
 UMAC
 Input:
 K, string of length UMAC-KEY-LEN bytes.
 M, string of length less than 2^64 bytes.
 Nonce, string of length 1 to 16 bytes.
 Output:
 AuthTag, string of length UMAC-OUTPUT-LEN bytes.

7.2 Algorithm

 Compute AuthTag using the following algorithm.

 if (WORD-LEN == 2) then
 HashedMessage = UHASH-16(K, M)
 else
 HashedMessage = UHASH-32(K, M)

Krovetz et al. Expires April 2001 [Page 30]

INTERNET-DRAFT UMAC October 2000

 Pad = PDF(K, Nonce)
 AuthTag = Pad xor HashedMessage

 Return AuthTag

8 Security considerations

 As a specification of a message authentication code, this entire
 document is about security. Here we describe some security
 considerations important for the proper understanding and use of
 UMAC.

8.1 Resistance to cryptanalysis

 The strength of UMAC depends on the strength of its underlying
 cryptographic functions: the key-derivation function (KDF) and the
 pad-derivation function (PDF). In this specification it is assumed
 that both operations are implemented using the Advanced Encryption
 Standard (AES). However, the full design and specification allow for
 the replacement of these components. Indeed, it is straightforward
 to use other block ciphers or other cryptographic objects, such as
 SHA-1 or HMAC for the realization of the KDF or PDF.

 The core of the UMAC design, the UHASH function, does not depend on
 any "cryptographic assumptions": its strength is specified by a
 purely mathematical property stated in terms of collision
 probability, and this property is proven in an absolute sense. In
 this way, the strength of UHASH is guaranteed regardless of future
 advances in cryptanalysis.

 The analysis of UMAC [3, 4] shows this scheme to have "provable
 security", in the sense of modern cryptography, by way of tight
 reductions. What this means is that an adversarial attack on UMAC
 which forges with probability significantly exceeding the established
 collision probability will give rise to an attack of comparable
 complexity which breaks the AES, in the sense of distinguishing AES
 from a family of random permutations. This design approach
 essentially obviates the need for cryptanalysis on UMAC:
 cryptanalytic efforts might as well focus on AES, the results imply.

8.2 Tag lengths and forging probability

 A MAC algorithm is used between two parties that share a secret MAC
 key, K. Messages transmitted between these parties are accompanied
 by authentication tags computed using K and a given nonce. Breaking

Krovetz et al. Expires April 2001 [Page 31]

INTERNET-DRAFT UMAC October 2000

 the MAC means that the attacker is able to generate, on its own, a
 new message M (i.e. one not previously transmitted between the
 legitimate parties) and to compute on M a correct authentication tag
 under the key K. This is called a forgery. Note that if the
 authentication tag is specified to be of length t then the attacker
 can trivially break the MAC with probability 1/2^t. For this the
 attacker can just generate any message of its choice and try a random
 tag; obviously, the tag is correct with probability 1/2^t. By
 repeated guesses the attacker can increase linearly its probability
 of success.

 UMAC is designed to make this guessing strategy the best possible
 attack against UMAC as long as the attacker does not invest the
 computational effort needed to break the underlying cipher, e.g. AES,
 used to produce the one time pads used in UMAC computation. More
 precisely, under the assumed strength of this cipher UMAC provides
 for close-to-optimal security with regards to forgery probability as
 represented in the next table.

 --
 UHASH-OUTPUT-LEN Forging probability Approximate actual forging
 (bytes) using a random tag probability in UMAC
 (using a clever tag)

 2 2^-16 2^-15
 4 2^-32 2^-30
 8 2^-64 2^-60
 16 2^-128 2^-120
 --

 Recall that the parameter UHASH-OUTPUT-LEN specifies the length of
 the UMAC authentication tag. The above table states, for example,
 for the case of an 8-byte tag that the ideal forging probability
 would be 2^-64 while UMAC would withstand an actual forging
 probability of 2^-60. Note that under this tag length (which is the
 default length in UMAC) the probability of forging a message is well
 under the chance that a randomly guessed DES key is correct. DES is
 now widely seen as vulnerable, but the problem has never been that
 some extraordinarily lucky attacker might, in a single guess, find
 the right key. Instead, the problem is that large amounts of
 computation can be thrown at the problem until, off-line, the
 attacker finds the right key.

 With UMAC, off-line computation aimed at exceeding the forging
 probability is hopeless, regardless of tag length, as long as the
 underlying cipher is not broken. The only way to forge is to
 interact with the entity that verifies the MAC and to try a huge
 amount of forgeries before one is likely to succeed. The system

Krovetz et al. Expires April 2001 [Page 32]

INTERNET-DRAFT UMAC October 2000

 architecture will determine the extent to which this is possible. In
 a well-architected system there should not be any high-bandwidth
 capability for presenting forged MACs and determining if they are
 valid. In particular, the number of authentication failures at the
 verifying party should be limited. If a large number of such
 attempts are detected the session key in use should be dropped and
 the event be recorded in an audit log.

 Let us reemphasize: a forging probability of 1 / 2^60 does not mean
 that there is an attack that runs in 2^60 time - as long as AES
 maintains its believed security there is no such attack for UMAC.
 Instead, a 1 / 2^60 forging probability means that if an attacker
 could try out 2^60 MACs, then the attacker would probably get one
 right. But the architecture of any real system should render this
 infeasible. One can certainly imagine an attacker having a high
 bandwidth channel (e.g., 1 Gbit/second or more) over which it can
 continually present attempted forgeries, the attacker being signaled
 when a correct tag is found, but realizing such a scenario in a real
 system would represent a major lapse in the security architecture.

 It should be pointed out that once an attempted forgery is
 successful, it is entirely possible that all subsequent messages
 under this key may be forged, too. This is important to
 understanding in gauging the severity of a successful forgery.

 In conclusion, the default 64-bit tags seem appropriate for most
 security architectures and applications. In cases where when the
 consequences of an authentication failure are not extremely severe,
 and when the system architecture is designed to conscientiously limit
 the number of forgery attempts before a session is torn down, 32-bit
 authentication tags may be adequate. For the paranoid, or if an
 attacker is allowed a fantastic number of forgery tests, 96- or
 128-bits may be utilized.

8.3 Selective-assurance authentication

 We have already remarked about the flexibility built into UMAC to use
 authentication tags of various lengths: shorter tags are faster to
 compute and one needs to transmit fewer bits, but the forging
 probability is higher. There is an additional degree of flexibility
 built into the design of UMAC: even if the sender generates and
 transmits a tag of 8 bytes, say, a receiver may elect to verify only
 the first 4 bytes of the tag, and computing that 4-byte prefix by the
 receiver will be substantially faster than computing what the full
 8-byte tag would be. Indeed when WORD-LEN is 2 one can more quickly
 check the 2-byte prefix of the tag than the 4-byte prefix of the tag,
 one can more quickly check the 4-byte prefix of the tag than the

Krovetz et al. Expires April 2001 [Page 33]

INTERNET-DRAFT UMAC October 2000

 6-byte prefix of the tag, and so forth. When WORD-LEN is 4 one can
 more quickly check the 4-byte prefix of the tag than an entire 8-byte
 tag, and so forth. This type of flexibility allows different parties
 who receive a MAC (as in a multicast setting) to authenticate the
 transmission to the extent deemed necessary and to the extent
 consistent with any computational limits of the receiver.

 In a scenario where receivers are allowed to verify short prefixes of
 longer tags, it is even more important that conservative policies are
 followed when a bad tag is presented to the receiver. Because short
 prefixes are easier to forge than are long ones, an attacker may
 attempt to forge short prefixes and then leverage information gained
 from these attacks to forge longer tags. If the attacker can learn
 which short tags are good and which are bad, the attacker may be able
 to learn enough to allow longer forgeries.

 One salient feature of the security-performance trade-off offered by
 UMAC is its usability in contexts where performance is severely
 constrained. In such cases, using a mild-security authentication tag
 can be of significant value especially if the alternative would be
 not to use authentication at all (a possible such scenario could be
 the high-speed transmission of real-time multimedia streams).
 Another potential scenario where short and fast-to-compute tags can
 be useful is for fast detection of data forgery intended as a denial
 of service attack. In this case, even a moderate increase in the
 attacker's difficulty to produce forgeries may suffice to make the
 attack worthless for the attacker. Moreover, being able to detect
 just a portion of attempted forgeries may be enough to identify the
 attack.

8.4 Nonce considerations

 The function UMAC (Section 7) requires a nonce with length in the
 range 1 to 16 bytes. All nonces in an authentication session must be
 equal in length. For secure operation, no nonce value should be
 repeated within the life of a single UMAC session-key.

 To authenticate messages over a duplex channel (where two parties
 send messages to each other), a different key could be used for each
 direction. If the same key is used in both directions, then it is
 crucial that all nonces be distinct. For example, one party can use
 even nonces while the other party uses odd ones. The receiving party
 must verify that the sender is using a nonce of the correct form.

 This specification does not indicate how nonce values are created,
 updated, or communicated between the entity producing a tag and the
 entity verifying a tag. The following exemplify some of the

Krovetz et al. Expires April 2001 [Page 34]

INTERNET-DRAFT UMAC October 2000

 possibilities:

 1. The nonce is an eight-byte [resp., four-byte] unsigned number,
 Counter, which is initialized to zero, which is incremented by
 one following the generation of each authentication tag, and
 which is always communicated along with the message and the
 authentication tag. An error occurs at the sender if there is an
 attempt to authenticate more than 2^64 [resp., 2^32] messages
 within a session.

 2. The nonce is a 16-byte unsigned number, Counter, which is
 initialized to zero and which is incremented by one following the
 generation of each authentication tag. The Counter is not
 explicitly communicated between the sender and receiver.
 Instead, the two are assumed to communicate over a reliable
 transport, and each maintains its own counter so as to keep track
 of what the current nonce value is.

 3. The nonce is a 16-byte random value. (Because repetitions in a
 random n-bit value are expected at around 2^(n/2) trials, the
 number of messages to be communicated in a session using n-bit
 nonces should not be allowed to approach 2^(n/2).)

 We emphasize that the value of the nonce need not be kept secret.

 When UMAC is used within a higher-level protocol there may already be
 a field, such as a sequence number, which can be co-opted so as to
 specify the nonce needed by UMAC. The application will then specify
 how to construct the nonce from this already-existing field.

 Note that if the nonce starts at zero and is incremented with each
 message then an attacker can easily ascertain the number of messages
 which have been sent during a session. If this is information which
 one wishes to deny the attacker then one might have the sender
 initialize the nonce to a random value, rather than to zero.
 Inspecting the current nonce will no longer reveal to the attacker
 the number of messages which have been sent during this session.
 This is a computationally cheaper approach than enciphering the
 nonce.

8.5 Guarding against replay attacks

 A replay attack entails the attacker repeating a message, nonce, and
 authentication tag. In systems, replay attacks may be quite
 damaging, and many applications will want to guard against them. In
 UMAC, this would normally be done at the receiver by having the
 receiver check that no nonce value is used twice. On a reliable

Krovetz et al. Expires April 2001 [Page 35]

INTERNET-DRAFT UMAC October 2000

 connection, when the nonce is a counter, this is trivial. On an
 unreliable connection, when the nonce is a counter, one would
 normally cache some "window" of recent nonces. Out-of-order message
 delivery in excess of what the window allows will result in rejecting
 otherwise valid authentication tags.

 We emphasize that it is up to the receiver when a given message,
 nonce and tag will be deemed authentic. Certainly the tag should be
 valid for the message and nonce, as determined by UMAC, but the
 message may still be deemed inauthentic because the nonce is detected
 to be a replay.

9 Acknowledgments

 Thanks are due to David Balenson and David Carman of NAI Labs, who
 suggested the advantages of allowing a receiver to verify
 authentication tags to various forgery probabilities. Thanks are
 also due to David McGrew and Scott Fluhrer of Cisco Systems for
 encouraging us to improve UMAC performance on short messages.

 Phillip Rogaway, John Black, and Ted Krovetz were supported in this
 work under Rogaway's NSF CAREER Award CCR-962540, and under MICRO
 grants 97-150, 98-129, and 99-103 funded by RSA Data Security, Inc.,
 and ORINCON Corporation. Much of Rogaway's work was carried out
 during two sabbatical visits to Chiang Mai University. Special thanks
 to Prof. Darunee Smawatakul for helping to arrange these visits.

10 References

 [1] ANSI X9.9, "American National Standard for Financial
 Institution Message Authentication (Wholesale)", American
 Bankers Association, 1981. Revised 1986.

 [2] M. Bellare, R. Canetti, and H. Krawczyk, "Keyed hash functions
 and message authentication", Advances in Cryptology - CRYPTO
 '96, LNCS vol. 1109, pp. 1-15. Full version available from

http://www.research.ibm.com/security/keyed-md5.html/

 [3] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway,
 "UMAC: Fast and provably secure message authentication",
 Advances in Cryptology - CRYPTO '99, LNCS vol. 1666, pp.
 216-233. Full version available from

http://www.cs.ucdavis.edu/~rogaway/umac

 [4] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway,
 "The UMAC message authentication code", work in progress, 2000.

http://www.research.ibm.com/security/keyed-md5.html/
http://www.cs.ucdavis.edu/~rogaway/umac

Krovetz et al. Expires April 2001 [Page 36]

INTERNET-DRAFT UMAC October 2000

 To be available from http://www.cs.ucdavis.edu/~rogaway/umac

 [5] L. Carter and M. Wegman, "Universal classes of hash functions",
 Journal of Computer and System Sciences, 18 (1979), pp.
 143-154.

 [6] O. Goldreich, S. Goldwasser and S. Micali, "How to construct
 random functions", Journal of the ACM, 33, No. 4 (1986), pp.
 210-217.

 [7] S. Halevi and H. Krawczyk, "MMH: Software message
 authentication in the Gbit/second rates", Fast Software
 Encryption, LNCS Vol. 1267, Springer-Verlag, pp. 172-189, 1997.

 [8] ISO/IEC 9797-1, "Information technology - Security techniques -
 Data integrity mechanism using a cryptographic check function
 employing a block cipher algorithm", International Organization
 for Standardization, 1999.

 [9] H. Krawczyk, M. Bellare, and R. Canetti, "HMAC: Keyed-hashing
 for message authentication", RFC-2104, February 1997.

 [10] T. Krovetz, and P. Rogaway, "Fast universal hashing with small
 keys and no preprocessing", work in progress, 2000. To be
 available from http://www.cs.ucdavis.edu/~rogaway/umac

 [11] T. Krovetz, and P. Rogaway, "Variationally universal hashing",
 work in progress, 2000. To be available from

http://www.cs.ucdavis.edu/~rogaway/umac

 [12] M. Wegman and L. Carter, "New hash functions and their use in
 authentication and set equality", Journal of Computer and
 System Sciences, 22 (1981), pp. 265-279.

11 Author contact information

 Authors' Addresses

 John Black
 Department of Computer Science
 University of Nevada
 Reno NV 89557
 USA

 EMail: jrb@cs.unr.edu

 Shai Halevi

http://www.cs.ucdavis.edu/~rogaway/umac
https://datatracker.ietf.org/doc/html/rfc2104
http://www.cs.ucdavis.edu/~rogaway/umac
http://www.cs.ucdavis.edu/~rogaway/umac

Krovetz et al. Expires April 2001 [Page 37]

INTERNET-DRAFT UMAC October 2000

 IBM T.J. Watson Research Center
 P.O. Box 704
 Yorktown Heights NY 10598
 USA

 EMail: shaih@watson.ibm.com

 Alejandro Hevia
 Department of Computer Science & Engineering
 University of California at San Diego
 La Jolla CA 92093
 USA

 EMail: ahevia@cs.ucsd.edu

 Hugo Krawczyk
 Deprtment of Electrical Engineering
 Technion
 Haifa 32000
 ISRAEL

 EMail: hugo@ee.technion.ac.il

 Ted Krovetz
 Intel Corporation
 1900 Prairie City Road
 Folsom CA 95630
 USA

 EMail: tdk@acm.org

 Phillip Rogaway
 Department of Computer Science
 University of California
 Davis CA 95616
 USA

 EMail: rogaway@cs.ucdavis.edu

A Suggested application programming interface (API)

 /* umac.h */

 typedef struct UMAC_CTX *umac_ctx_t;

 umac_ctx_t umac_alloc(char key[]);
 /* Dynamically allocate UMAC_CTX struct */

Krovetz et al. Expires April 2001 [Page 38]

INTERNET-DRAFT UMAC October 2000

 /* initialize variables and generate */
 /* subkeys for default parameters. */

 int umac_free(umac_ctx_t ctx);
 /* Deallocate the context structure. */

 int umac_set_params(umac_ctx_t ctx, void *params);
 /* After default initialization, */
 /* optionally set parameters to */
 /* different values and reset for */
 /* new message. */

 int umac_update(umac_ctx_t ctx, char *input, long len);
 /* Incorporate len bytes pointed to by */
 /* input into context ctx. */

 int umac_final(umac_ctx_t ctx, char tag[], char nonce[]);
 /* Incorporate nonce value and return */
 /* tag. Reset ctx for next message. */

 int umac(umac_ctx_t ctx, char *input, long len,
 char tag[], char nonce[]);
 /* All-in-one (non-incremental) */
 /* implementation of the functions */
 /* umac_update() and umac_final(). */

 Each routine returns zero if unsuccessful.

B Reference code and test vectors

 See the UMAC World Wide Web homepage for reference code and test
 vectors.

http://www.cs.ucdavis.edu/~rogaway/umac/

http://www.cs.ucdavis.edu/~rogaway/umac/

Krovetz et al. Expires April 2001 [Page 39]

