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Status of this Memo

   This document is an Internet-Draft and is in full conformance with
   all provisions of Section 10 of RFC2026.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

   This specification describes how to generate an authentication tag
   (also called a "MAC") using the UMAC message authentication code.
   UMAC is designed to be very fast to compute, in software, on
   contemporary processors.  Measured speeds are as low as 1.0 cycles
   per byte.  The heart of UMAC is a universal hash function, UHASH,
   which relies on addition and multiplication of 16-bit, 32-bit, or
   64-bit numbers, operations well-supported by contemporary machines.

   To generate the authentication tag on a given message, UHASH is
   applied to the message and key to produce a short, fixed-length, hash
   value, and this hash value is then XOR-ed with a key-derived
   pseudorandom pad.  UMAC enjoys a rigorous security analysis and its
   only "cryptographic" use is a block cipher, AES, to generate the
   pseudorandom pads and internal key material.
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1  Introduction

   This specification describes how to generate an authentication tag
   (also called a "MAC") using the UMAC message authentication code.
   Typically the authentication tag will be transmitted along with a
   message and a nonce to allow the receiver of the message to verify
   the message's authenticity.  Generation and verification of the
   authentication tag depends on the message, the nonce, and on a secret
   key (typically, shared by sender and receiver).

   UMAC is designed to be very fast to compute, in software, on
   contemporary processors.  The heart of UMAC is a universal hash
   function, UHASH, which relies on addition and multiplication of
   16-bit, 32-bit, and 64-bit numbers.  These operations are supported
   well by contemporary machines.

   For many applications, especially ones with short-lived
   authentication needs, sufficient speed is already obtained by
   algorithms such as HMAC-SHA1 [2, 9] or the CBC-MAC of a block cipher
   [1, 8].  But for the most speed-demanding applications, UMAC may be a
   better choice:  An optimized implementation of UMAC can achieve peak
   performance which is about an order of magnitude faster than what can
   be achieved with HMAC or CBC-MAC.  Moreover, UMAC offers a tradeoff
   between forging probability and speed (it is possible to trade
   forging probability for speed).  UMAC has been designed so that
   computing the prefix of a tag can be done faster than computing the
   entire tag.  This feature allows for a receiver to verify the
   authenticity of a message to various levels of assurance depending on
   its needs and resources.  Finally, UMAC enjoys better analytical
   security properties than many other constructions.

   Closely associated to this specification are the papers [3, 4, 10,
   11].  See those papers for descriptions of the ideas which underlie
   this algorithm, for performance data, and for proofs of the
   correctness and maximal forging probability of UMAC.

   The UMAC algorithms described in the papers [3, 4] are
   "parameterized".  This means that various low-level choices, like the
   endian convention and the underlying cryptographic primitive, have
   not been fixed.  One must choose values for these parameters before
   the authentication tag generated by UMAC (for a given message, key,
   and nonce) becomes fully-defined.  In this document we provide two
   collections of parameter settings, and have named the sets UMAC16 and
   UMAC32. The parameter sets have been chosen based on experimentation
   and provide good performance on a wide variety of processors.  UMAC16
   is designed to excel on processors which provide small-scale SIMD
   parallelism of the type found in Intel's MMX and Motorola's AltiVec
   instruction sets, while UMAC32 is designed to do well on processors
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   with good 32- and 64- bit support.  UMAC32 may take advantage of SIMD
   parallelism in future processors.

   UMAC has been designed to allow implementations which accommodate
   "on-line" authentication.  This means that pieces of the message may
   be presented to UMAC at different times (but in correct order) and an
   on-line implementation will be able to process the message correctly
   without the need to buffer more than a few dozen bytes of the
   message.  For simplicity, the algorithms in this specification are
   presented as if the entire message being authenticated were available
   at once.

   The ideas which underlie UMAC go back to Wegman and Carter [12].  The
   sender and receiver share a secret key (the MAC key) which
   determines:

   * The key for a "universal hash function".  This hash function is
     "non-cryptographic", in the sense that it does not need to have any
     cryptographic "hardness" property.  Rather, it needs to satisfy
     some combinatorial property, which can be proven to hold without
     relying on unproven hardness assumptions.  The concept of a
     universal hash function (family) is due to [5].

   * The key for a pseudorandom function.  This is where one needs a
     cryptographic hardness assumption.  The pseudorandom function may
     be obtained (for example) from a block cipher or cryptographic hash
     function.  The concept of a pseudorandom function (family) is due
     to [6].

   To authenticate a message, Msg, one first applies the universal hash
   function, resulting in a string which is typically much shorter than
   the original message.  The pseudorandom function is applied to a
   nonce, and the result is used in the manner of a Vernam cipher: the
   authentication tag is the xor of the output from the hash function
   and the output from the pseudorandom function.  Thus, an
   authentication tag is generated as

        AuthTag = f(Nonce) xor h(Msg).

   Here f is the pseudorandom function shared between the sender and the
   receiver, and h is a universal hash function shared by the sender and
   the receiver.  In UMAC, a shared key is used to key the pseudorandom
   function f, and then f is used for both tag generation and internally
   to generate all of the bits needed by the universal hash function.
   For a general discussion of the speed and assurance advantages of
   this approach see, for example, [3, 7].

   The universal hash function that we use is called UHASH.  It combines
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   several software-optimized algorithms into a multi-layered structure.
   The algorithm is moderately complex.  Some of this complexity comes
   from extensive speed optimizations.

   For the pseudorandom function we use the block cipher of the Advanced
   Encryption Standard (AES).  (At the time of this working draft, the
   AES definition process is still in progress.  Here AES refers to the
   final blok cipher defined by this process.)  Any block cipher with
   the same block-length (128 bits) and key-length (128 bits) could
   trivially be substituted in place of what we call AES.  With slightly
   more effort one can define UMAC using a pseudorandom function other
   than a block cipher.

   One unusual feature of UMAC is that authentication-tag generation
   depends on a nonce (in addition to depending on the message and key)
   It is imperative that the nonce not be reused when generating
   authentication tags under the same key.  Thus the nonce will normally
   be implemented by a counter, though any other way to achieve a non-
   repeating value (or almost certainly non-repeating value) is
   acceptable.

   This document specifies the procedure for generating the
   authentication tag from the message, key and nonce.  The exact way in
   which the message, nonce and authentication tag are transmitted
   between sender and receiver is not specified here.  It is the
   responsibility of the particular applications using UMAC to specify
   how the message, nonce and tag are transmitted.  For example, an
   application may choose to send the three values concatenated by some
   encoding scheme while others may choose not to transmit the nonce at
   all if it is known to both parties (e.g., when the nonce is a shared
   state used to detect replay of messages), or to send only part of the
   bits of the nonce.

Section 8 discusses security considerations that are important for
   the proper understanding and use of UMAC.

   To the authors' knowledge no ideas utilized in UMAC have been or will
   be patented.  To the best of the authors' knowledge, it should be
   possible to use UMAC immediately, without any intellectual property
   concerns.

   Public-domain reference code for UMAC is available from the UMAC
   homepage: http://www.cs.ucdavis.edu/~rogaway/umac/ Other information,
   like timing data and papers, are distributed from the same URL.

http://www.cs.ucdavis.edu/~rogaway/umac/
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1.1  Organization

   The rest of this document is organized as follows:  In Section 2
   parameters of the named parameter sets UMAC16 and UMAC32 are
   described.  In Section 3 we introduce the basic notations used
   throughout the rest of the document.  Section 4 describes the methods
   used for generating the Vernam pad and the pseudorandom strings
   needed internally for hashing.  In Sections 5 and 6 the universal
   hash function is described.  Finally, in Section 7 we describe how
   all these components fit together in the UMAC construction.  Some
   readers may prefer to read sections 4-7 backwards, in order to get a
   top-down description.  Section 8 describes some security
   considerations in the use of UMAC.

2  Named parameter sets: UMAC16 and UMAC32

   As described in [3, 4], a concrete instantiation of UMAC requires the
   setting of many parameters.  We have chosen two sets of values for
   all of these parameters which allow for good performance on a wide
   variety of processors.  For maximum performance we offer UMAC16 which
   is designed to exploit the vector-parallel instructions on the Intel
   MMX and Motorola AltiVec instruction sets.  For good performance on
   processors which support 32- and 64-bit quantities well, we offer
   UMAC32.

2.1  Named parameters

   Throughout the algorithms described in this document, we have
   integrated most of the parameters required for a concrete UMAC
   instantiation as unnamed numeric constants.  However, we have named
   six parameters and assign them the following values depending on
   whether one wishes to use UMAC16 or UMAC32.

                                 UMAC16                 UMAC32
                                 ------                 ------
      WORD-LEN                        2                      4
      UMAC-OUTPUT-LEN                 8                      8
      L1-KEY-LEN                   1024                   1024
      UMAC-KEY-LEN                   16                     16
      ENDIAN-FAVORITE            LITTLE                 LITTLE
      L1-OPERATIONS-SIGN         SIGNED               UNSIGNED

   Here we give a brief explanation of the role each named parameter
   plays.
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     WORD-LEN:           Specifies the size in bytes of a "word".  UMAC
                         will be significantly faster in execution if
                         the executing machine supports well certain
                         operations on datatypes of this size.  Note
                         that WORD-LEN is not necessarily the native
                         wordsize of the target machine (and on some
                         machines a smaller value turns out to be
                         preferable).

     UMAC-OUTPUT-LEN:    Specifies the length of the authentication tag
                         generated by UMAC, in bytes.

     L1-KEY-LEN:         Specifies the "block length," in bytes, on
                         which the hash-function initially operates.
                         This much storage (and then some) will be
                         needed in the run-time environment for UMAC's
                         internal keys.

     UMAC-KEY-LEN:       Specifies the length in bytes of the user-sup-
                         plied UMAC key.

     ENDIAN-FAVORITE:    Specifies which endian-orientation will be fol-
                         lowed in the reading of data to be hashed.
                         This need not be equal to the native endianess
                         of any specific machine running UMAC.

     L1-OPERATIONS-SIGN: Specifies whether the strings manipulated in
                         the hash-function are to be initially consid-
                         ered as signed or unsigned integers.

2.2  Alternative instantiations

   Although this document only specifies two named parameter sets, the
   named parameters could be altered to suit specific authentication
   needs which are not adequately served by either UMAC16 or UMAC32.
   Below, we list alternatives that are supported by this specification
   for each of the named parameters.

     WORD-LEN           ::= 2 | 4
     UMAC-OUTPUT-LEN    ::= 1 | 2 | ... | 31 | 32
     L1-KEY-LEN         ::= 32 | 64 | 128 | 256 | ... | 2^28
     UMAC-KEY-LEN       ::= 16 | 32
     ENDIAN-FAVORITE    ::= BIG | LITTLE
     L1-OPERATIONS-SIGN ::= SIGNED | UNSIGNED

   Roughly speaking, doubling UMAC-OUTPUT-LEN approximately doubles
   execution time and squares (ie. decreases) the probability of MAC
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   forgery.  Setting ENDIAN-FAVORITE to BIG causes UMAC to perform
   better on big-endian processors rather than little-endian processors.
   Setting L1-OPERATIONS-SIGN to UNSIGNED slightly increases UMAC
   security at the expense of complicating implementations on systems
   which do not support unsigned integers well.  This effectively
   disallows the use of Intel's MMX instructions which only support
   signed integers.  Finally, increasing L1-KEY-LEN tends to speed tag
   generation on large messages, but requires more memory for processing
   and could potentially slow the processor by overflowing its cache.

2.3  Naming convention

   A concise shorthand may be used to specify an instance of UMAC.  The
   word "UMAC" followed by up to six parameters specifies unambiguously
   an instance of UMAC.  If only a prefix of the six parameters are
   written, it is implicitly specified that those missing parameters
   take on default values listed below. The format of the shorthand is
   "UMAC-w/l/n/k/s/e", and the meaning of the letters (and their
   defaults) is as follows:

       w = WORD-LEN            (4)
       l = UMAC-OUTPUT-LEN     (8)
       n = L1-KEY-LEN          (1024)
       k = UMAC-KEY-LEN        (16)
       s = L1-OPERATIONS-SIGN  (UNSIGNED)
       e = ENDIAN-FAVORITE     (LITTLE)

   Some examples

       UMAC-4/8/1024/16/UNSIGNED/LITTLE  (Same as named set "UMAC32" )
       UMAC-2/8/1024/16/SIGNED/LITTLE    (Same as named set "UMAC16" )
       UMAC-4/12                         ("UMAC32" with 96-bit output)
       UMAC-2/8/4096                     ("UMAC16" with 4K L1-key and)
                                         (unsigned L1-OPERATIONS     )

3  Notation and basic operations

   The specification of UMAC involves the manipulation of both strings
   and numbers.  String variables are denoted with initial capitals
   (upper-case), whereas numeric variables are denoted in all lower-
   case.  Global parameters are denoted in all capital letters.  Simple
   functions, like those for string-length and string-xor, are written
   with all lower-case, while the algorithms of UMAC are named in all
   upper-case.

   Whenever a variable is followed by an underscore ("_"), the
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   underscore is intended to denote a subscript, with the subscripted
   expression needing to be evaluated to resolve the meaning of the
   variable.  For example, if i=2, then M_{2 * i} refers to the variable
   M_4.

   We now define some basic operations for manipulating strings and
   numbers, and for converting between the two.

3.1  Operations on strings

   In this specification, we view the messages to be hashed (as well as
   the keys used for hashing) as strings of bytes.  A "byte" is an 8-bit
   string.  The algorithms have been designed so that they are easily
   extendable to allow arbitrary bit-strings, if necessary.  We use the
   following notation to manipulate these strings.

     length(S):    The length of string S in bytes.

     zeroes(n):    The string made of n zero-bytes.

     S xor T:      The string which is the bitwise exclusive-or of S and
                   T.  Strings S and T must have the same length.

     S and T:      The string which is the bitwise conjunction of S and
                   T.  Strings S and T must have the same length.

     S[i]:         The i-th byte of the string S (indices begin at 1).

     S[i..j]:      The substring of S consisting of bytes i through j.

     S || T:       The string S concatenated with string T.

     zeropad(S,n): The string S, padded with zero-bytes to the nearest
                   non-zero multiple of n bytes.  Formally, zeropad(S,n)
                   = S || zeroes(i), where i is the smallest nonnegative
                   integer such that S || zeroes(i) is non-empty and n
                   divides length(S)+i.

3.1.1  ENDIAN-SWAP: Adjusting endian orientation

   This routine is used to make the data input to UMAC conform to the
   ENDIAN-FAVORITE global parameter.
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3.1.1.1  Discussion

   The most time consuming portion of many UMAC computations involves
   the reading of key and message data from memory.  Because big- and
   little-endian computers will read these bytes differently, specifying
   a particular endian-orientation for UMAC could have significant
   performance ramifications.  If necessary, the key-bytes can be
   preprocessed once during key setup to eliminate the need for their
   reorientation during performance-critical tag generation.  But,
   message data presumably cannot be preprocessed.  Any reorientation
   needed for each message must be done during tag generation,
   introducing a significant penalty to computers whose native endian-
   orientation is opposite to that specified for UMAC.  Therefore, UMAC
   defines a parameter, ENDIAN-FAVORITE, which allows UMAC to be
   specified to favor big- or little-endian memory conventions.  If the
   parameter is set to favor little-endian computers, then we specify
   the reversal of the bytes of every word in the input message using
   the following support function.  By reversing the data in the
   specification, an implementation on a little-endian machine would in
   fact do nothing but read the input data using native-endian word
   loads.  The loads would automatically reverse the bytes within each
   word, fulfilling the requirements of the specification.  Any other
   endian reorientation needed to comply with the specification requires
   an insignificant amount of time during each tag calculation.

3.1.1.2  Interface

   Function Name:
     ENDIAN-SWAP
   Input:
     S, string with length divisible by WORD-LEN bytes.
   Output:
     T, string S with each word endian-reversed.

3.1.1.3  Algorithm

   Compute T using the following algorithm.

     //
     // Break S into word-size chunks
     //
     n = length(S) / WORD-LEN
     Let S_1, S_2, ..., S_n be strings of length WORD-LEN bytes
        so that S_1 || S_2 || .. || S_n = S.

     //
     // Byte-reverse each chunk, and build-up T
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     //
     T = <empty string>
     for i = 1 to n do
       Let W_1, W_2, ..., W_{WORD-LEN}  be bytes
          so that W_1 || W_2 || ... || W_{WORD-LEN} = S_i
       SReversed_i = W_{WORD-LEN} || W_{WORD-LEN - 1} || ... || W_1
       T = T || SReversed_i

     Return T

3.2  Operations on integers

   In this specification, we generally use standard notation for
   mathematical operations, such as "*" for multiplication, "+" for
   addition and "mod" for modular reduction.  Some less standard
   notations are defined here.

     a^i:      The integer a raised to the integer i-th power.

     lg a:     The base-2 logarithm of integer a.

     floor(x): The largest integer less than or equal to x.

     ceil(x):  The smallest integer greater than or equal to x.

     prime(n): The largest prime number less than 2^n.

   The prime numbers used in UMAC are:

    +-----+--------------------+---------------------------------------+
    |  x  | prime(x) [Decimal] | prime(x) [Hexadecimal]                |
    +-----+--------------------+---------------------------------------+
    | 19  | 2^19  - 1          | 0x0007FFFF                            |
    | 32  | 2^32  - 5          | 0xFFFFFFFB                            |
    | 36  | 2^36  - 5          | 0x0000000F FFFFFFFB                   |
    | 64  | 2^64  - 59         | 0xFFFFFFFF FFFFFFC5                   |
    | 128 | 2^128 - 159        | 0xFFFFFFFF FFFFFFFF FFFFFFFF FFFFFF61 |
    +-----+--------------------+---------------------------------------+

3.3  String-Integer conversion operations

   We convert between strings and integers using the following
   functions.  Each function treats initial bits as more significant
   than later ones.
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     bit(S,n):      Returns the integer 1 if the n-th bit of the string
                    S is 1, otherwise returns the integer 0 (indices
                    begin at 1).  Here n must be between 1 and the bit-
                    length of S.

     str2uint(S):   The non-negative integer whose binary representation
                    is the string S.  More formally, if S is t bits long
                    then str2uint(S) = 2^{t-1} * bit(S,1) + 2^{t-2} *
                    bit(S,2) + ... + 2^{1} * bit(S,t-1) + bit(S,t).

     uint2str(n,i): The i-byte string S such that str2uint(S) = n.  If
                    no such string exists then uint2str(n,i) is unde-
                    fined.

     str2sint(S):   The integer whose binary representation in two's-
                    complement is the string S.  More formally, if S is
                    t bits long then str2sint(S) = -2^{t-1} * bit(S,1) +
                    2^{t-2} * bit(S,2) + ... + 2^{1} * bit(S,t-1) +
                    bit(S,t).

     sint2str(n,i): The i-byte string S such that str2sint(S) = n.  If
                    no such string exists then sint2str(n,i) is unde-
                    fined.

3.4  Mathematical operations on strings

   One of the primary operations in the universal hashing part of UMAC
   is repeated application of addition and multiplication on strings.
   We use "+_n" and "*_n" to denote the string operations which are
   equivalent to addition and multiplication modulo 2^n, respectively.
   These operations correspond exactly with the addition and
   multiplication operations which are performed efficiently on
   registers by modern computers.  So, when n is 16, 32 or 64, these
   operations can be preformed by computers very quickly.

   There are two interpretations of the operators depending on whether
   the strings are interpreted as signed or unsigned integers.  The
   global parameter L1-OPERATIONS-SIGN determines which interpretation
   is made.

   If strings S and T are interpreted as signed integers (that is,
   L1-OPERATIONS-SIGN == SIGNED) then

     "S *_n T" as uint2str(str2sint(S) * str2sint(T) mod 2^n, n/8), and

     "S +_n T" as uint2str(str2sint(S) + str2sint(T) mod 2^n, n/8).
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   If strings S and T are interpreted as unsigned integers (that is,
   L1-OPERATIONS-SIGN == UNSIGNED) then we define

     "S *_n T" as uint2str(str2uint(S) * str2uint(T) mod 2^n, n/8), and

     "S +_n T" as uint2str(str2uint(S) + str2uint(T) mod 2^n, n/8).

   In any case, the number n must be divisible by 8.  In this document
   we use S *_16 T, S *_32 T, S *_64 T, S +_32 T and S +_64 T,
   corresponding to multiplication of 2, 4 and 8 byte numbers, and the
   addition of 4 and 8 byte numbers.

4  Key and pad derivation functions

   UMAC, as described in this document, requires either a 16- or 32-byte
   key which is used with a key-derivation function (KDF) to produce
   pseudorandom bits needed within the universal hash function.

4.1  KDF: Key derivation function

   Stretching the user-supplied key into pseudorandom bits used
   internally by UMAC is done with a key-derivation function (KDF).  In
   this section we define a KDF which is efficiently instantiated with a
   block cipher.  The Advanced Encryption Standard (AES) is used in
   output-feedback mode to produce the required bits.  If UMAC-KEY-LEN
   is 16, then the 128-bit key/128-bit block-length variant of AES is
   used, and if UMAC-KEY-LEN is 32, then the 256-bit key/128-bit block-
   length variant is used.  The KDF requires an "index" parameter.
   Using the same key, but different indices, generates different
   pseudorandom outputs.

4.1.1  Interface

   Function Name:
     KDF
   Input:
     K, string of length UMAC-KEY-LEN bytes  // key to AES
     index, a non-negative integer less than 256.
     numbytes, a positive integer.
   Output:
     Y, string of length numbytes bytes.
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4.1.2  Algorithm

   Compute Y using the following algorithm.

     //
     // Calculate number of AES iterations, set indexed starting point
     //
     n = ceil(numbytes / 16)
     T = zeroes(15) || uint2str(index, 1)
     Y = <empty string>

     //
     // Build Y using AES in a feedback mode
     //
     for i = 1 to n do
       T = AES(K, T)
       Y = Y || T

     Y = Y[1..numbytes]

     Return Y

4.2  PDF: Pad-derivation function

   The Wegman-Carter MAC scheme used in UMAC requires the exclusive-or
   of a pseudorandom string with the output from the universal hash
   function.  The pseudorandom string is obtained by applying a pad-
   derivation function (PDF) to a nonce which, for security reasons,
   must change with each authentication-tag computation.  Nonces may be
   any number of bytes from 1 to 16, but all nonces in a single
   authentication session must be of equal length.  In this section we
   define a PDF which is efficiently instantiated with a block cipher.
   Again we use AES with either 16- or 32-bytes keys depending on the
   value of UMAC-KEY-LEN.

4.2.1  Discussion

   The PDF output is exclusive-or'd with the result of the universal
   hash function.  AES, however, may provide more or fewer bits per
   invocation than are needed for this purpose.  For example, UMAC-
   OUTPUT-LEN is normally 8 bytes and AES produces an output of 16
   bytes.  It would save processing time if half of the AES output bits
   could be used to generate one tag, and then the second half of the
   same AES output could be used for the tag of the next message.  For
   this reason, we include an optimization which allows the use of
   different substrings of the same AES output.  This optimization is
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   effective only when nonces are sequential.  We do so by using the low
   bits of the nonce as an index into the AES output, which is generated
   using the higher bits of the nonce which are not used for indexing.
   This speeds message authentication by reducing the average time spent
   by AES for each authentication.  Note that if a counter-variable is
   used to exploit this optimization, and the variable is stored in
   memory, then the variable must be treated as big-endian.  If UMAC-
   OUTPUT-LEN is larger than 16, then two AES invocations are required
   to produce a sufficient number of bits.

4.2.2  Interface

   Function Name:
     PDF
   Input:
     K, string of length UMAC-KEY-LEN bytes   // key for AES
     Nonce, string of length 1 to 16 bytes.
   Output:
     Y, string of length UMAC-OUTPUT-LEN bytes.

4.2.3  Algorithm

   Compute Y using the following algorithm.

      //
      // Make Nonce 16 bytes by prepending zeroes
      //
      Nonce = Nonce || zeroes(16 - length(Nonce))

      //
      // If one AES invocation is enough for more than one
      // PDF invocation.
      //
      if (UMAC-OUTPUT-LEN <= 8) then

         //
         // Compute number of index bits needed
         //
         i = floor(16 / UMAC-OUTPUT-LEN)
         numlowbits = floor(lg(i))

         //
         // Extract index bits and zero low bits of Nonce
         //
         nlowbitsnum = str2uint(Nonce) mod 2^numlowbits
         Nonce = Nonce xor uint2str(nlowbitsnum, 16)
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         //
         // Generate subkey, AES and extract indexed substring
         //
         K' = KDF(K, 128, UMAC-KEY-LEN)
         T = AES(K', Nonce)
         Y = T[ nlowbitsnum      * UMAC-OUTPUT-LEN + 1 ..
               (nlowbitsnum + 1) * UMAC-OUTPUT-LEN]

      else

         //
         // Repeated AES calls to build length
         //
         K_1 = KDF(K, 128, UMAC-KEY-LEN)
         K_2 = KDF(K, 129, UMAC-KEY-LEN)
         if (UMAC-OUTPUT-LEN <= 16)
            Y = AES(K_1, Nonce)
         else
            Y = AES(K_1, Nonce) || AES(K_2, Nonce)
         Y = Y[1..UMAC-OUTPUT-LEN]

      Return Y

5  UHASH-32: Universal hash function for a 32-bit word size

   UHASH is a keyed hash function, which takes as input a string of
   arbitrary length, and produces as output a string of fixed length
   (such as 8 bytes).  The actual output length depends on the parameter
   UMAC-OUTPUT-LEN.

   UHASH has been shown to be epsilon-ASU ("Almost Strongly Universal"),
   where epsilon is a small (parameter-dependent) real number.
   Informally, saying that a keyed hash function is epsilon-ASU means
   that for any two distinct fixed input strings, the two outputs of the
   hash function with a random key "look almost like a pair of random
   strings".  The number epsilon measures how non-random the output
   strings may be.  For details, see [3, 4, 11].

   UHASH has been designed to be fast by exploiting several
   architectural features of modern commodity processors.  It was
   specifically designed for use in UMAC.  But UHASH is useful beyond
   that domain, and can be easily adopted for other purposes.

   UHASH does its work in three layers.  First, a hash function called
   NH [3] is used to compress input messages into strings which are
   typically many times smaller than the input message.  Second, the
   compressed message is hashed with an optimized "polynomial hash
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   function" into a fixed-length 16-byte string.  Finally, the 16-byte
   string is hashed using an "inner-product hash" into a string of
   length WORD-LEN bytes.  These three layers are repeated (with a
   modified key) until the outputs total UMAC-OUTPUT-LEN bytes.

   Note: Because the repetitions of the three-layer scheme are
   independent (aside from sharing some internal key), it follows that
   each "word" of the final output can be computed independently.
   Hence, to compute a prefix of a UMAC tag, one can simply repeat the
   three-layer scheme fewer times.  Thus, computing a prefix of the tag
   can be done significantly faster than computing the whole tag.

5.1  NH-32: NH hashing with a 32-bit word size

   The first of the three hash-layers that UHASH uses is the NH hash
   function [3].  More than any other part of UHASH, NH is designed to
   be fast on modern processors, because it is where the bulk of the
   UHASH work is done.  The NH universal hash function hashes an input
   string M using a key K by considering M and K to be arrays of
   integers, each WORD-LEN bytes in length, and performing a sequence of
   arithmetic operations on them.  See [3] for definitions, proofs and
   rationale relating to NH.

   The NH-32 algorithm is designed to perform well on processors which
   support well multiplications of 32-bit operands into 64-bit results.
   NH-32 is also designed to exploit the recent trend of including
   instructions for small-scale vector parallelism in uniprocessor CPUs.
   Intel's Streaming SIMD 2 instruction set is a good example of this
   trend.  It supports an instruction, which multiplies two pairs of
   32-bit operands into two 64-bit results, which can be used by
   UHASH-32 for accelerated hashing.  To accommodate this parallelism,
   NH-32 accesses data-words in pairs which are 4 words (16 bytes)
   apart.

5.1.1  Interface

   Function Name:
     NH-32
   Input:
     K, string of length L1-KEY-LEN bytes.
     M, string with length divisible by 32 bytes.
   Output:
     Y, string of length 8 bytes.
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5.1.2  Algorithm

   Compute Y using the following algorithm.

     //
     // Break M and K into 4-byte chunks
     //
     t = length(M) / 4
     Let M_1, M_2, ..., M_t be 4-byte strings
       so that M = M_1 || M_2 || .. || M_t.
     Let K_1, K_2, ..., K_t be 4-byte strings
       so that K_1 || K_2 || .. || K_t  is a prefix of K.

     //
     // Perform NH hash on the chunks, pairing words for multiplication
     // which are 4 apart to accommodate vector-parallelism.
     //
     Y = zeroes(8)
     i = 1
     while (i < t) do
       Y = Y +_64 ((M_{i+0} +_32 K_{i+0}) *_64 (M_{i+4} +_32 K_{i+4}))
       Y = Y +_64 ((M_{i+1} +_32 K_{i+1}) *_64 (M_{i+5} +_32 K_{i+5}))
       Y = Y +_64 ((M_{i+2} +_32 K_{i+2}) *_64 (M_{i+6} +_32 K_{i+6}))
       Y = Y +_64 ((M_{i+3} +_32 K_{i+3}) *_64 (M_{i+7} +_32 K_{i+7}))
       i = i + 8

     Return Y

5.2  L1-HASH-32: First-layer hash

   To limit the length of key required in the first layer of hashing,
   L1-HASH-32 breaks the input message into chunks no longer than
   L1-KEY-LEN and NH hashes each with a key of the same length.

5.2.1  Discussion

   The NH hash function requires a key which is just as long as the
   message being hashed.  To limit the amount of key used in the NH
   hashing layer, we use a key of fixed length (defined by the parameter
   L1-KEY-LEN), and process the message in chunks of this length (or
   less).  The L1-HASH-32 algorithm takes an input message and breaks it
   into chunks of L1-KEY-LEN bytes (except the last chuck, which may be
   shorter and may need to be zero-padded to an appropriate length).
   Each chunk is hashed with NH-32, and the outputs from all the NH
   invocations are annotated with some length information and
   concatenated to produce the final L1-HASH-32 result.
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   If ENDIAN-FAVORITE is LITTLE, then each word in the input message is
   required to be endian reversed.

5.2.2  Interface

   Function Name:
     L1-HASH-32
   Input:
     K, string of length L1-KEY-LEN bytes.
     M, string of length less than 2^64 bytes.
   Output:
     Y, string of length (8 * ceil(length(M)/L1-KEY-LEN)) bytes.

5.2.3  Algorithm

   Compute Y using the following algorithm.

     //
     // Break M into L1-KEY-LEN byte chunks (final chunk may be shorter)
     //
     t = ceil(length(M) / L1-KEY-LEN)
     Let M_1, M_2, ..., M_t be strings so that M = M_1 || M_2 || .. ||
        M_t, and length(M_i) = L1-KEY-LEN for all 0 < i < t.

     //
     // For each chunk, except the last: endian-adjust, NH hash
     // and add bit-length.  Use results to build Y.
     //
     Len = uint2str(L1-KEY-LEN * 8, 8)
     Y = <empty string>
     for i = 1 to t-1 do
       if (ENDIAN-FAVORITE == LITTLE) then  // See endian discussion
          ENDIAN-SWAP(M_i)                  // in section 3.1.1
       Y = Y || (NH-32(K, M_i) +_64 Len)

     //
     // For the last chunk: pad to 32-byte boundary, endian-adjust,
     // NH hash and add bit-length.  Concatenate the result to Y.
     //
     Len = uint2str(length(M_t) * 8, 8)
     M_t = zeropad(M_t, 32)
     if (ENDIAN-FAVORITE == LITTLE) then
          ENDIAN-SWAP(M_t)
     Y = Y || (NH-32(K, M_t) +_64 Len)

     return Y
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5.3  POLY: Polynomial hash

   The output from L1-HASH is a string which is shorter than, but still
   proportional to, that of its input.  The POLY hash algorithm takes an
   arbitrary message and hashes it to a fixed length.

5.3.1  Discussion

   Polynomial hashing treats an input message as a sequence of
   coefficients of a polynomial, and the hash-key is the point at which
   this polynomial is evaluated.  The security guarantee assured by
   polynomial hashing degrades linearly in the length of the message
   being hashed.  If two messages of n words are hashed, then the
   probability they collide when hashed by POLY with a prime modulus of
   p is no more than n / p.  For more information on the polynomial
   hashing schemes used in UMAC see [10].

   The parameter 'wordbits' specifies the prime modulus used in the
   polynomial as well as the granularity (length of words) in which the
   input message should be broken.  Because some strings of length
   wordbits are greater than prime(wordbits), a mechanism is needed to
   fix words which are not in the range 0 .. prime(wordbits) - 1.  To
   this end, any word larger than 'maxwordrange' is split into two words
   guaranteed to be in range, and each is hashed by the polynomial hash.

5.3.2  Interface

   Function Name:
     POLY
   Input:
     wordbits, positive integer divisible by 8.
     maxwordrange, positive integer less than 2^wordbits.
     k, integer in the range 0 .. prime(wordbits) - 1.
     M, string with length divisible by (wordbits / 8) bytes.
   Output:
     y, integer in the range 0 .. prime(wordbits) - 1.

5.3.3  Algorithm

   Compute y using the following algorithm.

     //
     // Define constants used for fixing out-of-range words
     //
     wordbytes = wordbits / 8
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     p = prime(wordbits)
     offset = 2^wordbits - p
     marker = p - 1

     //
     // Break M into chunks of length wordbytes bytes
     //
     n = length(M) / wordbytes
     Let M_1, M_2, ..., M_n be strings of length wordbytes bytes
       so that M = M_1 || M_2 || .. || M_n

     //
     // For each input word, compare it with maxwordrange.  If larger
     // then hash the words 'marker' and (m - offset), both in range.
     //
     y = 1
     for i = 1 to n do
        m = str2uint(M_i)
        if (m >= maxwordrange) then
           y = (k * y + marker) mod p
           y = (k * y + (m - offset)) mod p
        else
           y = (k * y + m) mod p

     Return y

5.4  L2-HASH-32: Second-layer hash

   Because L1-HASH may produce quite long strings, and POLY's security
   guarantee degrades linearly, a scheme is required to allow long
   strings while ensuring that the collision probability never grows
   beyond a certain pre-set bound.  This is accomplished by dynamically
   increasing the prime modulus used in the polynomial hashing as the
   collision probability bound is approached.

5.4.1  Discussion

   The probability of two n-word messages hashing to the same result
   when polynomially hashed with prime modulus p is as much as (n / p).
   To maintain a limit on the maximum collision probability, a scheme is
   needed to disallow (n / p) growing too large.  The scheme used here
   hashes a number of words n_1 under modulus p_1 until (n_1 / p_1)
   reaches a critical point.  The result of the hash-so-far is prepended
   to the remaining message needing to be hashed, and the hashing
   continues, but under a prime modulus p_2 which is substantially
   larger than p_1.  Hashing continues for n_2 more words until (n_2 /
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   p_2) also reaches a critical point, at which time a new larger prime
   p_3 could be used.

   Because polynomial hashing under a small prime modulus is often
   faster than hashing under a large one, this dynamic ramping-up of the
   polynomial's modulus provides a hash function which is faster on
   short messages, but still accommodates long ones.

   The keys used for polynomial hashing are restricted to particular
   subsets to allow for faster implementations on 32-bit architectures.
   The restrictions allow an implementor to disregard some potential
   arithmetic carries during computation.

   For more information see [10].

5.4.2  Interface

   Function Name:
     L2-HASH-32
   Input:
     K, string of length 24 bytes.
     M, string of length less than 2^64 bytes.
   Output:
     Y, string of length 16 bytes.

5.4.3  Algorithm

   Compute y using the following algorithm.

     //
     //  Extract keys and restrict to special key-sets
     //
     Mask64  = uint2str(0x01ffffff01ffffff, 8)
     Mask128 = uint2str(0x01ffffff01ffffff01ffffff01ffffff, 16)
     k64    = str2uint(K[1..8]  and Mask64)
     k128   = str2uint(K[9..24] and Mask128)

     //
     // If M no more than 2^17 bytes, hash under 64-bit prime,
     // otherwise, hash first 2^17 bytes under 64-bit prime and
     // remainder under 128-bit prime.
     //
     if (length(M) <= 2^17) then             // 2^14 64-bit words

        //
        // View M as an array of 64-bit words, and use POLY modulo
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        // prime(64) (and with bound 2^64 - 2^32) to hash it.
        //
        y = POLY(64, 2^64 - 2^32,  k64, M)

     else

        M_1 = M[1 .. 2^17]
        M_2 = M[2^17 + 1 .. length(M)]
        M_2 = zeropad(M_2 || uint2str(0x80,1), 16)
        y = POLY(64, 2^64 - 2^32, k64, M_1)
        y = POLY(128, 2^128 - 2^96, k128, uint2str(y, 16) || M_2)

     Y = uint2str(y, 16)

     Return Y

5.5  L3-HASH-32: Third-layer hash

   The output from L2-HASH-32 is 16 bytes long.  This final hash
   function hashes the 16-byte string to a fixed length of 4 bytes using
   a simple inner-product hash with affine translation.  A 36-bit prime
   modulus is used to improve security.

5.5.1  Interface

   Function Name:
     L3-HASH-32
   Input:
     K1, string of length 64 bytes.
     K2, string of length 4 bytes.
     M, string of length 16 bytes.
   Output:
     Y, string of length 4 bytes.

5.5.2  Algorithm

   Compute Y using the following algorithm.

     y = 0

     //
     // Break M and K1 into 8 chunks and convert to integers
     //
     for i = 1 to 8 do
       M_i = M [(i - 1) * 2 + 1 .. i * 2]
       K_i = K1[(i - 1) * 8 + 1 .. i * 8]
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       m_i = str2uint(M_i)
       k_i = str2uint(K_i) mod prime(36)

     //
     // Inner-product hash, extract last 32 bits and affine-translate
     //
     y = (m_1 * k_1 + ... + m_8 * k_8) mod prime(36)
     y = y mod 2^32
     Y = uint2str(y, 4)
     Y = Y xor K2

     Return Y

5.6  UHASH-32: Three-layer universal hash

   The hash functions L1-HASH, L2-HASH and L3-HASH are used together in
   a straightforward manner.  A message is first hashed by L1-HASH, its
   output is then hashed by L2-HASH, whose output is then hashed by
   L3-HASH.  If the message being hashed is no longer than L1-KEY-LEN
   bytes, then L2-HASH is skipped as an optimization.  Because L3-HASH
   outputs a string whose length is only WORD-LEN bytes long, multiple
   iterations of this three-layer hash are used, with different keys
   each time, until UMAC-OUTPUT-LEN have been generated.  To reduce
   memory requirements, L1-HASH and L3-HASH both reuse most of their
   key-material between iterations.

5.6.1  Interface

   Function Name:
     UHASH-32
   Input:
     K, string of length UMAC-KEY-LEN bytes.
     M, string of length less than 2^64 bytes.
   Output:
     Y, string of length UMAC-OUTPUT-LEN bytes.

5.6.2  Algorithm

   Compute Y using the following algorithm.

     //
     // Calculate iterations needed to make UMAC-OUTPUT-LEN bytes
     //
     streams = ceil(UMAC-OUTPUT-LEN / WORD-LEN)

     //
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     // Define total key needed for all iterations using KDF.
     // L1Key and L3Key1 both reuse most key between iterations.
     //
     L1Key  = KDF(K, 0, L1-KEY-LEN + (streams - 1) * 16)
     L2Key  = KDF(K, 1, streams * 24)
     L3Key1 = KDF(K, 2, streams * 64)
     L3Key2 = KDF(K, 3, streams * 4)

     //
     // For each iteration, extract key and three-layer hash.
     // If length(M) <= L1-KEY-LEN, then skip L2-HASH.
     //
     Y = <empty string>
     for i = 1 to streams do
       L1Key_i  = L1Key [(i-1) * 16 + 1 .. (i-1) * 16 + L1-KEY-LEN]
       L2Key_i  = L2Key [(i-1) * 24 + 1 .. i * 24]
       L3Key1_i = L3Key1[(i-1) * 64 + 1 .. i * 64]
       L3Key2_i = L3Key2[(i-1) * 4  + 1 .. i * 4]

       A = L1-HASH-32(L1Key_i, M)
       if (length(M) <= L1-KEY-LEN) then
         B = zeroes(8) || A
       else
         B = L2-HASH-32(L2Key_i, A)
       C = L3-HASH-32(L3Key1_i, L3Key2_i, B)
       Y = Y || C
     Y = Y[1 .. UMAC-OUTPUT-LEN]

     Return Y

6  UHASH-16: Universal hash function for a 16-bit word size

   See Section 5 (UHASH-32) for general discussion of the UHASH
   algorithm.  Each sub-section of Section 6 will note only differences
   between UHASH-32 and UHASH-16.

6.1  NH-16: NH hashing with a 16-bit word size

   The NH-16 algorithm is designed to exploit the recent trend of
   including instructions for small-scale vector parallelism in
   uniprocessor CPUs.  Intel's MMX and Mororola's AltiVec instruction
   sets are good examples of this trend.  Both support single-
   instruction multiply-add instructions on vectors of 16-bit words
   which can be used by UHASH-16 for accelerated hashing.  To
   accommodate this parallelism, NH-16 accesses data-words in pairs
   which are 8 words (16 bytes) apart.
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6.1.1  Interface

   Function Name:
     NH-16
   Input:
     K, string of length L1-KEY-LEN bytes.
     M, string with length divisible by 32 bytes.
   Output:
     Y, string of length 4 bytes.

6.1.2  Algorithm

   Compute Y using the following algorithm.

     //
     // Break M and K into 2-byte chunks
     //
     t = length(M) / 2
     Let M_1, M_2, ..., M_t be 2-byte strings
       so that M = M_1 || M_2 || .. || M_t.
     Let K_1, K_2, ..., K_t be 2-byte strings
       so that K_1 || K_2 || .. || K_t  is a prefix of K.

     //
     // Perform NH hash on the chunks, pairing words for multiplication
     // which are 8 apart to accommodate vector-parallelism.
     //
     Y = zeroes(4)
     i = 1
     while (i < t) do
       Y = Y +_32 ((M_{i+0} +_16 K_{i+0}) *_32 (M_{i+ 8} +_16 K_{i+ 8}))
       Y = Y +_32 ((M_{i+1} +_16 K_{i+1}) *_32 (M_{i+ 9} +_16 K_{i+ 9}))
       Y = Y +_32 ((M_{i+2} +_16 K_{i+2}) *_32 (M_{i+10} +_16 K_{i+10}))
       Y = Y +_32 ((M_{i+3} +_16 K_{i+3}) *_32 (M_{i+11} +_16 K_{i+11}))
       Y = Y +_32 ((M_{i+4} +_16 K_{i+4}) *_32 (M_{i+12} +_16 K_{i+12}))
       Y = Y +_32 ((M_{i+5} +_16 K_{i+5}) *_32 (M_{i+13} +_16 K_{i+13}))
       Y = Y +_32 ((M_{i+6} +_16 K_{i+6}) *_32 (M_{i+14} +_16 K_{i+14}))
       Y = Y +_32 ((M_{i+7} +_16 K_{i+7}) *_32 (M_{i+15} +_16 K_{i+15}))
       i = i + 16

     Return Y

6.2  L1-HASH-16: First-layer hash

   To limit the length of key required in the first layer of hashing,
   L1-HASH-16 breaks the input message into chunks no longer than
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   L1-KEY-LEN bytes and NH hashes each with a key of that same length.

6.2.1  Interface

   Function Name:
     L1-HASH-16
   Input:
     K, string of length L1-KEY-LEN bytes.
     M, string of length less than 2^64 bytes.
   Output:
     Y, string of length (4 * ceil(length(M)/L1-KEY-LEN)) bytes.

6.2.2  Algorithm

   Compute Y using the following algorithm.

     //
     // Break M into L1-KEY-LEN byte chunks (final chunk may be shorter)
     //
     t = ceil(length(M) / L1-KEY-LEN)
     Let M_1, M_2, ..., M_t be strings so that M = M_1 || M_2 || .. ||
       M_t, and length(M_i) = L1-KEY-LEN for all 0 < i < t.

     //
     // For each chunk, except the last: endian-adjust, NH hash
     // and add bit-length.  Use results to build Y.
     //
     Len = uint2str(L1-KEY-LEN * 8, 4)
     Y = <empty string>
     for i = 1 to t-1 do
       if (ENDIAN-FAVORITE == LITTLE) then  // See endian discussion
          ENDIAN-SWAP(M_i)                  // in section 3.1.1
       Y = Y || (NH-16(K, M_i) +_32 Len)

     //
     // For the last chunk: pad to 32-byte boundary, endian-adjust,
     // NH hash and add bit-length.  Concatenate the result to Y.
     //
     Len = uint2str(length(M_t) * 8, 4)
     M_t = zeropad(M_t, 32)
     if (ENDIAN-FAVORITE == LITTLE) then
        ENDIAN-SWAP(M_t)
     Y = Y || (NH-16(K, M_t) +_32 Len)

     return Y
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6.3  L2-HASH-16: Second-layer hash

   L2-HASH-16 differs from L2-HASH-32 by beginning the ramped hash with
   a smaller prime modulus.  See Section 5.3 for the definition of POLY.

6.3.1  Interface

   Function Name:
     L2-HASH-16
   Input:
     K, string of length 28 bytes.
     M, string of length less than 2^64 bytes.
   Output:
     Y, string of length 16 bytes.

6.3.2  Algorithm

   Compute Y using the following algorithm.

     //
     //  Extract keys and restrict to special key-sets
     //
     Mask32  = uint2str(0x1fffffff, 4)
     Mask64  = uint2str(0x01ffffff01ffffff, 8)
     Mask128 = uint2str(0x01ffffff01ffffff01ffffff01ffffff, 16)
     k_32    = str2uint(K[1..4]   and Mask32)
     k64    = str2uint(K[5..12]  and Mask64)
     k128   = str2uint(K[13..28] and Mask128)

     //
     // If M no more than 2^11 bytes, hash under 32-bit prime.
     // Otherwise, hash under increasingly long primes.
     //
     if (length(M) <= 2^11) then         // 2^9 32-bit words

        y = POLY(32, 2^32 - 6, k_32, M)

     else if (length(M) <= 2^33) then    // 2^31 32-bit words

        M_1 = M[1 .. 2^11]
        M_2 = M[2^11 + 1 .. length(M)]
        M_2 = zeropad(M_2 || uint2str(0x80,1), 8)
        y = POLY(32, 2^32 - 6,    k_32, M_1)
        y = POLY(64, 2^64 - 2^32, k64, uint2str(y, 8) || M_2)

     else
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        M_1 = M[1 .. 2^11]
        M_2 = M[2^11 + 1 .. 2^33]
        M_3 = M[2^33 + 1 .. length(M)]
        M_3 = zeropad(M || uint2str(0x80,1), 16)
        y = POLY(32,  2^32 - 6,     k_32,  M_1)
        y = POLY(64,  2^64 - 2^32,  k64,  uint2str(y,  8) || M_2)
        y = POLY(128, 2^128 - 2^96, k128, uint2str(y, 16) || M_3)

     Y = uint2str(y, 16)

     Return Y

6.4  L3-HASH-16: Third-layer hash

   The L3-HASH-16 algorithm differs from L3-HASH-32 by hashing under a
   19-bit prime modulus (instead of a 36-bit prime modulus) and then
   returning a 2-byte result (instead of a 4-byte result).

6.4.1  Interface

   Function Name:
     L3-HASH-16
   Input:
     K1, string of length 32 bytes.
     K2, a string of length 2 bytes.
     M, a string of length 16 bytes.
   Output:
     Y, a string of length 2 bytes.

6.4.2  Algorithm

   Compute Y using the following algorithm.

     y = 0

     //
     // Break M and K1 into 8 chunks and convert to integers
     //
     for i = 1 to 8 do
       M_i = M[(i - 1) * 2 + 1 .. i * 2]
       K_i = K1[(i - 1) * 4 + 1 .. i * 4]
       m_i = str2uint(M_i)
       k_i = str2uint(K_i) mod prime(19)

     //
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     // Inner-product hash, extract last 32 bits and affine-translate
     //
     y = (m_1 * k_1 + ... + m_8 * k_8) mod prime(19)
     y = y mod 2^16
     Y = uint2str(y, 2)
     Y = Y xor K2

     Return Y

6.5  UHASH-16: Three-layer universal hash

   The algorithm UHASH-16 differs from UHASH-32 only in the size of its
   keys generated, and in that it refers to the 16-bit variants of the
   three-layer hash functions.

6.5.1  Interface

   Function Name:
     UHASH-16
   Input:
     K, string of length UMAC-KEY-LEN bytes.
     M, string of length less than 2^64 bytes.
   Output:
     Y, string of length UMAC-OUTPUT-LEN bytes.

6.5.2  Algorithm

   Compute Y using the following algorithm.

     //
     // Calculate iterations needed to make UMAC-OUTPUT-LEN bytes
     //
     streams = ceil(UMAC-OUTPUT-LEN / WORD-LEN)

     //
     // Define total key needed for all iterations using KDF.
     // L1Key and L3Key1 both reuse most key between iterations.
     //
     L1Key  = KDF(K, 0, L1-KEY-LEN + (streams - 1) * 16)
     L2Key  = KDF(K, 1, streams * 28)
     L3Key1 = KDF(K, 2, streams * 32)
     L3Key2 = KDF(K, 3, streams * 2)

     //
     // For each iteration, extract key and three-layer hash.
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     // If length(M) <= L1-KEY-LEN, then skip L2-HASH.
     //
     Y = <empty string>
     for i = 1 to streams do
       L1Key_i  = L1Key [(i-1) * 16 + 1 .. (i-1) * 16 + L1-KEY-LEN]
       L2Key_i  = L2Key [(i-1) * 28 + 1 .. i * 28]
       L3Key1_i = L3Key1[(i-1) * 32 + 1 .. i * 32]
       L3Key2_i = L3Key2[(i-1) * 2 + 1  .. i * 2]

       A = L1-HASH-16(L1Key_i, M)
       if (length(M) <= L1-KEY-LEN) then
         B = zeroes(12) || A
       else
         B = L2-HASH-16(L2Key_i, A)
       C = L3-HASH-16(L3Key1_i, L3Key2_i, B)
       Y = Y || C
     Y = Y[1 .. UMAC-OUTPUT-LEN]

     Return Y

7  UMAC tag generation

   Tag generation for UMAC proceeds as follows.  Use UHASH to hash the
   message and apply the PDF to the nonce to produce a string to xor
   with the UHASH output.  The resulting string is the authentication-
   tag.

7.1  Interface

   Function Name:
     UMAC
   Input:
     K, string of length UMAC-KEY-LEN bytes.
     M, string of length less than 2^64 bytes.
     Nonce, string of length 1 to 16 bytes.
   Output:
     AuthTag, string of length UMAC-OUTPUT-LEN bytes.

7.2  Algorithm

   Compute AuthTag using the following algorithm.

     if (WORD-LEN == 2) then
        HashedMessage = UHASH-16(K, M)
     else
        HashedMessage = UHASH-32(K, M)
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     Pad              = PDF(K, Nonce)
     AuthTag          = Pad xor HashedMessage

     Return AuthTag

8  Security considerations

   As a specification of a message authentication code, this entire
   document is about security.  Here we describe some security
   considerations important for the proper understanding and use of
   UMAC.

8.1  Resistance to cryptanalysis

   The strength of UMAC depends on the strength of its underlying
   cryptographic functions: the key-derivation function (KDF) and the
   pad-derivation function (PDF).  In this specification it is assumed
   that both operations are implemented using the Advanced Encryption
   Standard (AES).  However, the full design and specification allow for
   the replacement of these components.  Indeed, it is straightforward
   to use other block ciphers or other cryptographic objects, such as
   SHA-1 or HMAC for the realization of the KDF or PDF.

   The core of the UMAC design, the UHASH function, does not depend on
   any "cryptographic assumptions": its strength is specified by a
   purely mathematical property stated in terms of collision
   probability, and this property is proven in an absolute sense.  In
   this way, the strength of UHASH is guaranteed regardless of future
   advances in cryptanalysis.

   The analysis of UMAC [3, 4] shows this scheme to have "provable
   security", in the sense of modern cryptography, by way of tight
   reductions.  What this means is that an adversarial attack on UMAC
   which forges with probability significantly exceeding the established
   collision probability will give rise to an attack of comparable
   complexity which breaks the AES, in the sense of distinguishing AES
   from a family of random permutations.  This design approach
   essentially obviates the need for cryptanalysis on UMAC:
   cryptanalytic efforts might as well focus on AES, the results imply.

8.2  Tag lengths and forging probability

   A MAC algorithm is used between two parties that share a secret MAC
   key, K.  Messages transmitted between these parties are accompanied
   by authentication tags computed using K and a given nonce.  Breaking
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   the MAC means that the attacker is able to generate, on its own, a
   new message M (i.e. one not previously transmitted between the
   legitimate parties) and to compute on M a correct authentication tag
   under the key K.  This is called a forgery.  Note that if the
   authentication tag is specified to be of length t then the attacker
   can trivially break the MAC with probability 1/2^t.  For this the
   attacker can just generate any message of its choice and try a random
   tag; obviously, the tag is correct with probability 1/2^t.  By
   repeated guesses the attacker can increase linearly its probability
   of success.

   UMAC is designed to make this guessing strategy the best possible
   attack against UMAC as long as the attacker does not invest the
   computational effort needed to break the underlying cipher, e.g. AES,
   used to produce the one time pads used in UMAC computation.  More
   precisely, under the assumed strength of this cipher UMAC provides
   for close-to-optimal security with regards to forgery probability as
   represented in the next table.

    --------------------------------------------------------------------
     UHASH-OUTPUT-LEN  Forging probability   Approximate actual forging
         (bytes)       using a random tag    probability in UMAC
                                             (using a clever tag)

            2              2^-16                    2^-15
            4              2^-32                    2^-30
            8              2^-64                    2^-60
           16              2^-128                   2^-120
    --------------------------------------------------------------------

   Recall that the parameter UHASH-OUTPUT-LEN specifies the length of
   the UMAC authentication tag.  The above table states, for example,
   for the case of an 8-byte tag that the ideal forging probability
   would be 2^-64 while UMAC would withstand an actual forging
   probability of 2^-60.  Note that under this tag length (which is the
   default length in UMAC) the probability of forging a message is well
   under the chance that a randomly guessed DES key is correct.  DES is
   now widely seen as vulnerable, but the problem has never been that
   some extraordinarily lucky attacker might, in a single guess, find
   the right key.  Instead, the problem is that large amounts of
   computation can be thrown at the problem until, off-line, the
   attacker finds the right key.

   With  UMAC, off-line computation aimed at exceeding the forging
   probability is hopeless, regardless of tag length, as long as the
   underlying cipher is not broken.  The only way to forge is to
   interact with the entity that verifies the MAC and to try a huge
   amount of forgeries before one is likely to succeed.  The system
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   architecture will determine the extent to which this is possible.  In
   a well-architected system there should not be any high-bandwidth
   capability for presenting forged MACs and determining if they are
   valid.  In particular, the number of authentication failures at the
   verifying party should be limited.  If a large number of such
   attempts are detected the session key in use should be dropped and
   the event be recorded in an audit log.

   Let us reemphasize: a forging probability of 1 / 2^60 does not mean
   that there is an attack that runs in 2^60 time - as long as AES
   maintains its believed security there is no such attack for UMAC.
   Instead, a 1 / 2^60 forging probability means that if an attacker
   could try out 2^60 MACs, then the attacker would probably get one
   right.  But the architecture of any real system should render this
   infeasible.  One can certainly imagine an attacker having a high
   bandwidth channel (e.g., 1 Gbit/second or more) over which it can
   continually present attempted forgeries, the attacker being signaled
   when a correct tag is found, but realizing such a scenario in a real
   system would represent a major lapse in the security architecture.

   It should be pointed out that once an attempted forgery is
   successful, it is entirely possible that all subsequent messages
   under this key may be forged, too.  This is important to
   understanding in gauging the severity of a successful forgery.

   In conclusion, the default 64-bit tags seem appropriate for most
   security architectures and applications.  In cases where when the
   consequences of an authentication failure are not extremely severe,
   and when the system architecture is designed to conscientiously limit
   the number of forgery attempts before a session is torn down, 32-bit
   authentication tags may be adequate.  For the paranoid, or if an
   attacker is allowed a fantastic number of forgery tests, 96- or
   128-bits may be utilized.

8.3  Selective-assurance authentication

   We have already remarked about the flexibility built into UMAC to use
   authentication tags of various lengths:  shorter tags are faster to
   compute and one needs to transmit fewer bits, but the forging
   probability is higher.  There is an additional degree of flexibility
   built into the design of UMAC: even if the sender generates and
   transmits a tag of 8 bytes, say, a receiver may elect to verify only
   the first 4 bytes of the tag, and computing that 4-byte prefix by the
   receiver will be substantially faster than computing what the full
   8-byte tag would be.  Indeed when WORD-LEN is 2 one can more quickly
   check the 2-byte prefix of the tag than the 4-byte prefix of the tag,
   one can more quickly check the 4-byte prefix of the tag than the
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   6-byte prefix of the tag, and so forth.   When WORD-LEN is 4 one can
   more quickly check the 4-byte prefix of the tag than an entire 8-byte
   tag, and so forth.  This type of flexibility allows different parties
   who receive a MAC (as in a multicast setting) to authenticate the
   transmission to the extent deemed necessary and to the extent
   consistent with any computational limits of the receiver.

   In a scenario where receivers are allowed to verify short prefixes of
   longer tags, it is even more important that conservative policies are
   followed when a bad tag is presented to the receiver.  Because short
   prefixes are easier to forge than are long ones, an attacker may
   attempt to forge short prefixes and then leverage information gained
   from these attacks to forge longer tags.  If the attacker can learn
   which short tags are good and which are bad, the attacker may be able
   to learn enough to allow longer forgeries.

   One salient feature of the security-performance trade-off offered by
   UMAC is its usability in contexts where performance is severely
   constrained.  In such cases, using a mild-security authentication tag
   can be of significant value especially if the alternative would be
   not to use authentication at all (a possible such scenario could be
   the high-speed transmission of real-time multimedia streams).
   Another potential scenario where short and fast-to-compute tags can
   be useful is for fast detection of data forgery intended as a denial
   of service attack.  In this case, even a moderate increase in the
   attacker's difficulty to produce forgeries may suffice to make the
   attack worthless for the attacker.  Moreover, being able to detect
   just a portion of attempted forgeries may be enough to identify the
   attack.

8.4  Nonce considerations

   The function UMAC (Section 7) requires a nonce with length in the
   range 1 to 16 bytes.  All nonces in an authentication session must be
   equal in length.  For secure operation, no nonce value should be
   repeated within the life of a single UMAC session-key.

   To authenticate messages over a duplex channel (where two parties
   send messages to each other), a different key could be used for each
   direction.  If the same key is used in both directions, then it is
   crucial that all nonces be distinct.  For example, one party can use
   even nonces while the other party uses odd ones.  The receiving party
   must verify that the sender is using a nonce of the correct form.

   This specification does not indicate how nonce values are created,
   updated, or communicated between the entity producing a tag and the
   entity verifying a tag.  The following exemplify some of the
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   possibilities:

   1.  The nonce is an eight-byte [resp., four-byte] unsigned number,
       Counter, which is initialized to zero, which is incremented by
       one following the generation of each authentication tag, and
       which is always communicated along with the message and the
       authentication tag.  An error occurs at the sender if there is an
       attempt to authenticate more than 2^64 [resp., 2^32] messages
       within a session.

   2.  The nonce is a 16-byte unsigned number, Counter, which is
       initialized to zero and which is incremented by one following the
       generation of each authentication tag.  The Counter is not
       explicitly communicated between the sender and receiver.
       Instead, the two are assumed to communicate over a reliable
       transport, and each maintains its own counter so as to keep track
       of what the current nonce value is.

   3.  The nonce is a 16-byte random value.  (Because repetitions in a
       random n-bit value are expected at around 2^(n/2) trials, the
       number of messages to be communicated in a session using n-bit
       nonces should not be allowed to approach 2^(n/2).)

   We emphasize that the value of the nonce need not be kept secret.

   When UMAC is used within a higher-level protocol there may already be
   a field, such as a sequence number, which can be co-opted so as to
   specify the nonce needed by UMAC.  The application will then specify
   how to construct the nonce from this already-existing field.

   Note that if the nonce starts at zero and is incremented with each
   message then an attacker can easily ascertain the number of messages
   which have been sent during a session.  If this is information which
   one wishes to deny the attacker then one might have the sender
   initialize the nonce to a random value, rather than to zero.
   Inspecting the current nonce will no longer reveal to the attacker
   the number of messages which have been sent during this session.
   This is a computationally cheaper approach than enciphering the
   nonce.

8.5  Guarding against replay attacks

   A replay attack entails the attacker repeating a message, nonce, and
   authentication tag.  In systems, replay attacks may be quite
   damaging, and many applications will want to guard against them.  In
   UMAC, this would normally be done at the receiver by having the
   receiver check that no nonce value is used twice.  On a reliable
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   connection, when the nonce is a counter, this is trivial.  On an
   unreliable connection, when the nonce is a counter, one would
   normally cache some "window" of recent nonces.  Out-of-order message
   delivery in excess of what the window allows will result in rejecting
   otherwise valid authentication tags.

   We emphasize that it is up to the receiver when a given message,
   nonce and tag will be deemed authentic.  Certainly the tag should be
   valid for the message and nonce, as determined by UMAC, but the
   message may still be deemed inauthentic because the nonce is detected
   to be a replay.
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A  Suggested application programming interface (API)

     /* umac.h */

     typedef struct UMAC_CTX *umac_ctx_t;

     umac_ctx_t umac_alloc(char key[]);
       /* Dynamically allocate UMAC_CTX struct */
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       /* initialize variables and generate   */
       /* subkeys for default parameters.     */

     int umac_free(umac_ctx_t ctx);
       /* Deallocate the context structure.   */

     int umac_set_params(umac_ctx_t ctx, void *params);
       /* After default initialization,      */
       /* optionally set parameters to       */
       /* different values and reset for     */
       /* new message.                       */

     int umac_update(umac_ctx_t ctx, char *input, long len);
       /* Incorporate len bytes pointed to by  */
       /* input into context ctx.             */

     int umac_final(umac_ctx_t ctx, char tag[], char nonce[]);
       /* Incorporate nonce value and return  */
       /* tag.  Reset ctx for next message.   */

     int umac(umac_ctx_t ctx, char *input,  long len,
              char tag[], char nonce[]);
       /* All-in-one (non-incremental)        */
       /* implementation of the functions     */
       /* umac_update() and umac_final().     */

   Each routine returns zero if unsuccessful.

B  Reference code and test vectors

   See the UMAC World Wide Web homepage for reference code and test
   vectors.

http://www.cs.ucdavis.edu/~rogaway/umac/

http://www.cs.ucdavis.edu/~rogaway/umac/
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