
Network Working Group M. Kuehlewind
Internet-Draft B. Trammell
Intended status: Informational ETH Zurich
Expires: January 4, 2016 July 3, 2015

SPUD Use Cases
draft-kuehlewind-spud-use-cases-00

Abstract

 The Substrate Protocol for User Datagrams (SPUD) BoF session at the
 IETF 92 meeting in Dallas in March 2015 identified the potential need
 for a UDP-based encapsulation protocol to allow explicit cooperation
 with middleboxes while using new, encrypted transport protocols.
 This document summarizes the use cases discuss at the BoF and thereby
 proposes a structure for the description of further use cases.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 4, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Kuehlewind & Trammell Expires January 4, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft SPUD Use Cases July 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Firewall Traversal . 3
3. State Lifetime Discovery 5
4. Low-Latency Service . 8
5. Application-Limited Flows 10
6. Service Multiplexing . 13
7. Acknowledgements . 14
8. IANA Considerations . 15
9. Security Considerations 15
10. Informative References 15

 Authors' Addresses . 15

1. Introduction

 This document describe use cases for a common Substrate Protocol for
 User Datagrams (SPUD) that could be used by an overlaying transport
 or application to explicitely expose information to middleboxes or
 request information from (SPUD-aware) middleboxes.

 For each use case, we first describe a problem that can not be solved
 with current protocols, or only solved inefficiently. We then
 discuss which information should be exposed by which party to help
 the described problem. We also discuss potential mechanisms to use
 that exposed information at middleboxes and/or endpoints, in order to
 demonstrate the feasibility of using the exposed information to the
 given use case. The described mechanisms are not necessarily
 proposals for moving forward, nor do they necessarily represent the
 best approach for applying the exposed information, but should
 illustrate and motivate the applicability of the exposed information.

 In this document we assume that there is no pre-existing trust
 relationship between the communication endpoints and any middlebox on
 the path. Therefore we must always assume that information that is
 exposed can be wrong or nobody will actually act based on the exposed
 information. However, for the described use cases there should still
 be a benefit, e.g if otherwise no information would be available.

 Based on each mechanism, we discuss deployment incentives of each
 involved party. There must be clear incentives for each party to
 justify the proposed information exposure and at best an incremental
 deployment strategy. Finally, we discuss potential privacy concerns
 regarding the information to be exposed, as well as potential
 security issues of the proposed mechanisms.

Kuehlewind & Trammell Expires January 4, 2016 [Page 2]

Internet-Draft SPUD Use Cases July 2015

2. Firewall Traversal

2.1. Problem Statement

 Today UDP is often blocked by firewalls, or only enabled for a few
 well-known applications. However, this makes it hard to deploy new
 services on top of UDP.

 For a long time UDP has not been used much for high volume traffic
 and therefore it was assumed that most UDP traffic is spam or attack
 traffic. This is not true anymore. The volume of (good) UDP traffic
 is growing, mostly due to voice and video (real-time) services, e.g.
 RTCWEB uses UDP for data and media, where TCP is not suitable anyway.

 Even if firewall administrators are willing to implement new rules
 for UDP services, it is hard to track session state for UDP traffic.
 As UDP is unidirectional, it is unknown whether the receiver is
 willing to accept the connection. Further there is no way to figure
 how long state must be maintained once established. To efficiently
 establish state along the path we need an explicit contract, as is
 done implicitly with TCP today.

2.2. Information Exposure

 To maintain state in the network, it must be possible to easily
 assign each packet to a session that is passing a certain network
 node. This state should be bound to something beyond the five-tuple
 to link packets together. In [I-D.trammell-spud-req] propose the use
 of identifiers "tubes". This allows for differential treatment of
 different packets within one five-tuple flow, presuming the
 application has control over segmentation and can provide
 requirements on a per-tube basis. Tube IDs must be hard to guess: a
 tube ID in addition to a five-tuple as an identifier, given
 significant entropy in the tube ID, provides an additional assurance
 that only devices along the path or devices cooperating with devices
 along the path can send packets that will be recognized by
 middleboxes and endpoints as valid.

 Further, to maintain state, the sender must explicitly indicate the
 start and end of a tube to the path, while the receiver must confirm
 connection establishment. This, together with the first packet
 following the confirmation, provides a guarantee of return
 routability; i.e. that the sender is actually at the address it says
 it is. This impies all SPUD tubes must be bidirectional, or at least
 support a feedback channel for this confirmation. Even though UDP is
 not a bidirectional transport protocol, often services on top of UDP
 are bidirectional anyway. Even if not, we only require one packet to
 acknowledge a new connection. This is low overhead for this basic

Kuehlewind & Trammell Expires January 4, 2016 [Page 3]

Internet-Draft SPUD Use Cases July 2015

 security feature. This connection set-up should not impose any
 additional start-up latency, so the sender must be also able to send
 payload data in the first packet.

 If a firewall blocks a SPUD packet, it can be beneficial for the
 sender to know why the packet was blocked. Therefore a SPUD-aware
 middlebox should be able to send error messages. Such an error
 message can either be sent directly to the sender itself, or
 alternatively to the receiver that can decide to forward the error
 message to a sender or not.

2.3. Mechanism

 A firewall or middlebox can use the tube ID as an identifier for its
 session state information. If the tube ID is large enough it will be
 hard for a non-eavesdropping attacker to guess the ID.

 If a firewall receives a SPUD message that signals the start of a
 connection, it can decide to establish new state for this tube.
 Alternatively, it can also forward the packet to the receiver and
 wait if the connection is wanted before establishing state. To not
 require forwarding of unknown payload, a firewall might want to
 forward the initial SPUD packet without payload and only send the
 full packet if the connection has be accepted by the receiver.

 The firewall must still maintain a timer to delete the state of a
 tube if no packets were received for a while. However, if a end
 signal is received the firewall can remove the state information
 faster.

 If a firewall receives a SPUD message which does not indicate the
 start of a new tube and no state is available for this tube, it may
 decide to block the traffic. This can happen if the state has
 already timed out or if the traffic was rerouted. In addition a
 firewall may send an error message to the sender or the receiver
 indicatng that no state information are available. If the sender
 receives such a message it can resend a start signal (potentially
 together with other tube state information) and continue its
 transmission.

2.4. Deployment Incentives

 It is not expected that the provided SPUD information will enable all
 generic UDP-based services to safely pass firewalls , however, for
 new services that a firewall administrator is willing to allow, it
 makes state handling easier.

Kuehlewind & Trammell Expires January 4, 2016 [Page 4]

Internet-Draft SPUD Use Cases July 2015

 For application developers that actually would like to use a new
 transport services, there are today often only two choices;
 encapsulation over UDP or over TCP. SPUD already provides
 encapsulation over UDP as well as maintains (a few) additional
 information about the network state. This shim layer can support
 application developers to more easily implement new services.

2.5. Trust and Privacy

 We proposed to limit the scope of the tube ID to the five-tuple.
 While this makes the tube ID useless for session mobility, it does
 mean that the valid ID space is sufficiently sparse to maintain the
 "hard to guess" property, and prevents tube IDs from being misused to
 track flows from the same endpoint across multiple addresses. This
 limitation may need further discussion.

 By providing information on the connection start up, SPUD only
 exposes information that are often already given in the higher layer
 semantics. Thus it does not expose additional information, it only
 makes the information explicit and accessible without specific
 higher-layer/application-level knowledge.

3. State Lifetime Discovery

3.1. Problem Statement

 Even if the transport protocol implements a close-down mechanism or
 SPUD explicitly provides an end of tube signal, a network device
 cannot assume that these signals are provided reliably. Therefore
 each network device that holds per-flow/per-tube state must implement
 a mechanism to remove the state if no traffic that is matching this
 state information has been observer for a while. Usually this is
 realized by maintaining a timeout since the last observed packet.

 An endpoint that wants to keep a connection open even if it is not
 sending any data for a while might need to send heartbeat packets to
 keep state alive that potentially is store somewhere on the network
 path. However, the timeout period of the network device storing this
 information is unknow to the endpoint. Therefore it has to send
 heartbeat fairly rapidly, or might assume a default value of 150ms
 that is commonly used today.

3.2. Information Exposure

 SPUD can be used to request the timeout used by a middlebox. As
 SPUD-enabled endpoint therefore sends a path-to-endpoint option that
 is initialized with an non-valid value (e.g. 0) and midpoints can
 update this information to the timeout value that is used to maintain

Kuehlewind & Trammell Expires January 4, 2016 [Page 5]

Internet-Draft SPUD Use Cases July 2015

 per-tube state. As multiple network devices might be on a path that
 maintain per-tube state, the timeout information should only be
 updated to the minimum value. A sender could also initial the
 timeout value to the minimum heartbeat frequency it will use or the
 maximum idle period (if known).

 [Editor's note: Would it be necessary/useful to get a (separate)
 confirmation from each middlebox that has understood and read this
 SPUD information? Alternatively, it would maybe be useful signal the
 proposed heartbeat period separately, however that's also complicated
 because the endpoint might adapt it's heartbeat period based on the
 timeout information...]

3.3. Mechanism

 If a network device that uses a timeout to remove per-tube state
 receives a SPUD timeout information request, it should expose its own
 timeout value if smaller than the one already given in the SPUD
 header. Alternatively, if a value is already given, it might decide
 to use the given value as timeout for the state information of this
 tube.

 A SPUD sender can request the timeout used by network devices on path
 to maintain state. If a minimum heartbeat frequency is used or the
 maximum idle period is known, the sender might pre-set this value.
 If the pre-set value is not changed, the sender does not know if
 there is at least one SPUD-aware middlebox on the path that
 understands the time-out information. In any case a sender must
 always assume that there could be additional non-SPUD aware middlebox
 that has a smaller timeout. Therefore even if the proposed timeout
 is used for heartbeating, traffic can still be blocked due to removed
 state. This is also the case if a middlebox did not correctly
 indicate its timeout value, e.g. when the value is dynamically
 changed to a smaller value if more state needs to be maintained.
 However, usually the number of middleboxes on the path that hold per-
 flow/tube state is low. Therefore the chance that the received
 feedback indicates the right timeout value is high.

 [Editor's note: Do we need a SPUD message that can be initialized by
 the middlebox to let the endpoint know that the time has changed?]

 A SPUD endpoint receiving a SPUD header with timeout information
 should reflect this information to the sender with the next packet
 that it will be sent (or after a short timeout). Therefore this
 information should be requested with the first packet, that should
 immediately trigger the receiver to at least send one packet. In
 addition SPUD-aware nodes on the backward path are able to also
 signal their timeout.

Kuehlewind & Trammell Expires January 4, 2016 [Page 6]

Internet-Draft SPUD Use Cases July 2015

 [Editor's note: Is it necessary to have an explicit SPUD heartbeat
 packet, that should also be reflected by the receiver to keep state
 on the backwards path alive..? And then request timeouts for the
 forward and backward path separately?]

3.4. Deployment Incentives

 Initially, if not widely deployed, there will be not much benefit to
 using this extension. However, an endpoint can never be sure that
 all middleboxes on the path that maintain state information based on
 a timeout will expose this information (correctly). An endpoint must
 always be prepared that traffic can be blocked (after an idle period)
 and the connection must be restarted. This is the same today if
 heartbeats are used. Therefore, SPUD will not help to simplify the
 implementation but it will also no make it much more complicated as
 only the heartbeat interval might be changed.

 However, under the assumption that there are usually only a small
 number of middbleboxes on one network path that hold (per-tube) state
 information, it is likely that if information is exposed by a
 middlebox, this information is correct and can be used.

 The more SPUD gets deployed, the more often endpoints will be able to
 set the heartbeat interval correctly. This will reduce the number of
 unnecessary reconnects that cause additional latency. Further, an
 endpoint might be able to request a higher timeout by pre-setting the
 value.

 Network nodes that understand the SPUD timeout information and expose
 their timeouts are able to handle timeouts more flexibly, e.g.
 announcing lower timeout values if space is sparse. Further if an
 endpoint announces a low pre-set value because the endpoint knows
 that it will only have short idle periods, the timeout interval could
 be reduced.

3.5. Trust, Privacy and Security

 [Editor's note: no trust needed here as discussed above... right?
 And I currently don't see privacy issues here...?']

 [Editor's note: Make sure this is not a vector for simplified state
 exhaustion attacks...? Don't think it's worse than TCP...? Any other
 attacks?]

Kuehlewind & Trammell Expires January 4, 2016 [Page 7]

Internet-Draft SPUD Use Cases July 2015

4. Low-Latency Service

4.1. Problem Statement

 Networks are often optimized for low loss rates and high throughput
 by providing large buffers that can absorb traffic spikes or rate
 variations and always holding enough data to keep the link full.
 This is beneficial for applications like high-priority bulk transfer,
 where only the total transfer time is of interest. (High volume)
 interactive application, such as video calls, however, have very
 different requirements. Usually these application can tolerate
 high(er) loss rates, as they anyway cannot wait for missing data to
 be retransmitted, while having hard latency requirements necessary to
 make their service work.

 Large network buffers may induce high queuing delays due to greedy
 cross traffic using loss-based congestion control that periodically
 fills the buffer. In loss-based congestion control the sending rate
 is periodically increased until a loss is observed to probe for
 available bandwidth. Unfortunately, the queuing delay that is
 indices by this probing can downgrade the quality of experience for
 competing interactive applications or even make them simply unusable.
 Further, to co-exist with greedy flows that use loss-based congestion
 control, one has to react based on the same feedback signal (loss)
 and implement about the same aggressiveness than these competing
 flows.

4.2. Information Exposure

 While large buffers that are able to absorb traffic spikes that are
 often induced by short bursts are beneficial for some applications,
 the queuing delay that might be induced by these large buffers is
 very harmful to other applications. We therefore propose an explicit
 indication of loss- vs. latency-sensitivity per SPUD tube. This
 indication does not prioritize one kind of traffic over the other:
 while loss-sensitive traffic might face larger buffer delay but lower
 loss rate, latency-sensitive traffic has to make exactly the opposite
 tradeoff.

 Further, an application can indicate a maximum acceptable single-hop
 queueing delay per tube, expressed in milliseconds. While this
 mechanism does not guarantee that sent packets will experience less
 than the requested delay due to queueing delay, it can significantly
 reduce the amount of traffic uselessly sitting in queues, since at
 any given instance only a small number of queues along a path
 (usually only zero or one) will be full.

Kuehlewind & Trammell Expires January 4, 2016 [Page 8]

Internet-Draft SPUD Use Cases July 2015

4.3. Mechanism

 A middlebox may use the loss-/latency-sensitive signal to assign
 packet to the appropriate service if different services are
 implemented at this middlebox. Today's traffic, that does not
 indicate a low loss or low latency preference, would still be
 assigned to today's best-effort service, while a new low latency
 service would be introduced in addition.

 The simplest implementation of such a low latency service (without
 disturbing existing traffic) is to manage traffic with the latency-
 sensitive flag set in a separate queue. This queue either, in
 itself, provides only a short buffer which induces a hard limit for
 the maximum (per-queue) delay or uses an AQM (such as PIE/ CoDel)
 that is configured to keep the queuing delay low.

 In such a two-queue system the network provider must decides about
 bandwidth sharing between both services, and might or might not
 expose this information. Initially there will only be a few flows
 that indicate low latency preference. Therefore at the beginning
 this service might have a low maximum bandwidth share assigned in the
 scheduler. However, the sharing ratio should be adopted to the
 traffic load/number of flows in each service class over time. This
 can be done manually by a network administrator or in an automated
 way.

 Applications and endpoints setting the latency sensitivity flag on a
 tube must be prepared to experience relatively higher loss rates on
 that tube, and might use techniques such as Forward Error Correction
 (FEC) to cope with these losses.

 If in addition the maximum per-hop delay is indicated by the sender,
 a SPUD-aware router might drop any packet which would be placed in a
 queue that has more than the maximum single-hop delay at that point
 in time before queue admission. Thereby the overall congestion can
 be reduced early instead of withdrawing the packet at the receiver
 after it has blocked network resources for other traffic.
 Alternatively, a SPUD-aware node might only remove the payload and
 add a SPUD error message, to report what the problem is.

 An endpoint indicating the maximum per-hop delay must be aware that
 is might face higher loss rates under congestion than competing
 traffic on the same bottleneck. Especially, packets might be dropped
 due to the maximium per-hop delay indication before any congestion
 notification is given to any other competing flows on the same
 bottleneck. This should considered in the congestion reaction as any
 loss should be consider as a sign for congestion.

Kuehlewind & Trammell Expires January 4, 2016 [Page 9]

Internet-Draft SPUD Use Cases July 2015

4.4. Deployment Incentives

 Application developers go to a great deal of effort to make latency-
 sensitive traffic work over today's Internet. However, if large
 delays are induced by the network, an application at the endpoint
 cannot do much. Therefore applications can benefit from further
 support by the network.

 Network operators have already realized a need to better support low
 latency services. However, they want to avoid any service
 degradation for existing traffic as well as risking stability due to
 large configuration changes. Introducing an additional service for
 latency-sensitive traffic that can exist in parallel to today's
 network service (or potentially fully replace today's service at some
 point in future...) helps this problem.

4.5. Trust and Privacy

 An application does not benefit from wronly indicating loss- or
 latency-sensitivity as it has to make a tradeoff between low loss and
 potential high delay or low delay and potential high loss. Therefore
 there is no incentive for lying. A simple classification of traffic
 in loss-sensitive and latency-sensitive does not expose privacy-
 critical information about the user's behavior.

5. Application-Limited Flows

5.1. Problem Statement

 Today, there are a large number of flows that are mostly application-
 limited, where the application can adapt this limit to changing
 traffic conditions. An example is unicast streaming video where the
 coding rate can be adapted based on detected congestion or changing
 link characteristics. This adaptation is difficult, since cross-
 traffic (much of which uses TCP congestion control) will often probe
 for available bandwidth more aggressively than the application's
 control loop. Further complicating the situation is the fact that
 rate adaptation may have negative effects on the user's quality of
 experience, and should therefore be done infrequently.

5.2. Information Exposure

 With SPUD, the sender can provide an explicit indication of the
 maximum data rate that the current encoding needs. This can provide
 useful information to the bottleneck to decide how to correctly treat
 the corresponding tube, e.g. setting a rate limit or scheduling
 weight if served from its own queue.

Kuehlewind & Trammell Expires January 4, 2016 [Page 10]

Internet-Draft SPUD Use Cases July 2015

 Further, a network node that imposes rate shaping could expose the
 rate limit to the sender if requested. This would help the sender to
 choose the right encoding and simplifies probing. If the rate
 limited is changed the network node might want to signal this change
 without being requested for it.

 In addition, both the endpoint as well as a middlebox could announce
 sudden changes in bandwidth demand/offer. While for the endpoint it
 might be most important to indicate that the bandwidth demand has
 increased, a middlebox could indicate if more bandwidth is
 (currently) available. Note that this information should only be
 indicated if the network node was previously the bottleneck/the out-
 going link is fully loaded. Further, if the information that
 bandwidth is available is provided to multiple endpoints at the same
 time, there is a higher risk of overloading the network as all
 endpoints might increase their rate at the same time.

 [Editor's note: Should a middlebox even indicate how much capacity is
 available.. or 1/n of the available capacity if indicated to n
 endpoints? But there might be a new bottleneck now...]

5.3. Mechanism

 If the maximum sending rate of a flow is exposed this information
 could be used to make routing decision, if e.g. two paths are
 available that have different link capacity and average load
 characteristics.

 Further, a network nodes, that receives an indication of the maximum
 rate limit for a certain tube, might decide to threat this flow in an
 own queue and prioritize this flow in order to keep the delay low as
 long as the indicated rate limit is not exceeded. This should only
 be done if there is sufficient capacity on the link (the average load
 over a previous time period has be low enough to serve an additional
 maximum traffic load as indicated by the rate limit) or the flow is
 known to have priority, e.g. based on additional out-of-band
 signaling. If the link, however, is currently congested, a middlebox
 might choose to ignore this information or indicate a lower rate
 limit.

 If a network node indicates rate shaping, this information can be
 used by the sender to choose its current data/coding rate
 appropriately. However, a sender should still implement a mechanism
 to probe ifor available bandwidth to verify the provided information.
 As a certain rate limit is expected the sender should probe carefully
 around this rate.

Kuehlewind & Trammell Expires January 4, 2016 [Page 11]

Internet-Draft SPUD Use Cases July 2015

 A network node might further indicate a different/lower rate limit
 during the transmission. However, in this case, it might be easy for
 an attacker to send a wrong rate limit, therefore an endpoint should
 not change its data rate immediately, but might be prepared to see
 higher losses rates instead.

 If a sender receives an indication that more bandwidth is available
 it should not just switch to a higher rate but probe carefully.
 Therefore it might step-wise increase its coding rate or first add
 additional FEC information which will increase the traffic rate on
 the link and at the same time provide additional protection as soon
 as the new capacity limit is reached.

 A network node that receives an indication that a flow will increase
 its rate abruptly, might prioritize this flow for a certain (short)
 time to enable a smoother transition. [Editor's node: Need to figure
 out if high loss/delay when the coding rate is increased is actually
 a problem and if so further evaluate if short-term prioritization
 helps.]

5.4. Deployment Incentives

 By indicating a maximum sending rate a network operator might be able
 to better handle/schedule the current traffic. Therefore the network
 operator might be willing to support these kind of flows explicitly
 by trying to serve the flow with the requested rate. This can
 benefit the service quality and increase the user's satisfaction with
 the provided network service.

 If the maximum sending rate is known by the application, the
 application might be willing to expose this information if there is a
 chance that the network will try to support this flow by providing
 sufficient capacity.

 Currently application have no good indication when to change their
 coding rate. Especially, increasing the rate is hard. Further, it
 should be avoided to change the rate (forth and back) too often. An
 indication if and how much bandwidth is available, is therefore
 helpful for the application and can simplify probing (even though
 there will still and always be an additional control loop needed to
 react to congestion and for probing).

5.5. Trust, Privacy and Security

 [TBD] [Editor's note: is there an attack possible by indicating a low
 limit (from or to the application)? Note, that the application
 should not rely on this information and still probe for more capacity
 (if needed) and react to congestion!]

Kuehlewind & Trammell Expires January 4, 2016 [Page 12]

Internet-Draft SPUD Use Cases July 2015

6. Service Multiplexing

6.1. Problem Statement

 Many services rewuire multiple parallel transmissions to transfer
 different kinds of data which usually have a clear priority between
 each other. One example is WebRTC where the audio is most important
 and should be higher prioritized than the video, while control
 traffic might have the lowest priority. Further, some packets within
 one flow might be more important than others within the same flow/
 tube, e.g. such as I-frames in video transmissions. However, today a
 network will treat all packets the same in case of congestion and
 might e.g. drop audio packets while video and control traffic are
 still transmitted.

6.2. Information Exposure

 A SPUD sender may indicate a lower priority relative to another tube
 that is used in the same 5-tuple.

 Similarly, a lower packet priority within one flow/tube could be
 indicated to give one packet a low priority than other packets with
 the same tube ID. This information can be used to preferentially
 drop less inportant packets e.g. carrying information that could be
 recovered by FEC or where missing data can be easily concealed.

 Further, with a stronger integration of codec and transport
 technology SPUD could even indicate more even finer grained priority
 levels to provide automatic graceful degradation of service within
 the network itself.

 [Editor's note: do we want to also provide per-packet information
 over spud? Or would all lower priority packets of one flow simply
 below to a different tube? In this case can we send a SPUD start
 message with more than on tube ID?]

6.3. Mechanism

 Preferential dropping can be implemented by a router queue in case
 packets need to be dropped due to congestion. In this case the
 router might not drop the incoming packet but look for a packet with
 the same tube ID that is already in the queue and has a lower
 priority than to actual packet that should have been dropped. Note
 that a middlebox should only drop a different packet if there is
 currently a lower priority packet in the queue, because it otherwise
 does not know whether it will every see a lower priority packet for
 this flow. This could cause unfairness issues. Therefore a
 middlebox might need to hold additional state, e.g. keeping position

Kuehlewind & Trammell Expires January 4, 2016 [Page 13]

Internet-Draft SPUD Use Cases July 2015

 of the last low priority packet of each tube in a separate table.
 The chance that a low priority packet of the same or corresponding
 tube currently sits in the queue, is lower the smaller the buffer is.
 Therefore for low-latency, real-time services, there is a tradeoff.

 Alternatively, the middlebox might queue the lower priority traffic
 in a different queue. Using a different queue might be suitable for
 lower flow priority but should not be used for lower priority packets
 within the same flow as this can also lead to other issues such as
 high reordering. Further, using a lower priority queue will not only
 give higher priority to the traffic belong to the same service/sender
 but also to all other competing flows. This is usually not the
 intention.

 [Editor's note: Does it makes sense to, in addition, rate-limit the
 higher prirority flows to their current rate to make sure that the
 bottleneck is not further overloaded...?]

 If a sender has indicated lower priority to certain tubes and only
 experiences losses/congestion for the lower priority tubes, the
 sender should still not increase its sending for the higher priority
 tube and might even consider to decrease the sending rate for the
 higher prioroty tubes as well. Potentially a (delay-based) mechanism
 for shared bottleneck detection should be used to ensure that all
 transmissions actually share the same bottleneck.

6.4. Deployment Incentives

 [Editor's note: similar as above -> support of interactive services
 increases costumer satisfaction...]

6.5. Trust and Privacy

 As only lower priority should be indicated, it is harder to use this
 information for an attack.

 [Editor's note: Do not really see any trust or privacy concerns
 here...?]

7. Acknowledgements

 This document grew in part out of discussions of initial use cases
 for middlebox cooperation at the IAB SEMI Workshop and the IETF 92
 SPUD BoF; thanks to the participants.

Kuehlewind & Trammell Expires January 4, 2016 [Page 14]

Internet-Draft SPUD Use Cases July 2015

8. IANA Considerations

 This memo includes no request to IANA.

9. Security Considerations

 Security and privacy considerations for each use case are given in
 the corresponding subsection.

10. Informative References

 [I-D.trammell-spud-req]
 Trammell, B. and M. Kuehlewind, "Requirements for the
 design of a Substrate Protocol for User Datagrams (SPUD):

draft-trammell-stackevo-spud-req-00 (To be published
 soon)", 2015.

Authors' Addresses

 Mirja Kuehlewind
 ETH Zurich
 Zurich, Switzerland

 Email: mirja.kuehlewind@tik.ee.ethz.ch

 Brian Trammell
 ETH Zurich
 Zurich, Switzerland

 Email: ietf@trammell.ch

https://datatracker.ietf.org/doc/html/draft-trammell-stackevo-spud-req-00

Kuehlewind & Trammell Expires January 4, 2016 [Page 15]

