
Network Working Group M. Kuehlewind, Ed.
Internet-Draft B. Trammell, Ed.
Intended status: Informational ETH Zurich
Expires: September 19, 2016 March 18, 2016

Use Cases for a Substrate Protocol for User Datagrams (SPUD)
draft-kuehlewind-spud-use-cases-01

Abstract

 This document identifies use cases for explicit cooperation between
 endpoints and middleboxes in the Internet under endpoint control.
 These use cases range from relatively low level applications
 (improving the ability for UDP-based protocols to traverse firewalls)
 through support for new transport services (in-flow prioritization
 for graceful in-network degradation of media streams). They are
 intended to provide background for deriving the requirements for a
 Substrate Protocol for User Datagrams (SPUD), as discussed at the IAB
 Stack Evolution in a Middlebox Internet (SEMI) workshop in January
 2015 and the SPUD BoF session at IETF 92 in March 2015.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 19, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Kuehlewind & Trammell Expires September 19, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft SPUD Use Cases March 2016

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Principles and Assumptions 3
1.1.1. Trust and Integrity 4
1.1.2. Endpoint Control 4
1.1.3. Least Exposure 4

2. Firewall Traversal for UDP-Encapsulated Traffic 4
2.1. Problem Statement . 5
2.2. Information Exposed 5
2.3. Mechanism . 6
2.4. Deployment Incentives 7
2.5. Security, Privacy, and Trust 7

3. On-Path State Lifetime Discovery and Management 7
3.1. Problem Statement . 7
3.2. Information Exposed 8
3.3. Mechanism . 8
3.4. Deployment Incentives 9
3.5. Security, Privacy, and Trust 9

4. Path MTU Discovery . 10
4.1. Problem Statement . 10
4.2. Information Exposed 10
4.3. Mechanism . 10
4.4. Deployment Incentives 11
4.5. Security, Privacy, and Trust 11

5. Low-Latency Service . 11
5.1. Problem Statement . 11
5.2. Information Exposed 12
5.3. Mechanism . 12
5.4. Deployment Incentives 13
5.5. Security, Privacy, and Trust 13

6. Reordering Sensitivity 13
6.1. Problem Statement . 14
6.2. Information Exposed 14
6.3. Mechanism . 15
6.4. Deployment Incentives 15
6.5. Security, Privacy, and Trust 15

7. Application-Limited Flows 15
7.1. Problem Statement . 15
7.2. Information Exposed 16
7.3. Mechanism . 16
7.4. Deployment Incentives 17

Kuehlewind & Trammell Expires September 19, 2016 [Page 2]

Internet-Draft SPUD Use Cases March 2016

7.5. Security, Privacy, and Trust 17
8. Priority Multiplexing . 17
8.1. Problem Statement . 17
8.2. Information Exposed 17
8.3. Mechanism . 18
8.4. Deployment Incentives 18
8.5. Security, Privacy, and Trust 18

9. In-Band Measurement . 18
9.1. Problem Statement . 18
9.2. Information Exposed 19
9.3. Mechanism . 20
9.4. Deployment Incentives 20
9.5. Security, Privacy, and Trust 20

10. IANA Considerations . 21
11. Security Considerations 21
12. Acknowledgments . 21
13. Informative References 21

 Authors' Addresses . 22

1. Introduction

 This document describe use cases for a common Substrate Protocol for
 User Datagrams (SPUD) that could be used by superstrate transport or
 application protocols to explicitly expose information to and
 exchange information with middleboxes about application traffic and
 network conditions.

 For each use case, we first describe a problem that is difficult or
 impossible to solve with presently deployable protocols within the
 present Internet architecture. We then discuss which information is
 exposed by endpoints about the traffic sent, and/or by SPUD-aware
 middleboxes and routers about the path that traffic will traverse.
 We also suggest potential mechanisms to use that exposed information
 at middleboxes and/or endpoints, in order to demonstrate the
 feasibility of using the exposed information to the given use
 case.The described mechanisms are not necessarily proposals for
 moving forward, nor do they necessarily represent the best approach
 for applying the exposed information, but should illustrate and
 motivate the applicability of the exposed information. We further
 discuss incentives for deployment and any security, privacy, and
 trust issues that arise in exposing and/or making use of the
 information.

1.1. Principles and Assumptions

 We make a few assumptions about first principles in elaborating these
 use cases

Kuehlewind & Trammell Expires September 19, 2016 [Page 3]

Internet-Draft SPUD Use Cases March 2016

1.1.1. Trust and Integrity

 In this document, we assume no pre-existing trust relationship
 between the communication endpoints and any middlebox or router on
 the path. We must therefore always assume that information that is
 exposed can be incorrect, and/or that the information will be
 ignored.

 This implies that while endpoints can verify the integrity of
 information exposed by remote endpoints, they cannot verify the
 integrity of information exposed by middleboxes. Middleboxes cannot
 verify the integrity of any information at all. In limited
 situations where a trust relationship can be established, e.g.,
 between a managed end-user device in an enterprise network and a
 corporate firewall, this verifiability can be improved.

1.1.2. Endpoint Control

 We further assume that all information exposure by middleboxes
 happens under explicit endpoint control. For that reason, the
 information exposed by middleboxes in this document takes only two
 forms. In the first form, "accumulation", the endpoint creates space
 in the header for middleboxes to use to signal to the remote
 endpoint, which then sends the information back to the originating
 endpoint via a feedback channel. In the second form, the middlebox
 sends a packed directly back to the endpoint with additional
 information about why a packet was dropped. Other communications
 patterns may be possible, depending on the first principles chosen;
 this is a subject of future work.

1.1.3. Least Exposure

 Additionally, this document follows the principle of least exposure:
 in each use case, we attempt to define the minimum amount of
 information exposed by endpoints and middleboxes required by the
 proposed mechanism to solve the identified problem. In addition to
 being good engineering practice, this approach reduces the risk to
 privacy through inadvertent irrelevant metadata exposure, reduces the
 amount of information available for application fingerprinting, and
 reduces the risk that exposed information could otherwise be used for
 unintended purposes.

2. Firewall Traversal for UDP-Encapsulated Traffic

 We presume, following an analysis of requirements in
 [I-D.trammell-spud-req], as well as trends in transport protocol
 development (e.g. QUIC, the RTCWEB data channel) that UDP
 encapsulation will prove a viable approach for deploying new

Kuehlewind & Trammell Expires September 19, 2016 [Page 4]

Internet-Draft SPUD Use Cases March 2016

 protocols in the Internet. This, however, leads us to a first
 problem that must be solved.

2.1. Problem Statement

 UDP is often blocked by firewalls, or only enabled for a few well-
 known applications (e.g. DNS, NTP). Recent measurement work has
 shown that somewhere between 4% and 8% of Internet hosts may be
 affected by UDP impairment, depending on the population studied.
 Some networks (e.g. enterprise networks behind corporate firewalls)
 are far more likely to block UDP than others (e.g. residential
 wireline access networks).

 In addition, some network operators assume that UDP is not often used
 for high-volume traffic, and is often a source of spoofing or
 reflected attack traffic, and is therefore safe to block or route-
 limit. This assumption is becoming less true than it once was: the
 volume of (good) UDP traffic is growing, mostly due to voice and
 video (real-time) services (e.g. RTCWEB) where TCP is not suitable.

 Even if firewall vendors and administrators are willing to change
 firewall rules to allow more diverse UDP services, it is hard to
 track session state for UDP traffic. As UDP is unidirectional, it is
 unknown whether the receiver is willing to accept the connection.
 Further there is no way to figure how long state must be maintained
 once established. To efficiently establish state along the path we
 need an explicit contract, as is done implicitly with TCP today.

2.2. Information Exposed

 To maintain state in the network, it must be possible to easily
 assign each packet to a session that is passing a certain network
 node. This state should be bound to something beyond the five-tuple
 to link packets together. In [I-D.trammell-spud-req], we propose the
 use of identifiers for groups of packets, called ("tubes"). This
 allows for differential treatment of different packets within one
 five-tuple flow, presuming the application has control over
 segmentation and can provide requirements on a per-tube basis. Tube
 IDs must be hard to guess: a tube ID in addition to a five-tuple as
 an identifier, given significant entropy in the tube ID, provides an
 additional assurance that only devices along the path or devices
 cooperating with devices along the path can send packets that will be
 recognized by middleboxes and endpoints as valid.

 Further, to maintain state, the sender must explicitly indicate the
 start and end of a tube to the path, while the receiver must confirm
 connection establishment. This, together with the first packet
 following the confirmation, provides a guarantee of return

Kuehlewind & Trammell Expires September 19, 2016 [Page 5]

Internet-Draft SPUD Use Cases March 2016

 routability; i.e. that the sender is actually at the address it says
 it is. This implies all SPUD tubes must be bidirectional, or at
 least support a feedback channel for this confirmation. Even though
 UDP is not a bidirectional transport protocol, often services on top
 of UDP are bidirectional anyway. Even if not, we only require one
 packet to acknowledge a new connection. This is low overhead for
 this basic security feature. This connection set-up should not
 impose any additional start-up latency, so the sender must be also
 able to send payload data in the first packet.

 If a firewall blocks a SPUD packet, it can be beneficial for the
 sender to know why the packet was blocked. Therefore a SPUD-aware
 middlebox should be able to send error messages. Such an error
 message can either be sent directly to the sender itself, or
 alternatively to the receiver that can decide to forward the error
 message to a sender or not.

2.3. Mechanism

 A firewall or middlebox can use the tube ID as an identifier for its
 session state information. If the tube ID is large enough it will be
 hard for a non- eavesdropping attacker to guess the ID.

 If a firewall receives a SPUD message that signals the start of a
 connection, it can decide to establish new state for this tube.
 Alternatively, it can also forward the packet to the receiver and
 wait if the connection is wanted before establishing state. To not
 require forwarding of unknown payload, a firewall might want to
 forward the initial SPUD packet without payload and only send the
 full packet if the connection has be accepted by the receiver.

 The firewall must still maintain a timer to delete the state of a
 tube if no packets were received for a while. However, if a end
 signal is received the firewall can remove the state information
 faster.

 If a firewall receives a SPUD message which does not indicate the
 start of a new tube and no state is available for this tube, it may
 decide to block the traffic. This can happen if the state has
 already timed out or if the traffic was rerouted. In addition a
 firewall may send an error message to the sender or the receiver
 indicating that no state information is available. If the sender
 receives such a message it can resend a start signal (potentially
 together with other tube state information) and continue its
 transmission.

Kuehlewind & Trammell Expires September 19, 2016 [Page 6]

Internet-Draft SPUD Use Cases March 2016

2.4. Deployment Incentives

 The ability to use existing firewall management best practices with
 new transport services over SPUD is necessary to ensure the
 deployability of SPUD. In today's Internet, application developers
 really only have two choices for transport protocols: TCP, or
 transports implemented at the application layer and encapsulated over
 UDP. SPUD provides a common shim layer for the second case, and the
 firewall traversal facility it provides makes these transports more
 likely to deploy.

 It is not expected that the information provided by SPUD will enable
 all generic UDP-encapsulated transports to safely pass firewalls.
 However, it does make state handling easier for new services that a
 firewall administrator is willing to allow.

2.5. Security, Privacy, and Trust

 The tube ID is scoped to the five-tuple. While this makes the tube
 ID useless for session mobility, it does mean that the valid ID space
 is sufficiently sparse to maintain the "hard to guess" property, and
 prevents tube IDs from being misused to track flows from the same
 endpoint across multiple addresses. This limitation may need further
 discussion.

 By providing information about connection setup, SPUD exposes
 information equivalent to that available in the TCP header. It makes
 connection lifetime information explicit and accessible without
 specific higher-layer/application- level knowledge.

3. On-Path State Lifetime Discovery and Management

 Once the problem of connection setup is solved, the problem arises of
 managing the lifetime of state associated with that connection at
 various devices along the path: NAT and stateful firewall state
 timeouts are a common cause of connectivity issues in the Internet.

3.1. Problem Statement

 Devices along the path that must keep state in order to function
 cannot assume that signals tearing down a connection are provided
 reliably. This is also the case for current TCP traffic. Therefore,
 all stateful on-path devices must implement a mechanism to remove the
 state if no traffic is seen for a given flow or tube for a while.
 Usually this is implemented by maintaining a timeout since the last
 observed packet.

Kuehlewind & Trammell Expires September 19, 2016 [Page 7]

Internet-Draft SPUD Use Cases March 2016

 If the timeouts are set too low, on-path state might be discarded
 while the endpoint connection is still alive; in the case of
 firewalls and NATs, this can lead to unreliable connectivity. The
 common solution to this problem is for applications or transport
 protocols that do not have any productive traffic to send to send
 "heartbeat" or "keep-alive" packets to reset the state timeout along
 the path. However, since the minimum timeout along the path is
 unknown to the endpoint, implementers of transport and application .
 A default value of 150ms is commonly used today. This represents a
 fairly rapid generation of nonproductive traffic, and is especially
 onerous on battery- powered mobile devices, which must wake up radios
 and switch to a higher-power mode to transmit these nonproductive
 packets, leading to suboptimal power usage and shorter battery life.

3.2. Information Exposed

 SPUD can be used to request that SPUD-aware middleboxes along the
 path expose their minimum state timeout value. Here, the sending
 endpoint sends a "accumulate minimum timeout" request along with some
 scratch space for middleboxes to place their timeout information in.
 Each middlebox inspects this value, and writes its own timeout only
 if lower than the present value.

 Applications may also send a "timeout proposal" to devices along the
 path using a SPUD declaration that a given tube will send a packet at
 least once per interval, and if no packet is seen within that
 interval, it is safe to tear down state.

 These two declarations may be used together, with middleboxes willing
 to use the application's value setting their timeouts on a per-tube
 basis, or exposing a lower timeout value to allow the application to
 adjust.

3.3. Mechanism

 If a SPUD-aware middlebox that uses a timeout to clean up per-tube
 state receives a SPUD minimum timeout accumulation, it should expose
 its own timeout value if smaller than the one already given.
 Alternatively, if a value is already given, it might decide to use
 the given value as timeout for the state information of this tube.
 An endpoint receiving an accumulated minimum timeout should send it
 back to its remote peer via a feedback channel. Timeouts on each
 direction of a connection between two endpoints may, of course, be
 different, and are handled separately by this mechanism.

 If a SPUD-aware middlebox that uses a timeout to clean up per-tube
 state receives a timeout proposal, it should set its timeout
 accordingly, subject to its own policy and configuration.

Kuehlewind & Trammell Expires September 19, 2016 [Page 8]

Internet-Draft SPUD Use Cases March 2016

 These mechanisms are of course completely advisory: there may be non-
 SPUD aware middleboxes on path which will ignore any proposed timeout
 and not expose their timeout information, and middleboxes must be
 configured with maximum timeout proposal they will accept in order to
 defend against state exhaustion attacks.

 Endpoints must therefore be combine the use of these signals endpoint
 with a dynamic timeout discovery and adaptation mechanism, which uses
 the signals to set initial guesses as to the path timeout.

3.4. Deployment Incentives

 Initially, if not widely deployed, there will be not much benefit to
 using this extension.

 However, we can assume that there are usually only a small number of
 middleboxes on a given network path that hold per-tube state
 information. Endpoints have an incentive to request minimum timeout
 and to propose timeouts to improve convergence time for dynamic
 timeout adaptation mechanisms, and middleboxes have an incentive to
 cooperate to improve reliability of connections as well as state
 management. It is therefore likely that if information is exposed by
 a middlebox, this information is correct and can be used.

 The more SPUD gets deployed, the more often endpoints will be able to
 set the heartbeat interval correctly. This will reduce the amount of
 unproductive traffic as well as the number of reconnections that
 cause additional latency.

 Likewise, SPUD-aware middleboxes that expose timeout information are
 able to handle timeouts more flexibly, e.g. announcing lower timeout
 values when they have less space available for new state. Further if
 an endpoint announces a low pre-set value because the endpoint knows
 that it will only have short idle periods, the timeout interval could
 be reduced.

3.5. Security, Privacy, and Trust

 Timeout proposals increase the risk of state exhaustion attacks for
 SPUD-aware middleboxes that naively follow them. Likewise,
 accumulated minimum timeouts could be used by malicious middleboxes
 to induce floods of useless heartbeat traffic along the path, and/or
 exhaust resources on endpoints that naively follow them. All timeout
 proposals and minimum timeouts must therefore be inputs to a dynamic
 timeout selection process, both at endpoints and on-path devices,
 which use these signals as hints but clamp their timeouts to sane
 values set by local policy.

Kuehlewind & Trammell Expires September 19, 2016 [Page 9]

Internet-Draft SPUD Use Cases March 2016

 While device timeout and heartbeat interval are generally not linked
 to privacy-sensitive information, a timeout proposal may add a number
 of bits of entropy to an endpoint's unique fingerprint. It is
 therefore advisable to suggest a small number of useful timeout
 proposals, in order to reduce this value's contribution to an
 endpoint fingerprint.

4. Path MTU Discovery

 Similar to the state timeout problem is the Path MTU problem:
 differing MTUs on different devices along the path can lead to
 fragmentation or connectivity issues. This problem is made worse by
 the increasing proliferation of tunnels in the Internet, which reduce
 the MTU by the amount required for tunnel headers.

4.1. Problem Statement

 In order to efficiently send packets along a path end to end, they
 must be sized to fit in the MTU of the "narrowest" link along the
 path. Algorithms for path MTU discovery have been defined and
 standardized for a quarter century, in [RFC1191] for IPv4 and
 [RFC1981] for IPv6, but they are not often implemented due in part to
 widespread impairment of ICMP. Packetization Layer Path MTU
 Discovery [RFC4821] (PLPMTUD) is a more recent attempt to solve the
 problem, which has the advantage of being transport-protocol
 independent and functional without ICMP feedback. SPUD, as a shim
 between UDP and superstrate transport protocols, is at the right
 place in the stack to implement PLPMTUD, and explicit cooperation can
 enhance its operation.

4.2. Information Exposed

 SPUD can be used to request that SPUD-aware middleboxes along the
 path expose their next-hop path MTU value. Here, the sending
 endpoint sends a "accumulate minimum MTU" request along with some
 scratch space for middleboxes to place the next-hop MTU for the given
 tube. Each middlebox inspects this value, and writes its own next-
 hop MTU only if lower than the present value.

 A SPUD-aware middlebox that receives a packet that is too big for the
 next-hop MTU can send back a signal associated with the tube directly
 to the sender, including the next-hop MTU.

4.3. Mechanism

 PLPMTUD functions by dynamically increasing the size of packets sent,
 and reacting to the loss of the first "too large" packet as an MTU
 reduction signal, instead of a congestion signal. This must be

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc4821

Kuehlewind & Trammell Expires September 19, 2016 [Page 10]

Internet-Draft SPUD Use Cases March 2016

 implemented in cooperation with the superstrate transport protocol,
 as it is responsible for how non-MTU-related loss is treated.

 When an endpoint receives an accumulated minimum MTU, it should
 should send it back to its remote peer via a feedback channel. The
 minimum of this value and any direct next-hop MTU signals received
 from SPUD-aware middleboxes can be used as a hint to the sender's
 PLPMTUD process, as a likely upper bound for path MTU associated with
 a tube.

4.4. Deployment Incentives

 As with state lifetime discovery, these signals are of little initial
 utility to endpoints before SPUD-aware middleboxes are deployed.
 However, SPUD-aware middleboxes that sit at potential MTU breakpoints
 along a path, either those which terminate tunnels or bridge networks
 with two different link types, have an incentive to improve
 reliability by responding to accumulation requests and sending next-
 hop MTU messages to SPUD-aware endpoints.

4.5. Security, Privacy, and Trust

 As with state lifetime discovery, Minimum MTU and next-hop MTU
 signals could be used by malicious middleboxes to set the endpoint's
 maximum packet size to inefficiently small sizes, if the endpoint
 follows them naively. For that reason, endpoints should use this
 information only as hints to improve the operation of PLPMTUD, and
 may probe above the value derived from the SPUD- supplied information
 when deemed appropriate by endpoint policy or transport protocol
 requirements.

5. Low-Latency Service

5.1. Problem Statement

 Networks are often optimized for low loss rates and high throughput
 by providing large buffers that can absorb traffic spikes and rate
 variations while holding enough data to keep the link full. This is
 beneficial for applications like high-priority bulk transfer, where
 only the total transfer time is of interest. High-volume interactive
 applications, such as videoconferencing, however, have very different
 requirements. Usually these applications can tolerate higher loss
 rates, while having hard latency requirements.

 Large network buffers may induce high queuing delays due to cross
 traffic using loss-based congestion control, which must periodically
 fill the buffer to induce loss during probing for additional
 bandwidth. This queueing delay can negatively impact the quality of

Kuehlewind & Trammell Expires September 19, 2016 [Page 11]

Internet-Draft SPUD Use Cases March 2016

 experience for competing interactive applications, even making them
 unusable.

5.2. Information Exposed

 The simplest mechanism for solving this problem is to separate loss-
 sensitive from latency-sensitive traffic, as proposed using DSCP
 codepoints in [I-D.you-tsvwg-latency-loss-tradeoff]. This signal
 could also be emitted as a per-packet signal within SPUD, since DSCP
 codepoints are often used for internal traffic engineering and
 therefore cleared at network borders. This indication does not
 prioritize one kind of traffic over the other: while loss- sensitive
 traffic might face larger buffer delay but lower loss rate, latency-
 sensitive traffic has to make exactly the opposite tradeoff.

 An endpoint can also indicate a maximum acceptable single-hop
 queueing delay per tube, expressed in milliseconds. While this
 mechanism does not guarantee that sent packets will experience less
 than the requested delay due to queueing delay, it can significantly
 reduce the amount of traffic uselessly sitting in queues, since at
 any given instance only a small number of queues along a path
 (usually only zero or one) will be full.

5.3. Mechanism

 A middlebox may use the loss-/latency tradeoff signal to assign
 packet to the appropriate type of service, if different services are
 implemented at this middlebox. Traffic not indicating a low loss or
 low latency preference would still be assigned to today's best-effort
 service, while a new low latency service would be introduced in
 addition.

 The simplest implementation of such a low latency service (without
 disturbing existing traffic) is to manage traffic with the latency-
 sensitive flag set in a separate queue. This queue either, in
 itself, provides only a short buffer which induces a hard limit for
 the maximum (per-queue) delay or uses an AQM (such as PIE/CoDel) that
 is configured to keep the queuing delay low.

 In such a two-queue system the network provider must decide about
 bandwidth sharing between both services, and might or might not
 expose this information. Initially there will only be a few flows
 that indicate low latency preference. Therefore at the beginning
 this service might have a low maximum bandwidth share assigned in the
 scheduler. However, the sharing ratio should be adapted to the
 traffic load/number of flows in each service class over long
 timescales.

Kuehlewind & Trammell Expires September 19, 2016 [Page 12]

Internet-Draft SPUD Use Cases March 2016

 Applications and endpoints setting the latency sensitivity flag on a
 tube must be prepared to experience relatively higher loss rates on
 that tube, and should use techniques such as Forward Error Correction
 (FEC) to cope with these losses.

 If a maximum per-hop delay is indicated by the sender, a SPUD- aware
 router might drop any packet which would be placed in a queue that
 has more than the maximum single-hop delay at that point in time
 before queue admission. Thereby the overall congestion can be
 reduced early instead of withdrawing the packet at the receiver after
 it has blocked network resources for other traffic.

 A transport protocol at an endpoint indicating the maximum per-hop
 delay must be aware that is might face higher loss rates under
 congestion than competing traffic on the same bottleneck.

5.4. Deployment Incentives

 Application developers go to a great deal of effort to make latency-
 sensitive traffic work over today's Internet. However, if large
 delays are induced by the network, an application at the endpoint
 cannot do much. Therefore applications can benefit from further
 support by the network.

 Network operators have already realized a need to better support low
 latency services. However, they want to avoid any service
 degradation for existing traffic as well as risking stability due to
 large configuration changes. Introducing an additional service for
 latency-sensitive traffic that can exist in parallel to today's
 network service helps this problem.

5.5. Security, Privacy, and Trust

 An application cannot benefit from wrongly indicating loss- or
 latency- sensitivity, as it has to make a tradeoff between low loss
 and potential high delay or low delay and potential high loss.

 A simple classification of traffic as loss- or latency-sensitive does
 not expose privacy-critical information about the user's behavior;
 indeed, it exposes far less than presently used by DPI-based traffic
 classifiers that would be used to determine the latency sensitivity
 of traffic passing a middlebox.

6. Reordering Sensitivity

Kuehlewind & Trammell Expires September 19, 2016 [Page 13]

Internet-Draft SPUD Use Cases March 2016

6.1. Problem Statement

 TCP's fast retransmit mechanism interprets the reception of three
 duplicated acknowledgement (where the acknowledgement number is the
 same than in the previous acknowledgement) as a signal for loss
 detection. However, a missing packet in the sequence number space
 must not always be lost. Simple reordering where one packet takes a
 longer path than (at least three) subsequent packets can have the
 same effect.

 In addition in TCP, loss is an implicit signal for network
 congestion. Therefore the reception of three duplicated
 acknowledgement will cause a TCP sender to reduce its sending rate.
 To avoid unnecessary performance decreases, today's in-network
 mechanisms usually aim to avoid reordering. However, this
 complicates these mechanism significantly and usually requires per-
 flow state, e.g. in case of Equal Cost Multipath (ECMP) routing where
 a hash of the 5 tuple would need to be mapped to the right path.

 Even though the majority of traffic in the Internet is still TCP, it
 is likely that new protocols will be design such that they are (more)
 robust to reordering. Further with an increasing deployment of ECN,
 even TCP's congestion control reaction based on duplicated
 acknowledgements could be relaxed (e.g. by reducing the sending rate
 gradually depending on the number of lost packets).

 However, as middlebox can not know if a certain traffic flow is
 sensitive to reordering or not, they have to treat all traffic as
 equally and try to always avoid reordering. (This does not only
 complicate these mechanism but might also block the deployment of new
 services.)

6.2. Information Exposed

 Reordering-sensitivity is a per tube signal (as reordering can only
 happen with a flow multiple packets). However, to avoid state in
 middlebox, it would be beneficial to have a reordering-sensitive flag
 in each packet.

 A transport should set the bit if it is not sensitive to reordering,
 e.g. if it uses a more advance mechanism (than duplicated
 acknowledgement) for loss detection, or if the congestion control
 reaction to this signal imposes only a small performances penalty, or
 if the flow is short enough that it will not impact its performance.

Kuehlewind & Trammell Expires September 19, 2016 [Page 14]

Internet-Draft SPUD Use Cases March 2016

6.3. Mechanism

 A middlebox that implement an in-network function that could lead to
 varying end-to-end delay and reordering (as packets might overtake
 each other on different paths or within the network device), do not
 need to perform any additional action if the reordering-sensitivity
 flag is not set. However, if the flag is set, the middlebox should
 avoid reordering by e.g. holding per- tube state and make sure that
 all packets belonging to the same tube will not be re-ordered.

6.4. Deployment Incentives

 Today by default middlebox assume that all traffic is reordering-
 sensitive which complicates certain in-network mechanism or might
 also block the deployment of new services. If a middlebox would know
 that certain traffic is not reordering-sensitive, it could reduce
 state, speed-up processing, or even implement new services.

 Applications that are not loss-sensitive (because they e.g. uses FEC)
 usually are also not reordering-sensitive. At the same time these
 application are often sensitive to latency. If the transport handles
 reordering appropriately and signal this semantic information to the
 network, the appropriate network treatment can likely also result in
 lower end-to-end or at least enables the network device to impose any
 additional delay (e.g. to set up state) on these packets.

6.5. Security, Privacy, and Trust

 No trust relationship is needed as the provided information do not
 results in a preferential treatment. Only transport semantics are
 exposed that to not contain any private information.

7. Application-Limited Flows

7.1. Problem Statement

 Many flows are application-limited, where the application itself
 adapts the limit to changing traffic conditions or link
 characteristics, such as with unicast adaptive bitrate streaming
 video. This adaptation is difficult, since TCP cross-traffic will
 often probe for available bandwidth more aggressively than the
 application's control loop. Further complicating the situation is
 the fact that rate adaptation may have negative effects on the user's
 quality of experience, and should therefore be done infrequently.

Kuehlewind & Trammell Expires September 19, 2016 [Page 15]

Internet-Draft SPUD Use Cases March 2016

7.2. Information Exposed

 A SPUD endpoint sending application-limited traffic can provide an
 explicit per-tube indication of the maximum intended data rate needed
 by the current encoding or data source. If the bottleneck device is
 SPUD-aware, it can use this information to decide how to correctly
 treat the tube, e.g. setting a rate limit or scheduling weight if
 served from its own queue.

 A SPUD endpoint could also send a "minimum rate limit accumulation"
 request, similar to the other accumulation requests outlined above,
 where SPUD-aware routers and middleboxes could note the maximum
 bandwidth available to a tube. Receiving this signal on a feedback
 channel could allow a sender to more quickly adapt its sending rate.
 This rate limit information might be derived from local per-flow or
 per-tube rate limit policy, as well as from current information about
 load at the router.

 These signals can be sent throughout the lifetime of the flow, to
 help adapt to changing application demands and/or network conditions.

7.3. Mechanism

 Maximum expected data rate exposed by the endpoints could be used to
 make routing decisions and queue selection decisions at SPUD-aware
 routers, if different paths or queues with different capacity, delay,
 and load characteristics are available.

 A SPUD-aware router that indicates a rate limit can be used by the
 sender to choose an encoding. However, the sender should still
 implement a mechanism to probe for available bandwidth to verify the
 provided information. As a certain rate limit is expected, the
 sender should probe carefully around this rate.

 These mechanisms can also be used for rate increases. If a sender
 receives an indication that more bandwidth is available it should
 probe carefully, instead of switching to the higher rate immediately,
 and decrease its sensitivity to loss (e.g. through the use of
 additional FEC) which will provide additional protection as soon as
 the new capacity limit is reached. Likewise, a SPUD- aware router
 that receives an indication that a flow intends to increase its might
 prioritize this flow for a certain (short) time to enable a smoother
 transition.

Kuehlewind & Trammell Expires September 19, 2016 [Page 16]

Internet-Draft SPUD Use Cases March 2016

7.4. Deployment Incentives

 Endpoints that indicate maximum sending rate for application-limited
 traffic on SPUD-aware networks allow the operators of those networks
 to better handle traffic. This can benefit the service quality and
 increase the user's satisfaction with the provided network service.

 Currently applications have no good indication when to change their
 coding rate. Rate increases are especially hard. Further, frequent
 rate changes should be avoided for quality of experience.
 Cooperative indication of intended and available sending rate for
 application-limited flows can simplify probing, and provide signals
 beyond loss to react effectively to congestion.

7.5. Security, Privacy, and Trust

 Both endpoints and SPUD-aware middleboxes should react defensively to
 rate limit and rate intention information. Endpoints and middleboxes
 should use measurement and probing to verify that rate information is
 accurate, but the exposed rate information can be used as hints to
 routing, scheduling, and rate determination processes.

8. Priority Multiplexing

8.1. Problem Statement

 Many services require multiple parallel transmissions to transfer
 different kinds of data which have clear priority relationships among
 them. For example, in WebRTC, audio frames should be prioritized
 over video frames. Sometimes these transmissions happen in different
 flows, and sometimes some packets within a flow have higher priority
 than others, for example I-frames in video transmissions. However,
 current networks will treat all packets the same in case of
 congestion and might e.g. drop audio packets while video and control
 traffic are still transmitted.

8.2. Information Exposed

 A SPUD sender may indicate a that one tube should "yield" to another,
 i.e. that it should have lower relative priority than another tube
 in the same flow. Similarly, individual packets within a tube could
 be marked as having lower priority. This information can be used to
 preferentially drop less important packets e.g. carrying information
 that could be recovered by FEC.

 With a stronger integration of codec and transport protocols, SPUD
 could even indicate more fine-grained priority levels to provide
 automatic graceful degradation of service within the network itself.

Kuehlewind & Trammell Expires September 19, 2016 [Page 17]

Internet-Draft SPUD Use Cases March 2016

8.3. Mechanism

 Designing a general-purpose mechanism that maps relative priorities
 from the yield information exposed via SPUD to correct per-tube and
 per-packet treatment at any point in the Internet, is an extremely
 hard problem and a possible subject for future research. It appears
 impossible at this writing to design a straightforward mapping
 function from these relative priorities per- flow to absolute
 priorities across flows in a fair way.

 However, in the not-uncommon case that exists in many access
 networks, where the bottleneck link has per-user queues and can
 enforce per-user fairness, the relative priorities can be mapped to
 absolute priorities, and simple priority queueing at the bottleneck
 can be used. Lower priority packets within a tube, however, should
 be assigned to the tube's priority class, and preferentially dropped
 instead, e.g. using a different drop threshold at the queue.

8.4. Deployment Incentives

 Deployment incentives for priority multiplexing are similar to those
 for bandwidth declaration for app-limited flows as in Section 7.4:
 endpoints that correctly declare priority information will experience
 better quality of service on SPUD-enabled networks, and SPUD-enabled
 networks get information that allows them to better manage traffic.

8.5. Security, Privacy, and Trust

 Since yield information can only be used to disadvantage an
 application's traffic relative to its own traffic, there is no
 incentive for applications to declare incorrect yielding.

 The pattern and relative volume of traffic in different yield classes
 may be used to "fingerprint" certain applications, though it is not
 clear whether this provides additional information beyond that
 contained inter-packet delay and volume patterns.

9. In-Band Measurement

9.1. Problem Statement

 The current Internet protocol stack has very limited facilities for
 network measurement and diagnostics. The only explicit measurement
 feature built into the stack is ICMP Echo ("ping"). In the meantime,
 the Internet measurement community has defined many inference- and
 assumption-based approaches for getting better information out of the
 network: traceroute and BGP looking glasses for topology information,
 TCP sequence number and TCP timestamp based approaches for latency

Kuehlewind & Trammell Expires September 19, 2016 [Page 18]

Internet-Draft SPUD Use Cases March 2016

 and loss estimation, and so on. Each of these uses values placed on
 the wire for the internal use of the protocol, not for measurement
 purposes, and do not necessarily apply to the deployment of new
 protocols or changes to the use of those values by protocol
 implementations. Approaches involving the encryption of transport
 protocol and application headers (indeed, including that the authors
 advance in [I-D.trammell-spud-req]) will break most of these, as
 well.

 Replacing the information used for measurement with values defined
 explicitly to be used for measurement in a transport protocol
 independent way allows explicit endpoint control of measurability and
 measurement overhead.

 We note that current work in IPPM [I-D.ietf-ippm-6man-pdm-option]
 proposes a roughly equivalent, IPv6-only, kernel-implementation-only
 facility.

9.2. Information Exposed

 The "big five" metrics - latency, loss, jitter, data rate / goodput,
 and reordering - can be measured using a relatively simple set of
 primitives. Packet receipt acknowledgment using a cumulative nonce
 echo allows both endpoint and on-path measurement of loss and
 reordering as well as goodput (when combined with layer 3 packet
 length headers). A timestamp echo facility, analogous to TCP's
 timestamp option but using an explicitly defined, constant-rate clock
 and exposure of local delta (time between receipt and subsequent
 transmission).

 The cumulative nonce echo consists of two values: a number
 identifying a given packet (nonce), which also identifies all
 retransmissions of the packet, and a number which is the sum of all
 packet identifiers received from the remote endpoint (echo), modulo
 the maximum value of the echo field. Nonces need not be sequential,
 or even monotonic, but two packets with the same nonce should not be
 simultaneously in flight. These are exposed on a per-packet basis,
 but need not appear on every packet in the tube or flow, with the
 caveat that lower sampling rates lead to lower sensitivity.

 The timestamp echo consists of three values: The time in terms of
 ticks of a constant rate clock that a packet is sent, the echo of the
 last such timestamp received from the remote endpoint, and the number
 of ticks of the sender's clock between the receipt of the last
 timestamp from the remote endpoint and the transmission of the packet
 containing the echo. This last delta value is the missing link in
 TCP sequence number based and timestamp option based latency
 estimation.

Kuehlewind & Trammell Expires September 19, 2016 [Page 19]

Internet-Draft SPUD Use Cases March 2016

 The information exposed is roughly equivalent than that currently
 exposed by TCP as a side effect of its operation, but defined such
 that they are explicitly useful for measurement, useful regardless of
 transport protocol, and such that information exposure is in the
 explicit control of the endpoint (when the superstrate transport
 protocol's headers are encrypted).

9.3. Mechanism

 The nonce and timestamp echo information, emitted as per-packet
 signals in the SPUD header, can be used by any device which can see
 it to estimate performance metrics on a per-tube basis. This
 includes both remote endpoints, as well as passive performance
 measurement devices colocated with network gateways.

9.4. Deployment Incentives

 Initial deployment of this facility is most likely in closed networks
 such as enterprise data centers, where a single administrative entity
 owns the network and the endpoints, can control which flows and tubes
 are annotated with measurement information, and can benefit from the
 additional insight given during network troubleshooting by explicit
 measurement headers.

 Further, since the provided measurement information is exposed by
 SPUD to the far-endpoint, it can be used for performance enhancement
 on these layers. Once the facility is deployed in SPUD-aware
 endpoints, it can also be used for inter-network and cross-Internet
 performance measurement and debugging (replacing today's processing-
 intensive DPI mechanisms).

9.5. Security, Privacy, and Trust

 The cumulative nonce and timestamp echo leaks no more information
 about the traffic than the TCP header does. Indeed, since the
 cumulative nonce does not include sequence number information or
 other protocol-internal information, it allows passive measurement of
 loss and latency without giving measurement devices access to
 information they could use to spoof valid packets within a transport
 layer connection.

 In order to prevent middleboxes from modifying measurement-relevant
 information, these per-packet signals will need to be integrity
 protected by SPUD.

 Performance measurement boxes at gateways which observe and aggregate
 these signals will necessarily need to trust their accuracy, but can

Kuehlewind & Trammell Expires September 19, 2016 [Page 20]

Internet-Draft SPUD Use Cases March 2016

 verify their plausibility by calculating nonce sums and synchronizing
 timing clocks.

10. IANA Considerations

 This document has no actions for IANA.

11. Security Considerations

 Security and privacy considerations for each use case are given in
 the corresponding Security, Privacy, and Trust subsection.

12. Acknowledgments

 This document grew in part out of discussions of initial use cases
 for middlebox cooperation at the IAB SEMI Workshop and the IETF 92
 SPUD BoF; thanks to the participants. Some use case details came out
 of discussions with the authors of the [I-D.trammell-spud-req]: in
 addition to the editors of this document, David Black, Ken Calvert,
 Ted Hardie, Joe Hildebrand, Jana Iyengar, and Eric Rescorla.

Section 9 is based in part on discussions and ongoing work with Mark
 Allman and Rob Beverly.

 This work is supported by the European Commission under Horizon 2020
 grant agreement no. 688421 Measurement and Architecture for a
 Middleboxed Internet (MAMI), and by the Swiss State Secretariat for
 Education, Research, and Innovation under contract no. 15.0268. This
 support does not imply endorsement.

13. Informative References

 [I-D.hildebrand-spud-prototype]
 Hildebrand, J. and B. Trammell, "Substrate Protocol for
 User Datagrams (SPUD) Prototype", draft-hildebrand-spud-

prototype-03 (work in progress), March 2015.

 [I-D.ietf-ippm-6man-pdm-option]
 Elkins, N. and M. Ackermann, "IPv6 Performance and
 Diagnostic Metrics (PDM) Destination Option", draft-ietf-

ippm-6man-pdm-option-01 (work in progress), October 2015.

 [I-D.trammell-spud-req]
 Trammell, B. and M. Kuehlewind, "Requirements for the
 design of a Substrate Protocol for User Datagrams (SPUD)",

draft-trammell-spud-req-02 (work in progress), March 2016.

https://datatracker.ietf.org/doc/html/draft-hildebrand-spud-prototype-03
https://datatracker.ietf.org/doc/html/draft-hildebrand-spud-prototype-03
https://datatracker.ietf.org/doc/html/draft-ietf-ippm-6man-pdm-option-01
https://datatracker.ietf.org/doc/html/draft-ietf-ippm-6man-pdm-option-01
https://datatracker.ietf.org/doc/html/draft-trammell-spud-req-02

Kuehlewind & Trammell Expires September 19, 2016 [Page 21]

Internet-Draft SPUD Use Cases March 2016

 [I-D.you-tsvwg-latency-loss-tradeoff]
 You, J., Welzl, M., Trammell, B., Kuehlewind, M., and K.
 Smith, "Latency Loss Tradeoff PHB Group", draft-you-tsvwg-

latency-loss-tradeoff-00 (work in progress), March 2016.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 DOI 10.17487/RFC1191, November 1990,
 <http://www.rfc-editor.org/info/rfc1191>.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, DOI 10.17487/RFC1981, August
 1996, <http://www.rfc-editor.org/info/rfc1981>.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007,
 <http://www.rfc-editor.org/info/rfc4821>.

Authors' Addresses

 Mirja Kuehlewind (editor)
 ETH Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Email: mirja.kuehlewind@tik.ee.ethz.ch

 Brian Trammell (editor)
 ETH Zurich
 Gloriastrasse 35
 8092 Zurich
 Switzerland

 Email: ietf@trammell.ch

https://datatracker.ietf.org/doc/html/draft-you-tsvwg-latency-loss-tradeoff-00
https://datatracker.ietf.org/doc/html/draft-you-tsvwg-latency-loss-tradeoff-00
https://datatracker.ietf.org/doc/html/rfc1191
http://www.rfc-editor.org/info/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
http://www.rfc-editor.org/info/rfc1981
https://datatracker.ietf.org/doc/html/rfc4821
http://www.rfc-editor.org/info/rfc4821

Kuehlewind & Trammell Expires September 19, 2016 [Page 22]

