
Transport Area Working Group B. Briscoe
Internet-Draft BT
Intended status: Experimental R. Scheffenegger
Expires: January 3, 2015 NetApp, Inc.
 M. Kuehlewind
 University of Stuttgart
 July 02, 2014

More Accurate ECN Feedback in TCP
draft-kuehlewind-tcpm-accurate-ecn-03

Abstract

 Explicit Congestion Notification (ECN) is a mechanism where network
 nodes can mark IP packets instead of dropping them to indicate
 incipient congestion to the end-points. Receivers with an ECN-
 capable transport protocol feed back this information to the sender.
 ECN is specified for TCP in such a way that only one feedback signal
 can be transmitted per Round-Trip Time (RTT). Recently, new TCP
 mechanisms like Congestion Exposure (ConEx) or Data Center TCP
 (DCTCP) need more accurate ECN feedback information whenever more
 than one marking is received in one RTT. This document specifies an
 experimental scheme to provide more than one feedback signal per RTT
 in the TCP header. Given TCP header space is scarce, it overloads
 the three existing ECN-related flags in the TCP header. Also, to
 improve robustness it uses 15 more bits if available. For initial
 experiments it places these in a TCP option. However, if the Urgent
 flag is cleared, zero header overhead could be achieved by reusing
 the Urgent Pointer opportunistically. Therefore this document
 reserves space in the Urgent Pointer to be used if the protocol
 progresses to the standards track.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Briscoe, et al. Expires January 3, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Accurate TCP-ECN Feedback July 2014

 This Internet-Draft will expire on January 3, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Document Roadmap . 4
1.2. Goals . 5
1.3. Experiment Goals . 5
1.4. Terminology . 6
1.5. Recap of Existing ECN feedback in IP/TCP 6

2. AccECN Protocol Overview 8
2.1. Essential and Supplementary Parts 8
2.2. Capability Negotiation 9
2.3. Two Complementary Feedback Methods 10
2.4. Resilience Against ACK Loss 11
2.5. Order of Arrival of IP-ECN Markings 11

3. AccECN Protocol Specification 12
3.1. Negotiation during the TCP handshake 12
3.2. Essential AccECN Feedback 15
3.2.1. The ACE Field . 15
3.2.2. Safety against Ambiguity of the ACE Field 17
3.2.3. ACE Counter Selection 17

3.3. The Supplementary AccECN Field (SupAccECN) 18
3.3.1. Placement of the SupAccECN Field 19
3.3.2. Structure of the SupAccECN Field 22
3.3.3. Higher Resilience Congestion Counters (Top-ACE) . . . 22
3.3.4. Accurate ECN Sequence within Delayed ACKs 24
3.3.5. AccECN Feedback Integrity 28

3.4. Accurate ECN Receiver Operation 29
3.5. Accurate ECN Sender Operation 30
3.6. Detection of Legacy Middlebox Interference 30
3.7. Correct Middlebox Operation 30

4. Interaction with Other TCP Variants 31

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Briscoe, et al. Expires January 3, 2015 [Page 2]

Internet-Draft Accurate TCP-ECN Feedback July 2014

4.1. Compatibility with SYN Cookies 31
4.2. Compatibility with Other Options and Experiments 32

5. Protocol Properties . 32
6. IANA Considerations . 34
6.1. SupAccECN TCP Option Allocation 34
6.2. Non-Urgent Field Registry 35

7. Security Considerations 36
8. Acknowledgements . 36
9. Comments Solicited . 37
10. References . 37
10.1. Normative References 37
10.2. Informative References 37

Appendix A. Example Algorithms 39
 A.1. Example Algorithm for Safety Against Long Sequences of
 ACK Loss . 39

A.2. Example Counter Selection Algorithms 40
A.2.1. Counter Selection Algorithm Alt#1 41
A.2.2. Counter Selection Algorithm Alt#2 43

A.3. Example Encodings and Decodings of Top-ACE and ACE . . . 44
A.3.1. Encoding Top-ACE and ACE by the Data Receiver 45
A.3.2. Decoding Top-ACE and ACE by the Data Sender 46

A.4. Example ECN Sequence (ESQ) Encoding Algorithms 47
Appendix B. Alternative Design Choices (To Be Removed Before

 Publication) . 49
B.1. Supplementary AccECN Field on the SYN/ACK 49

 B.1.1. Placement of the Supplementary AccECN Field in a
 SYN/ACK . 49
 B.1.2. Structure of the Supplementary AccECN Field in a
 SYN/ACK . 50

B.2. Remove Not-ECT from ECN Sequence (ESQ) Encoding 51
B.3. ECN Fall-Back . 52
B.4. Remote Delayed ACK Control Proposal 52

Appendix C. Open Protocol Design Issues (To Be Removed Before
 Publication) . 53

Appendix D. Changes in This Version (To Be Removed Before
 Publication) . 54

1. Introduction

 Explicit Congestion Notification (ECN) [RFC3168] is a mechanism where
 network nodes can mark IP packets instead of dropping them to
 indicate incipient congestion to the end-points. Receivers with an
 ECN-capable transport protocol feed back this information to the
 sender. ECN is specified for TCP in such a way that only one
 feedback signal can be transmitted per Round-Trip Time (RTT).
 Recently, proposed mechanisms like Congestion Exposure (ConEx
 [I-D.ietf-conex-abstract-mech]) or DCTCP [I-D.bensley-tcpm-dctcp]
 need more accurate ECN feedback information whenever more than one

https://datatracker.ietf.org/doc/html/rfc3168

Briscoe, et al. Expires January 3, 2015 [Page 3]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 marking is received in one RTT. A fuller treatment of the motivation
 for this specification is given in [I-D.ietf-tcpm-accecn-reqs].

 This documents specifies an experimental scheme for ECN feedback in
 the TCP header to provide more than one feedback signal per RTT. It
 will be called the more accurate ECN feedback scheme, or AccECN for
 short. If AccECN progresses from experimental to the standards
 track, it is intended to be a complete replacement for classic ECN
 feedback, not a fork in the design of TCP. Thus, the applicability
 of AccECN is intended to include all public and private IP networks
 (and even any non-IP networks over which TCP is used today). Until
 the AccECN experiment succeeds, [RFC3168] will remain as the
 standards track specification for adding ECN to TCP. To avoid
 confusion we call the ECN specification of [RFC3168] 'classic ECN' in
 this document.

 AccECN is solely an (experimental) change to the TCP wire protocol.
 It is completely independent of how TCP might respond to congestion
 feedback. This specification overloads flags and fields in the main
 TCP header with new definitions, so both ends have to support the new
 wire protocol before it can be used. Therefore during the TCP
 handshake the two ends use the three ECN-related flags in the TCP
 header to negotiate the most advanced feedback protocol that they can
 both support.

1.1. Document Roadmap

 The following introductory sections outline the goals of AccECN
 (Section 1.2) and the goal of experiments with ECN (Section 1.3) so
 that it is clear what success would look like. Then terminology is
 defined (Section 1.4) and a recap of existing prerequisite technology
 is given (Section 1.5).

Section 2 gives an informative overview of the AccECN protocol. Then
Section 3 gives the normative protocol specification. Section 4

 assesses the interaction of AccECN with commonly used variants of
 TCP, whether standardised or not. Section 5 summarises the features
 and properties of AccECN.

Section 6 summarises the protocol fields and numbers that IANA will
 need to assign and Section 7 points to the aspects of the protocol
 that will be of interest to the security community, as well as
 discussing additional security-related issues.

 The following aspects are relegated to appendices:

 o Appendix A: Pseudocode examples for the various algorithms that
 AccECN uses;

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

Briscoe, et al. Expires January 3, 2015 [Page 4]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 o Then three appendices for use during document development that
 will be deleted before publication {ToDo: Delete this list before
 publication}:

 * Appendix B: Protocol design alternatives that could be
 considered for inclusion in the main specification;

 * Appendix C: a 'To Do' list of open protocol design issues;

 * Appendix D: Document change log.

1.2. Goals

 [I-D.ietf-tcpm-accecn-reqs] enumerates requirements that a candidate
 feedback scheme will need to satisfy, under the headings: resilience,
 timeliness, integrity, accuracy (including ordering and lack of
 bias), complexity, overhead and compatibility (both backward and
 forward). It recognises that a perfect scheme that fully satisfies
 all the requirements is unlikely and trade-offs between requirements
 are likely. Section 5 presents the properties of AccECN against
 these requirements and discusses the trade-offs made.

 The requirements document recognises that a protocol as ubiquitous as
 TCP needs to be able to serve as-yet-unspecified requirements.
 Therefore an AccECN receiver aims to act as a generic reflector of
 congestion information so that in future new sender behaviours can be
 deployed unilaterally.

1.3. Experiment Goals

 TCP is critical to the robust functioning of the Internet, therefore
 any proposed modifications to TCP need to be thoroughly tested. The
 present specification describes an experimental protocol that adds
 more accurate ECN feedback to the TCP protocol. The intention is to
 specify the protocol sufficiently so that more than one
 implementation can be built in order to test its function, robustness
 and interoperability (with itself and with previous version of ECN
 and TCP).

 Success criteria: The experimental protocol will be considered
 successful if it satisfies the requirements of
 [I-D.ietf-tcpm-accecn-reqs] in the consensus opinion of the IETF
 tcpm working group. In short, this requires that it improves the
 accuracy and timeliness of TCP's ECN feedback, as claimed in

Section 5, while striking a balance between the conflicting
 requirements of resilience, integrity and minimisation of
 overhead. It also requires that it is not unduly complex, and

Briscoe, et al. Expires January 3, 2015 [Page 5]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 that it is compatible with prevalent equipment behaviours in the
 current Internet, whether or not they comply with standards.

 Duration: To be credible, the experiment will need to last at least
 12 months from publication of the present specification. At that
 time, a report on the experiment will be written up. If
 successful, it would then be appropriate to work on a standards
 track specification that adds more accurate ECN feedback to TCP.

1.4. Terminology

 AccECN: The more accurate ECN feedback scheme will be called AccECN
 for short.

 Classic ECN: the ECN scheme as specified in [RFC3168].

 ACK: A TCP acknowledgement, with or without a data payload.

 Pure ACK: A TCP acknowledgement without a data payload.

 SupAccECN: The Supplementary Accurate ECN field that provides
 additional resilience as well as information about the ordering of
 ECN markings covered by a delayed ACK.

 Data receiver: The endpoint of a TCP half-connection that receives
 data and sends AccECN feedback.

 Data sender: The endpoint of a TCP half-connection that sends data
 and receives AccECN feedback.

 Outgoing AccECN Protocol Handler (or, Outgoing Protocol Handler):
 The protocol handler at the Data Receiver that marshals the AccECN
 fields when sending an ACK.

 Incoming AccECN Protocol Handler (or, Incoming Protocol Handler):
 The protocol handler at the Data Sender that reads the AccECN
 fields when receiving an ACK.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.5. Recap of Existing ECN feedback in IP/TCP

 ECN [RFC3168] requires two bits in the IP header. Prior to the
 specification of ECN, these two bits were always zero, which is
 called Not-ECT. An ECN sender can set two possible codepoints
 (ECT(0) or ECT(1)) to indicate an ECN-capable transport (ECT). It is

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3168

Briscoe, et al. Expires January 3, 2015 [Page 6]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 prohibited from doing so unless it has checked that the receiver will
 understand ECN and be able to feed it back. A network node can set
 both bits simultaneously when it experiences congestion, which is
 termed 'Congestion Experienced' (CE), or loosely a 'congestion mark'.
 Table 1 summarises these codepoints.

 +---------------+-----------+-----------+---------------------------+
IP-ECN	Codepoint	Abbrev-	Description
codepoint	name	iation	
(binary)			
+---------------+-----------+-----------+---------------------------+			
00	Not-ECT	N	Not ECN-Capable Transport
01	ECT(1)	1	ECN-Capable Transport (1)
10	ECT(0)	0	ECN-Capable Transport (0)
11	CE	C	Congestion Experienced
 +---------------+-----------+-----------+---------------------------+

 Table 1: The ECN Field in the IP Header

 In the TCP header the first two bits in byte 14 are defined as flags
 for the use of ECN (CWR and ECE in Figure 1). On reception of a CE-
 marked packet at the IP layer, the Data Receiver starts to set the
 Echo Congestion Experienced (ECE) flag continuously in the TCP header
 of ACKs, which ensures the signal is received reliably even if ACKs
 are lost. The TCP sender confirms that it has received at least one
 ECE signal by responding with the congestion window reduced (CWR)
 flag, which allows the TCP receiver to stop repeating the ECN-Echo
 flag. This always leads to a full RTT of ACKs with ECE set. Thus
 any additional CE markings arriving within this RTT cannot be fed
 back.

 The ECN Nonce [RFC3540] is an optional experimental addition to ECN
 that the TCP sender can use to protect against accidental or
 malicious concealment of marked or dropped packets. The sender can
 send an ECN nonce, which is a continuous pseudo-random pattern of
 ECT(0) and ECT(1) codepoints in the ECN field. The receiver is
 required to feed back a 1-bit nonce sum that counts the occurrence of
 ECT(1) packets using the last bit of byte 13 in the TCP header, which
 is defined as the Nonce Sum (NS) flag.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | | | N | C | E | U | A | P | R | S | F |
 | Header Length | Reserved | S | W | C | R | C | S | S | Y | I |
 | | | | R | E | G | K | H | T | N | N |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 Figure 1: The (post-ECN Nonce) definition of the TCP header flags

https://datatracker.ietf.org/doc/html/rfc3540

Briscoe, et al. Expires January 3, 2015 [Page 7]

Internet-Draft Accurate TCP-ECN Feedback July 2014

2. AccECN Protocol Overview

 This section provides an informative overview of the AccECN protocol
 that will be normatively specified in Section 3.

2.1. Essential and Supplementary Parts

 Given limitations on the space available for TCP options and given
 the possibility that certain incorrectly designed middleboxes prevent
 TCP using any new options, the AccECN protocol has had to be designed
 in two parts:

 o an essential part that provides more accurate ECN feedback than
 classic ECN with limited resilience against ACK loss;

 o a supplementary part that serves three functions:

 * it greatly improves the resilience of AccECN feedback
 information against loss of ACKs;

 * it provides information about the order in which ECN markings
 in the IP header arrived at the Data Receiver;

 * it improves the timeliness of AccECN feedback when a delayed
 ACK covers multiple congestion signals.

 The essential part overloads the previous definition of the three
 flags in the TCP header that had been assigned for use by ECN. This
 design choice deliberately replaces the classic ECN feedback
 protocol, rather than leaving classic ECN intact and adding more
 accurate feedback separately:

 o because this efficiently reuses scarce TCP header space, given TCP
 option space is approaching saturation;

 o because a single upgrade path for the TCP protocol is preferable
 to a fork in the design;

 o because otherwise classic and accurate ECN feedback could give
 conflicting feedback on the same segment, which could open up new
 security concerns and make implementations unnecessarily complex;

 o because middleboxes are more likely to faithfully forward the TCP
 ECN flags than newly defined areas of the TCP header.

 AccECN is designed to work even if the supplementary part is removed
 or zeroed out, as long as the essential part gets through. The

Briscoe, et al. Expires January 3, 2015 [Page 8]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 supplementary part is carried in a field called Supplementary
 Accurate ECN (SupAccECN).

 It is eventually intended that the SupAccECN field would be placed
 within the main TCP header, by overloading the Urgent Pointer in any
 segment with URG = 0. However, it would be presumptuous to reassign
 bits in the main TCP header on an experimental basis. Therefore,
 this specification reserves sufficient bits within the Urgent Pointer
 (when URG = 0) for use by AccECN if it reaches the standards track.
 For the present AccECN experiments, this specification defines an
 experimental TCP option to carry SupAccECN instead.

 When URG = 0, the Urgent Pointer field cannot be used as an Urgent
 Pointer. Therefore, this specification gives it a new name when URG
 = 0, defining it as the Non-Urgent field. This specification also
 establishes an IANA registry for future standards actions to assign
 values in this newly defined Non-Urgent field.

 In order to ease a future transition from experiment to standards
 track, the Incoming Protocol Handler of all AccECN implementations is
 required to be able to read the SupAccECN field whether it arrives in
 a TCP Option or within the Non-Urgent field. However, for the
 present experimental specification, an AccECN implementation is
 forbidden from writing into the Non-Urgent field.

 Reserving the Non-Urgent field for future use by AccECN is justified,
 because the Non-Urgent field cannot always be guaranteed to be
 available. AccECN is unusual in that it is designed to work
 reasonably well even if the supplementary part is sometimes missing.
 Therefore, on the rare segments when the Urgent Pointer is needed for
 its original purpose, URG=1 can still be set and AccECN will still
 work. However, a future standards action can overload part of the
 Non-Urgent field for use by AccECN, whenever URG=0.

2.2. Capability Negotiation

 AccECN is a change to the wire protocol of the main TCP header,
 therefore it can only be used if both endpoints have been upgraded to
 understand it. The client signals support for AccECN on the initial
 SYN of a connection and the server signals whether it supports AccECN
 on the SYN/ACK. The TCP flags on the SYN that the client uses to
 signal AccECN support have been carefully chosen so that a server
 will interpret them as a request to support the most advanced variant
 of ECN that it supports. Then the client falls back to the same ECN
 variant.

 The above negotiation uses the three ECN-related flags in the TCP
 header and determines if both ends support the essential part of

Briscoe, et al. Expires January 3, 2015 [Page 9]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 AccECN. On segments after the SYN/ACK, the SupAccECN field is used
 to determine whether the supplementary part of AccECN is usable over
 each half-connection. No supplementary part is needed on the initial
 SYN. A proposal to include a supplementary AccECN field on the SYN/
 ACK is included in Appendix B.1.

2.3. Two Complementary Feedback Methods

 Each AccECN half-connection uses two complementary methods to feed
 back ECN markings:

 Cumulative Counters: A Data Receiver maintains three counters for
 the number of CE, ECT(1) and Not-ECT codepoints received since the
 start of the half-connection. In each ACK it places one of these
 counters, reduced in size by a suitable modulo operation. The
 Data Sender reads each counter in order to update its own three
 respective counters, which it uses to track the three counters at
 the Data Receiver. Of course, each endpoint takes the role of
 both Data Receiver and Data Sender, so each will maintain three
 counters as a receiver and three as a sender. AccECN does not
 provide an explicit count of ECT(0) marks, but this can be
 inferred from the other feedback;

 Sequence List: A list of the codepoints in the IP-ECN field of all
 the segments covered by a delayed ACK, in the order that they
 arrived at the Data Receiver. This list also provides timely
 feedback of any congestion information other than the one covered
 by the single counter selected.

 TCP's traditional feedback is byte-based, whereas AccECN feedback is
 packet-based, which was a pragmatic choice to reduce feedback
 overhead, given each packet carries only one ECN mark. AccECN aims
 to act as a sufficiently generic feedback reflector that can be
 applied for different uses by different TCP sender behaviours, both
 existing and in the future.

 If a particular sender behaviour needed to associate AccECN's
 feedback of each ECN marking with the size of the original packet
 that picked up the marking, there is enough information in AccECN
 feedback to do so, although perhaps imperfectly. Similarly, if a
 sender behaviour needed to associate the feedback of each ECN marking
 with the timing of each packet it originally sent, that too ought to
 be possible. Of course, the order of arrival at the receiver is not
 necessarily the order in which packets were sent, and the order in
 which ACKs return might be different again. So, to apply AccECN to
 these more challenging tasks, the Data Sender would probably have to
 record the sizes and/or timings of packets in flight and combine

Briscoe, et al. Expires January 3, 2015 [Page 10]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 AccECN feedback with the cumulative acknowledgement numbers on each
 ACK as well as selective ACK (SACK) information [RFC2018].

 Whether such calculations are required or not is outside the scope of
 the present AccECN specification. The role of AccECN is merely to
 ensure it would be possible for a Data Sender to reconstruct which
 segment carried which marking, not to mandate whether it should. As
 long as AccECN reflects sufficient feedback information without
 excessive overhead, it fulfils its role. One reason for the
 experimental status of the present specification is to establish
 whether the trade-off between accuracy and overhead has been pitched
 at the right level.

2.4. Resilience Against ACK Loss

 Because the counter method repeats one of the accumulating counters
 on each ACK, if ACKs are lost, a counter in a subsequent ACK will
 still recover the lost information in a fairly timely fashion.

 There is very little space in the 3 bits available for the essential
 part of an AccECN acknowledgement, so each of the three counters can
 wrap fairly frequently. Therefore, even if the counter appears to
 have incremented by one (say), the counter might have actually
 wrapped completely then incremented by one. This is a possibility
 because the whole sequence of ACKs carrying the intervening values of
 the counter might all have been lost or delayed. To be able to tell
 if a counter has wrapped, AccECN feeds back more significant bits of
 the counter within the supplementary part, making it resilient to ACK
 loss.

 The supplementary part includes the sequence of ECN codepoints
 covered by a delayed ACK (see below). As well as providing ordering
 information, this provides more timely feedback when more than one
 counter has changed within the time covered by one delayed ACK. It
 also provides resilience against the loss of a counter in a future
 ACK.

2.5. Order of Arrival of IP-ECN Markings

 [RFC5681] recommends using delayed ACKs, so one acknowledgement will
 often carry feedback about the ECN markings on more than one segment.
 Therefore, ideally, AccECN is required to provide ordering
 information [I-D.ietf-tcpm-accecn-reqs]. However, a counter in each
 ACK only says how many more IP-ECN markings arrived since the last
 ACK, not the order in which they arrived.

 This might seem an unnecessary level of precision given [RFC5681]
 currently advises against delaying acknowledgement for more than two

https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc5681

Briscoe, et al. Expires January 3, 2015 [Page 11]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 full-sized segments. However, a delayed ACK could cover multiple
 segments that are smaller than full-size. Also, in practice one
 delayed ACK can cover many tens of packets that have all been
 coalesced into one large segment by large receive offload (LRO)
 hardware before being passed to the Data Receiver. Therefore, the
 design of AccECN allows for future expansion of the number of
 segments that can be covered by one delayed ACK.

 Once the connection is in progress, in each ACK the Data Receiver
 encodes the sequence of IP-ECN markings covered by that ACK, which
 includes the number of segments covered by the delayed ACK. The
 sequence does not need to include the last segment to arrive, because
 there is already sufficient information in the essential part of the
 feedback to infer that marking (by subtracting the markings in the
 list from the increment of the cumulative counter).

 AccECN uses a fixed size (10b) field for the sequence encoding. This
 can communicate a sequence of up to 14 codepoints, not including the
 last segment. The encoding is optimised for a selection of simple
 but common patterns. If the pattern of arriving codepoints becomes
 too complex to encode in 10b, the Data Receiver has to emit an ACK
 and start a new sequence for the next ACK. The scheme can always
 encode all the theoretically possible combinations of arriving
 codepoints in a delayed ACK covering 3 segments or less.

3. AccECN Protocol Specification

3.1. Negotiation during the TCP handshake

 During the TCP handshake at the start of a connection, to request
 more accurate ECN feedback the originator of the connection (host A)
 MUST set the TCP flags NS=1, CWR=1 and ECE=1 in the initial SYN
 segment.

 If a responding host (B) that implements AccECN receives a SYN with
 the above three flags set, it MUST set both its half connections into
 AccECN mode. Then it MUST set the flags NS=0, CWR=1 and ECE=0 on its
 response in the SYN/ACK segment to confirm that it supports AccECN.
 The responding host MUST NOT set this combination of flags unless the
 preceding SYN requested support for AccECN as above.

 Once an originating host (A) has sent the above SYN to declare that
 it supports AccECN, and once it has received the above SYN/ACK
 segment that confirms that the responding host supports AccECN, the
 originating host MUST set both its half connections into AccECN mode.

 The three flags set to 1 to indicate AccECN support on the SYN have
 been carefully chosen to enable natural fall-back to prior stages in

Briscoe, et al. Expires January 3, 2015 [Page 12]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 the evolution of ECN. Table 2 tabulates all the negotiation
 possibilities for ECN-related capabilities that involve at least one
 AccECN-capable host. To compress the width of the table, the
 headings of the first four columns have been severely abbreviated, as
 follows:

 Ac: More *Ac*curate ECN Feedback

 N: ECN-*N*once [RFC3540]

 E: *E*CN [RFC3168]

 I: Not-ECN (*I*mplicit congestion notification using packet drop).

 +----+---+---+---+------------+--------------+------------------+
 | Ac | N | E | I | SYN A->B | SYN/ACK B->A | Mode |
 +----+---+---+---+------------+--------------+------------------+
 | | | | | NS CWR ECE | NS CWR ECE | |
 | AB | | | | 1 1 1 | 0 1 0 | AccECN |
 | | | | | | | |
 | A | B | | | 1 1 1 | 1 0 1 | classic ECN |
 | A | | B | | 1 1 1 | 0 0 1 | classic ECN |
 | A | | | B | 1 1 1 | 0 0 0 | Not ECN |
 | A | | | B | 1 1 1 | 1 1 1 | Not ECN (broken) |
 | | | | | | | |
 | B | A | | | 0 1 1 | 0 0 1 | classic ECN |
 | B | | A | | 0 1 1 | 0 0 1 | classic ECN |
 | B | | | A | 0 0 0 | 0 0 0 | Not ECN |
 | | | | | | | |
 | A | | | | 1 1 1 | 0 1 1 | AccECN (Rsvd) |
 | A | | | | 1 1 1 | 1 0 0 | AccECN (Rsvd) |
 | A | | | | 1 1 1 | 1 1 0 | AccECN (Rsvd) |
 +----+---+---+---+------------+--------------+------------------+

 Table 2: ECN capability negotiation between Originator (A) and
 Responder (B)

 Table 2 is divided into blocks each separated by an empty row.

 1. The top block shows the case already described where both
 endpoints support AccECN.

 2. The second block shows the cases where the originating host (A)
 supports AccECN but the responding host (B) supports some earlier
 variant of TCP, indicated in its SYN/ACK. Therefore, as soon as
 an originating AccECN-capable host (A) receives the SYN/ACK shown
 it MUST set both its half connections into the mode shown in the
 rightmost column.

https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc3168

Briscoe, et al. Expires January 3, 2015 [Page 13]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 3. The third block shows the cases where the responding host (B)
 supports AccECN but the originating host (A) supports some
 earlier variant of TCP, indicated in its SYN. Therefore, as soon
 as responding AccECN-capable host (B) receives the SYN shown it
 MUST set both its half connections into the mode shown in the
 rightmost column.

 4. Forward Compatibility: The fourth block enumerates the remaining
 combinations of AccECN-related flags that are Reserved for future
 use by AccECN ('Rsvd').

 * If an originating AccECN host (A) sends NS=1, CWR=1 and ECE=1
 in the initial SYN segment and if it receives any of these
 Reserved values in a SYN/ACK response, it MUST set both its
 half connections into AccECN mode.

 {ToDo: Can we think of anything now that an AccECN server
 could use any of these Reserved combinations of flags for, to
 signal something extra for the whole connection? If not,
 rather than Reserved, we need to decide whether to make these
 combinations Rsvd and therefore not switch to AccECN mode.}

 * To comply with the present AccECN protocol, middleboxes MUST
 forward these Rsvd combinations of flags unaltered (see also

Section 3.7).

 The table is self-explanatory in most respects, but the following
 exceptional cases need some explanation.

 Not ECN (broken): [RFC3168] points out that broken TCP server
 implementations exist that reflect the 'reserved' flags [RFC0793]
 back to the originator. If the SYN/ACK reflects the same flag
 settings as the preceding SYN, an AccECN client implementation
 MUST revert to Not-ECT.

 ECN Nonce: An AccECN implementation, whether client or server,
 sender or receiver, does not need to implement the ECN Nonce
 behaviour [RFC3540]. AccECN is compatible with a sender-only ECN
 feedback integrity approach that does not use up the ECT(1)
 codepoint (see Section 3.3.5).

 Simultaneous Open: An originating AccECN Host (A), having sent a SYN
 with NS=1, CWR=1 and ECE=1, might receive another SYN from host B.
 Host A MUST then enter the same mode as it would have entered had
 it been a responding host and received the same SYN. Then host A
 MUST send the same SYN/ACK as it would have sent had it been a
 responding host (see the third block above).

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc3540

Briscoe, et al. Expires January 3, 2015 [Page 14]

Internet-Draft Accurate TCP-ECN Feedback July 2014

3.2. Essential AccECN Feedback

 This section specifies the essential part of AccECN feedback,
 including its placement and the encoding of the counters.

3.2.1. The ACE Field

 Once AccECN has been negotiated for a connection, it overloads the
 three TCP flags ECE, CWR and NS in the main TCP header as one 3-bit
 field to encode 8 distinct codepoints. Then the field is given a new
 name, ACE, as shown in Figure 2. The original definition of these
 three flags in the TCP header, including the addition of support for
 the ECN Nonce, is shown for comparison in Figure 1. This
 specification does not rename these three TCP flags, it merely
 overloads them with another name and definition once an AccECN
 connection has been established.

 A host MUST interpret the ECE, CWR and NS flags as the 3-bit ACE
 counter on a segment with SYN=0 that it sends or receives after it
 has set both its half-connections into AccECN mode having
 successfully negotiated AccECN (see Section 3.1). A host MUST NOT
 interpret the 3 flags as a 3-bit ACE field on any segment with SYN=1
 (whether ACK is 0 or 1), or if AccECN negotiation is incomplete or
 has not succeeded.

 Both parts of each of these conditions are equally important. For
 instance, even if AccECN negotiation has been successful, the ACE
 field is not defined on any segments with SYN=1 (e.g. a
 retransmission of an unacknowledged SYN/ACK, or when both ends send
 SYN/ACKs after AccECN support has been successfully negotiated during
 a simultaneous open).

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | | | | U | A | P | R | S | F |
 | Header Length | Reserved | ACE | R | C | S | S | Y | I |
 | | | | G | K | H | T | N | N |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 Figure 2: Definition of the ACE field within bytes 13 and 14 of the
 TCP Header (when AccECN has been negotiated and SYN=0).

 The Data Receiver maintains three counters, r.ci, r.e1 and r.ni, to
 count the number of packets it receives with respectively the CE,
 ECT(1) and Not-ECT codepoint in the IP-ECN field. When a Data
 Receiver first enters AccECN mode, it MUST initialise its counters to
 zero. The Outgoing Protocol Handler at the Data Receiver uses the
 ACE field to encode one of these counters at a time into each ACK.

Briscoe, et al. Expires January 3, 2015 [Page 15]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 How it determines which counter to signal on any particular ACK is
 specified later (Section 3.2.3).

 The 8 possible codepoints of the ACE field are shown in Table 3. A
 Data Receiver uses four of them to encode a 'Congestion Indication'
 (CI) counter for CE markings and three to encode E1 for ECT(1)
 markings. It uses the eighth codepoint to feed back the arrival of
 Not-ECT in the IP-ECN field using a codepoint termed NI (Not-ECT
 Indication). We will now use an example to explain how ACE is
 encoded by the Outgoing Protocol Handler and decoded by the Incoming
 Protocol Handler.

 +-----------+----------------+------------------+-------------------+
 | ACE (base | CI (base 4) | E1 (base 3) for | NI (base 1) for |
 | 2) | for CE | ECT(1) | Not-ECT |
 +-----------+----------------+------------------+-------------------+
000	0	-	-
001	1	-	-
010	2	-	-
011	3	-	-
100	-	0	-
101	-	1	-
110	-	2	-
111	-	-	0
 +-----------+----------------+------------------+-------------------+

 Table 3: Codepoint assignments in the ACE field for feedback of
 congestion counters

 Encode: Imagine that the E1 counter is the next to be signalled and
 r.e1 = 17. Then, because the E1 counter is base 3, the Data Receiver
 calculates

 E1 = 17 % 3
 = 2

 So it looks up E1=2 in Table 3 to get the codepoint to set in ACE,
 which is 0b110.

 Decode: The Data Sender maintains three counters, s.ci, s.e1 and s.ni
 and it uses the incoming codepoints in ACE to ensure these track the
 equivalent counters at the receiver. Imagine the s.e1 counter at the
 Data Sender has currently reached 16 when the 0b110 codepoint arrives
 via the ACE field. The Data Sender looks up 0b110 in Table 3 to get
 E1 = 2. It finds the difference between s.e1 and E1 using modulo 3
 arithmetic, then adds the difference to s.e1, as follows:

Briscoe, et al. Expires January 3, 2015 [Page 16]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 delta_s.e1 = (E1 + 3 - s.e1 % 3) % 3
 = (2 + 3 - 16 % 3) % 3
 = 1
 => s.e1 = s.e1 + delta_s.e1
 = 16 + 1
 = 17

3.2.2. Safety against Ambiguity of the ACE Field

 Clearly, the CI, E1 and NI counters will frequently wrap given the
 size of the space available to encode them is so small. If a number
 of ACKs in a row are lost, the Data Sender might not be able to tell
 whether one of these counters has wrapped or not.

 The supplementary part of AccECN provides more space to signal higher
 bits of these counters, which gives resilience against ACK loss
 (Section 3.3.3). However, the supplementary part of the AccECN
 protocol might be unavailable (perhaps due to middlebox
 interference).

 Therefore, if the Data Sender detects that these fields could have
 wrapped, it SHOULD behave conservatively. That is, if the AccECN
 sender detects that the supplementary part of the AccECN protocol is
 unavailable, and it detects a jump in the acknowledgement number that
 implies that so many ACKs are missing that a counter could have
 wrapped under the prevailing conditions, it SHOULD decode the counter
 assuming that the counter did wrap. If missing acknowledgement
 numbers arrive later (reordering) and prove that the counter did not
 wrap, the Data Sender MAY attempt to neutralise the effect of any
 action it took based on a conservative assumption that it later found
 to be incorrect.

 An example algorithm to implement this policy is given in
Appendix A.1. An implementer MAY develop an alternative algorithm as

 long as it satisfies these requirements.

3.2.3. ACE Counter Selection

 If the Data Receiver implements ACK-withholding as recommended in
 [RFC5681], more than one counter could have incremented before
 sending each ACK. It follows the steps below to determine which
 counter to encode in the ACE field:

 1. If the last IP-ECN field that arrived was CE, ECT(1) or Not-ECT,
 the Data Receiver MUST encode the associated counter in the ACE
 field, i.e. respectively CI, E1 or Not-ECT;

https://datatracker.ietf.org/doc/html/rfc5681

Briscoe, et al. Expires January 3, 2015 [Page 17]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 2. If the last IP-ECN field that arrived was ECT(0), the Data
 Receiver can signal either the CI or the E1 counter:

 * The choice of which to signal SHOULD be based on the principle
 that the more one counter has changed recently the more it
 SHOULD be signalled;

 * If there is a tie between CI and E1, CI MUST take precedence.

Appendix A.2 suggests two possible algorithms that could be used to
 determine which counter to encode in ACE. An implementer MAY develop
 an alternative algorithm as long as it meets the requirements in the
 three steps above.

 If an AccECN Data Sender has to retransmit a packet due to a
 suspected loss, in its role as a Data Receiver it will piggy-back
 AccECN feedback on the retransmitted packet. On a retransmitted
 packet, a Data Receiver MUST select which counter to send using the
 rules in the above three steps and encode the latest prevailing value
 of the selected counter, which will not necessarily be the same
 counter that the packet carried originally, nor the original value of
 that counter.

 There is no standards track end-to-end definition of the ECT(1)
 codepoint of the IP-ECN field. Nonetheless, to comply with this
 specification, an AccECN Data Receiver MUST implement and reflect the
 ECT(1) counter as specified here. Then, a standards track definition
 of the ECT(1) codepoint can be defined in future and be deployed
 unilaterally in Data Senders, without having to wait for associated
 receivers to be deployed. The above rules ensure that a Data
 Receiver will only feed back the ECT(1) counter if some packets
 marked with ECT(1) are arriving.

 At the Data Sender, the Incoming AccECN Protocol Handler MUST be able
 to receive feedback of E1 codepoints, but the Data Sender MAY discard
 them (it might not have any logic to understand what to do with
 them). However, if an Incoming AccECN Protocol Handler is running
 back-to-back with an Outgoing AccECN Protocol handler (e.g. to
 implement a split TCP connection), it MUST forward the values of all
 AccECN counters including E1, and not discard any.

 {ToDo: Refer if necessary to Section 3.4).

3.3. The Supplementary AccECN Field (SupAccECN)

 This section defines the size, placement and internal structure of
 the Supplementary AccECN field (SupAccECN), as well as the semantics
 of the sub-fields within it. The internal structure of the SupAccECN

Briscoe, et al. Expires January 3, 2015 [Page 18]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 field is agnostic to where it is placed in the TCP header, so that it
 can be moved during planned evolution of the protocol. The protocol
 overview in Section 2 explains that the field is placed in a TCP
 option for initial experiments, but if it progresses to the standards
 track, it is planned to place it in the main TCP header, using some
 of the bits in the Urgent Pointer (when URG=0).

3.3.1. Placement of the SupAccECN Field

 The Outgoing AccECN Protocol Handler at a Data Receiver MUST place
 the SupAccECN field in a SupAccECN TCP option (Section 3.3.1.1).

 Forward compatibility: If the SupAccECN TCP option (Section 3.3.1.1)
 is absent, the Incoming AccECN Protocol Handler at a Data Sender MUST
 attempt to read the SupAccECN field from within the Non-Urgent field
 (Section 3.3.1.2).

3.3.1.1. The SupAccECN TCP Option

 The Data Receiver MUST set the Kind field to 0x<KK> (TBA), which is
 registered in Section 6.1 as a new TCP option Kind called SupAccECN.
 An experimental TCP option with Kind=254 MAY be used for initial
 experiments, with magic number 0xACCE.

 The Data Receiver MUST set the Length field to 4 [octets] on any
 segment with SYN=0. For initial experiments, the Length field MUST
 be 2 greater to accommodate the 16-bit magic number. In either case,
 the Data Receiver MUST pad the most significant bit with zeros up to
 a whole number of octets, as illustrated in Figure 3. This padding
 bit is currently unused (CU).

 Forward compatibility: To comply with the present AccECN
 specification:

 o the Incoming AccECN Protocol Handler at the Data Sender MUST
 ignore the padding bit, whether it is set to zero or not;

 o if the Length field of the TCP option is greater than that
 expected from the paragraph above, a Data Sender MUST take the
 SupAccECN field to be aligned with the right hand end (least
 significant bit) of the TCP Option as calculated using the Length
 field;

 o if the Length value is less than that expected from the paragraph
 above, the Incoming AccECN Protocol Handler at the Data Sender
 MUST discard the segment;

Briscoe, et al. Expires January 3, 2015 [Page 19]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 o a middlebox MUST forward the padding bit unaltered, whether it is
 set to zero or not;

 o if the Length value is different to that expected from the
 paragraph above (whether larger or smaller), a middlebox MUST
 still forward the TCP option unaltered.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+ a)
 | Kind = 0xKK | Length = 4 |0| SupAccECN |
 +-+

 +-+
 | Kind = 254 | Length = 6 | magic number = 0xACCE | b)
 +-+
 |0| SupAccECN |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 a) Using the permanently assigned TCP option Kind 0x<KK> (TBA); b)
 Using a Shared TCP Option Kind for Initial Experiments

 Figure 3: Placement of the SupAccECN field within the SupAccECN TCP
 Option on a Segment with SYN=0

3.3.1.2. The Non-Urgent Field

 If the Urgent (URG) flag in the TCP header [RFC0793] is zero, this
 specification experimentally renames the Urgent Pointer (bytes 19 and
 20 counting from 1 of the TCP header) as the Non-Urgent field. If
 URG = 1, this 16 bit field keeps its original name and definition
 from [RFC0793] as the Urgent Pointer. Bytes 13 to 20 of the TCP
 header when URG=0 are illustrated in Figure 4, which shows the new
 experimental definition of the Non-Urgent Field.

 Note that the new experimental definition of the Non-Urgent field is
 intended for wider use than just AccECN, which is why it solely
 depends on the URG flag and it is independent of whether AccECN has
 been negotiated or not.

Section 6.2 establishes a new registry to assign values within this
 Non-Urgent field. Section 6.2 also reserves space for a future
 standards track AccECN specification within this field.

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0793

Briscoe, et al. Expires January 3, 2015 [Page 20]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 ...
 +-+
 | Data |Res- |N|C|E|U|A|P|R|S|F| |
 | Offset|erved|S|W|C|R|C|S|S|Y|I| Window |
 | | | |R|E|G|K|H|T|N|N| |
 | | | | | |=| | | | | | |
 | | | | | |0| | | | | | |
 +-+
 | Checksum | Non-Urgent |
 +-+
 ...

 Figure 4: Experimental Renaming of the TCP Urgent Pointer (bytes 19 &
 20) as the Non-Urgent field when URG=0

 As required in Section 3.3.1, the Outgoing Protocol Handler of the
 present AccECN specification never writes into the Non-Urgent field.
 Nonetheless, the Incoming AccECN Protocol Handler can read the
 SupAccECN field from within the Non-Urgent field.

 When reading the Non-Urgent field, AccECN implementations MUST take
 the SupAccECN field to be right-justified (i.e. the least significant
 bit of SupAccECN is aligned with the least significant bit of the
 Non-Urgent Field) as shown in Figure 5. The remaining most
 significant bit is currently unused (CU).

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | X | SupAccECN |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 Figure 5: Placement of the SupAccECN field within the Non-Urgent
 field of a segment with SYN=0

 Forward compatibility: To comply with the present AccECN
 specification:

 o the Incoming Protocol Handler of an AccECN Data Sender MUST ignore
 the remaining most significant bit in the Non-Urgent field (shown
 as X in Figure 5 meaning "Don't care");

 o middleboxes MUST forward the most significant bit unaltered,
 whether it is set to zero or not.

Briscoe, et al. Expires January 3, 2015 [Page 21]

Internet-Draft Accurate TCP-ECN Feedback July 2014

3.3.2. Structure of the SupAccECN Field

 This section defines the structure of the Supplementary AccECN field
 (SupAccECN) for SYN/ACKs and for subsequent segments within each
 half-connection. There is no SupAccECN field in the initial SYN
 segment.

 The size of the SupAccECN field on a segment with SYN = 0 is always
 15 bits. Figure 6 shows the internal structure of the SupAccECN
 field on any segment with SYN = 0 including the ACK that ends the
 3-way handshake.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 |DAC| ESQ | Top-ACE |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 Figure 6: The Supplementary AccECN Field on a Segment with SYN = 0

 The sub-fields of SupAccECN on a segment with SYN = 0 have the
 following meanings:

 Top-ACE: Higher significant bits of the counter in ACE within the
 same segment (defined in Section 3.3.3).

 ESQ: The ECN Sequence field (defined in Section 3.3.4).

 DAC: Reserved for Delayed ACK Control (see Appendix B.4).

 Forward Compatibility: In the meantime, the Outgoing AccECN
 Protocol Handler MUST set DAC to zero (0); the Incoming AccECN
 Protocol Handler MUST ignore this flag; and middleboxes MUST
 forward this flag unaltered whether or not it is zero.

3.3.3. Higher Resilience Congestion Counters (Top-ACE)

 Four codepoints are set aside for the CI counter in the ACE field to
 provide reasonable resilience under expected marking and loss
 regimes. However, resilience against more extreme levels of CE
 marking, return ACK loss or ACK thinning really requires more space
 than the 3 bits taken from existing TCP flags for the ACE counter.
 At the same time, is it not necessary to deliver higher order bits
 with every returned segment, or even reliably at all.

 Therefore on segments with SYN=0, the least significant four bits of
 the Supplementary AccECN field are defined as the 'Top ACE' field, as
 illustrated in Figure 6. Whenever an AccECN implementation encodes a
 counter in ACE, it MUST also encode the higher precision bits of the

Briscoe, et al. Expires January 3, 2015 [Page 22]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 same counter in the Top-ACE field of the same segment, using the
 following rules:

 o Top-ACE MUST be initialised to 0 at the start of each half-
 connection.

 o Whenever the CI counter (base 4) in ACE wraps, the associated Top-
 ACE MUST increment by 1.

 o Similarly, whenever the E1 counter (base 3) in ACE wraps, Top-ACE
 MUST increment by 1.

 o The NI counter in ACE is base 1, so it can hardly be called a
 counter. The presence of the NI counter in ACE MUST be
 interpreted as an indication that the associated Top-ACE field in
 the same segment has incremented, because Top-ACE on its own
 represents the NI counter.

 Formulae for encoding and decoding the counters CI, E1 or NI into the
 Top-ACE and ACE fields are given in Appendix A.3, which also includes
 numerical examples.

 The 4 bits in the Top-ACE field multiply the number of distinct
 codepoints for each counter by 2^4 = 16. Using Top-ACE therefore
 increases the numbers of distinct codepoints for each counter as
 follows:

 +---------------------+-----------------+---------------------------+
 | Counter | codepoints in | codepoints in Top-ACE |
 | | ACE | with ACE |
 +---------------------+-----------------+---------------------------+
CI (counts CE)	4	16 * 4 = 64
E1 (counts ECT(1))	3	16 * 3 = 48
NI (counts Not-ECT)	1	16 * 1 = 16
 +---------------------+-----------------+---------------------------+

 Top-ACE hugely improves the resilience of AccECN against ambiguity of
 counters due to ACK loss, compared with that of ACE alone (quantified
 in Appendix A.1). With Top-ACE, the AccECN protocol can lose a whole
 string of ACKs covering up to 64 - 1 = 63 congestion indications
 without becoming ambiguous. Similarly AccECN is robust to losing a
 whole string of ACKs covering 47 ECT(1) markings or 15 Not-ECT
 markings. If, for example, about 1 in 100 data packets were marked
 with a CE codepoint on the forward path, all the ACKs covering about
 100 * 63 = 6,300 segments would have to be missing from the reverse
 path before AccECN would become ambiguous. If just one of these ACKs
 got through, it would resolve any ambiguity.

Briscoe, et al. Expires January 3, 2015 [Page 23]

Internet-Draft Accurate TCP-ECN Feedback July 2014

3.3.4. Accurate ECN Sequence within Delayed ACKs

 Given each delayed ACK can cover multiple segments, a Data Receiver
 needs to describe the order in which the ECN codepoints arrived.
 AccECN uses a 10-bit ECN Sequence (ESQ) field to encode this
 ordering. This section explains the encoding. An example encoding
 algorithm in pseudocode is given in Appendix A.4. Implementations
 MAY develop their own encoding algorithm as long as it complies with
 the requirements in this section.

 Once the TCP 3-way handshake has completed, an AccECN Data Receiver
 can defer an ACK until one of these three tests does not pass:

 1. The number of deferred bytes exceeds a configured limit
 (currently two full-sized segments [RFC5681]);

 2. The longest time for which an ACK has been delayed exceeds a
 configured limit (currently 500ms [RFC5681]);

 3. The sequence of ECN codepoints has become too complex to encode
 in the fixed 10b available.

 AccECN can encode the order of a sequence of up to 15 ECN codepoints
 in one ACK. The ACE field in the ACK always encodes the ECN
 codepoint of the latest packet to arrive. Using the ESQ field of the
 same ACK, the Outgoing AccECN Protocol Handler can encode the order
 of arrival of up to 14 ECN codepoints that arrived before this,
 making a maximum coverage of 15 packets.

 The encoding of the ESQ field is optimised for a selection of simple
 sequences that are expected to be common. Even if the first two
 tests pass, if a more complex sequence occurs, the third test above
 will fail so the Data Receiver will be forced to send an ACK earlier
 than it would have otherwise. The most complex sequence that AccECN
 can encode is a run of 'spaces' (SP) ending in one 'mark' (MK1), then
 another run of 'spaces', followed by a 'mark' that might be different
 from the first (MK2).

 The internal structure of the 10-bit Accurate ECN Sequence (ESQ)
 field is show in Figure 7.

 0 1 2 3 4 5 6 7 8 9
 +---+---+---+---+---+---+---+---+---+---+
 | RL1 | RL2 | SP | MK1 |
 +---+---+---+---+---+---+---+---+---+---+

 Figure 7: Internal Structure of the Accurate ECN Sequence (ESQ) Field

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681

Briscoe, et al. Expires January 3, 2015 [Page 24]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 The sub-fields of ESQ have the following meanings:

 RL1: Run-Length #1: a 3-bit field giving the length of a first run
 consisting of spaces (SP) ending in one mark (MK1), which is
 included in the length of the run;

 RL2: Run-Length #2: another 3-bit field giving the length of a
 second run of spaces (SP). There is no mark included in this run;

 SP: Space: The 2-bit ECN codepoint defined as a space, for the
 present ACK only;

 MK1: Mark #1: The 2-bit ECN codepoint defined as the first mark, for
 the present ACK only.

 The Incoming Protocol Handler can always determine the second mark
 (MK2) from the counter that the Data Receiver uses in the ACE field,
 which has to be the counter associated with the last ECN codepoint to
 have arrived (according to the rules in Section 3.2.3). Even though
 there is no counter associated with ECT(0), the Incoming Protocol
 Handler can tell if the last codepoint to arrive was ECT(0), because
 the counter used in ACE will not have changed relative to the
 previous packet.

 Figure 8 gives example sequences of ECN codepoints and illustrates
 how the Data Receiver encodes them. The sequences use the single-
 character abbreviations in Table 1 for each ECN codepoint. The last
 codepoint to arrive is shown on the right.

Briscoe, et al. Expires January 3, 2015 [Page 25]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 ,----- RL1 = 6 ------> ,--- RL2=4 -->
 a) 0 0 0 0 0 C 0 0 0 0 1
 SP SP SP SP SP MK1 SP SP SP SP MK2

 ,--- RL1=4 --> (RL2 = 0)
 b) C C C 0 0
 SP SP SP MK1 MK2

 ,--------- RL1 = 7 ------> ,--------- RL2 = 7 ------>
 c) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 SP SP SP SP SP SP MK1 SP SP SP SP SP SP SP MK2

 RL1=1 ,> ,--- RL2=4 -->
 d) C 0 0 0 0 C
 MK1 SP SP SP SP MK2

 RL2=1 ,> (RL1 = 0)
 e) N N
 SP MK2

 Figure 8: Examples Encodings of Sequences of ECN Codepoints in the
 ESQ Field

 The examples should be self-explanatory, but the following points
 might help:

 o The term 'mark' does not have to mean an 'ECN mark'. In (a) the
 'spaces' are defined as ECT(0) and the first 'mark' is defined as
 CE. However, in (b) it is more efficient to define CE as the
 'space' and ECT(0) as the first 'mark';

 o A mark is defined to mean just one codepoint, so two marks in a
 row have to be encoded as two different marks, even if they are
 the same codepoint (b). The first and second marks can be defined
 as different (a) or the same (b or c);

 o For a long run of the same codepoint, the first mark can be
 defined to be the same as a space, and if necessary the second
 mark can be the same as well (c);

 o The first run (if non-zero length) always ends in one mark. So,
 if its run-length is 1, it contains a mark but no spaces (d);

 o Either run-length might be zero (b & e), but MK2 will always be
 present. If the first run-length is zero, the definition of MK1
 is redundant (e). If both run-lengths are zero, the definition of
 SP would be redundant as well.

Briscoe, et al. Expires January 3, 2015 [Page 26]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 The following normative statements govern an implementation of an
 AccECN Data Receiver when it defers an ACK:

 o The Outgoing Protocol Handler MUST NOT encode the last packet to
 be acknowledged into the ESQ field;

 o If the Outgoing Protocol Handler cannot encode the last ECN
 codepoint to arrive in the ESQ field, it MUST send an ACK
 immediately;

 o The Outgoing Protocol Handler MUST NOT include a codepoint in the
 sequence of codepoints in an ACK that is from any packet already
 reported in another ACK;

 o If RL1=0, the Outgoing Protocol Handler MUST set MK1 = ECT(0) =
 0b10, even though the value of MK1 seems redundant.

 o If RL2=0 and RL1=<1, the Outgoing Protocol Handler MUST set SP =
 ECT(0) = 0b10, even though the value of SP seems redundant.

 The last two rules ensure that the value of ESQ as a whole is never
 all-zeros, which allows the Incoming Protocol Handler to detect
 interference by middleboxes (see Section 3.6).

 The following normative statements govern an implementation of an
 AccECN Data Sender:

 o The Incoming AccECN Protocol Handler MUST increment the congestion
 codepoint counters (other than the one associated with the ACE
 field) by counting the codepoints as it decodes the ESQ field;

 o If the Incoming AccECN Protocol Handler finds that the value of a
 congestion counter calculated using ESQ would be more than that
 calculated using Top-ACE/ACE, it SHOULD use the higher of the two
 calculations.

 o If the Incoming AccECN Protocol Handler finds that the value of a
 congestion counter calculated using ESQ would be less than that
 calculated using Top-ACE/ACE, it SHOULD use the higher of the two
 calculations. An example of an exception to this rule would be
 where the Incoming Protocol Handler had previously conservatively
 assumed counter wrap, but then missing ACKs arriving later filled
 the gap in the sequence feedback.

 o While the Incoming AccECN Protocol Handler is calculating the
 value of a congestion counter using Top-ACE/ACE, if it finds that
 the value calculated using ESQ in a previous segment is already
 higher, it SHOULD use the lower value calculated using ACE/Top-

Briscoe, et al. Expires January 3, 2015 [Page 27]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 ACE. It SHOULD also consider the SupAccECN field in subsequent
 segments as suspect {ToDo: suggest what concrete action this
 implies}.

 Forward Compatibility:

 o if RL1=0:

 * the Incoming Protocol Handler MUST ignore the value in MK1;

 * middleboxes MUST forward the value in MK1 unaltered (whether or
 not it is 0b10 as it ought to be).

 o if RL2=0 and RL1=<1:

 * the Incoming Protocol Handler MUST ignore the value in SP;

 * middleboxes MUST forward the value in SP unaltered (whether or
 not it is 0b10 as it ought to be).

3.3.5. AccECN Feedback Integrity

 The ECN Nonce [RFC3540] is an experimental IETF specification
 intended to allow a sender to test whether ECN CE markings (or
 losses) are being suppressed by the receiver (or anywhere else in the
 feedback loop, such as another network or a middlebox). The ECN
 nonce has not been deployed as far as can be ascertained. The nonce
 would now be nearly impossible to deploy retrospectively, because to
 catch a misbehaving receiver it relies on the receiver volunteering
 feedback information to incriminate itself. A receiver that has been
 modified to misbehave can simply claim that it does not support nonce
 feedback, which will seem unremarkable given so many other hosts do
 not support it either.

 With minor changes AccECN could be optimised for the possibility that
 the ECT(1) codepoint might be used as a nonce. However, given the
 nonce is now probably undeployable, the AccECN design has been
 generalised so that it ought to be able to support other possible
 uses of the ECT(1) codepoint, such as a lower severity or a more
 instant congestion signal than CE.

 Three alternative mechanisms are available to assure the integrity of
 ECN and/or loss signals. AccECN is compatible with any of these
 approaches:

 o The Data Sender can test the integrity of the receiver's ECN (or
 loss) feedback by occasionally setting the IP-ECN field to a value
 normally only set by the network (and/or deliberately leaving a

https://datatracker.ietf.org/doc/html/rfc3540

Briscoe, et al. Expires January 3, 2015 [Page 28]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 sequence number gap). Then it can test whether the Data
 Receiver's feedback faithfully reports what it expects
 [I-D.moncaster-tcpm-rcv-cheat]. Unlike the ECN Nonce, this
 approach does not waste the ECT(1) codepoint in the IP header, it
 does not require standardisation and it does not rely on
 misbehaving receivers volunteering to reveal feedback information
 that allows them to be detected.

 o Networks generate congestion signals when they are becoming
 congested, so they are more likely than Data Senders to be
 concerned about the integrity of the receiver's feedback of these
 signals. A network can enforce a congestion response to its ECN
 markings (or packet losses) using congestion exposure (ConEx)
 audit [I-D.ietf-conex-abstract-mech]. Whether the receiver or a
 downstream network is suppressing congestion feedback or the
 sender is unresponsive to the feedback, or both, ConEx audit can
 neutralise any advantage that any of these three parties would
 otherwise gain.

 ConEx is a change to the Data Sender that is most useful when
 combined with AccECN. Without AccECN, the ConEx behaviour of a
 Data Sender would have to be more conservative than would be
 necessary if it had the accurate feedback of AccECN.

 o The TCP authentication option (TCP-AO [RFC5925]) can be used to
 detect any tampering with AccECN feedback between the Data
 Receiver and the Data Sender. Although this section of the
 feedback loop is the least likely to come under malicious attack,
 it is increasingly likely to be tampered with accidentally by
 middleboxes intervening at layer 4. The AccECN fields are
 immutable end-to-end, so whether placed in the Non-Urgent field or
 a TCP option, they are amenable to default TCP-AO protection (but
 not if TCP-AO protection of TCP options is turned off, which is
 non-default but might be necessary for other reasons).

3.4. Accurate ECN Receiver Operation

 A TCP receiver MUST only feedback ECN information arriving in a
 segment that it deems is part of the flow, by using regular TCP
 techniques based on sequence numbers.

 {ToDo: It might be useful to describe receiver end of the feedback
 process, including special cases, e.g. pure ACKs, retransmissions,
 window probes, partial ACKs, etc. Does AccECN feed back each ECN
 codepoint when a data packet is duplicated?}

https://datatracker.ietf.org/doc/html/rfc5925

Briscoe, et al. Expires January 3, 2015 [Page 29]

Internet-Draft Accurate TCP-ECN Feedback July 2014

3.5. Accurate ECN Sender Operation

 A TCP sender MUST only accept ECN feedback on ACKs that it deems is
 part of the flow, by using regular TCP techniques based on sequence
 numbers.

 {ToDo: It might be useful to describe the sender end of the feedback
 process, including special cases, e.g. pure ACKs, retransmissions,
 window probes, partial ACKs, etc.}

3.6. Detection of Legacy Middlebox Interference

 The definition of the SupAccECN field has been contrived so that the
 value all-zeros is undefined. Therefore, an Outgoing AccECN Protocol
 Handler MUST NOT ever set the value of SupAccECN to all-zeros.

 Therefore, the Incoming AccECN Protocol Handler MUST check that the
 value of ESQ is non-zero (on a segment with SYN=0). If the Incoming
 Protocol Handler detects all-zeros in either of these fields on any
 segment, it MUST ignore the whole SupAccECN field on that segment,
 and it SHOULD ignore the SupAccECN field on all subsequent segments
 in the same half-connection or at least treat each with greater
 suspicion.

 If a Data Sender ignores the incoming SupAccECN field, it MUST revert
 to the conservative behaviour needed when only the essential part of
 the AccECN protocol is available, as described in Section 3.2.2.
 Nonetheless, the Outgoing AccECN Protocol Handler of the same Data
 Sender MUST continue to set the SupAccECN field as normal
 (Section 3.3), because any interference might be only in one
 direction. The AccECN protocol does not include any requirement for
 a Data Sender that detects interference to notify the other end,
 because the complexity required to assure message integrity in the
 face of interference is not warranted.

3.7. Correct Middlebox Operation

 A large class of middleboxes split TCP connections, acting as the
 receiver for one connection and the sender for another, passing data
 between the two, usually via a buffer. Network interface hardware to
 offload certain TCP processing represents another large class of
 middleboxes, even though it is rarely in its own 'box'.

 To comply with this specification, each side of such a middlebox MUST
 comply with the AccECN requirements applicable to a responding host
 or an originating host during capability negotiation (Section 3.1)
 and the required AccECN behaviours as a Data Receiver or as a Data
 Sender throughout this specification.

Briscoe, et al. Expires January 3, 2015 [Page 30]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 Another class of middleboxes attempts to 'normalise' the TCP wire
 protocol by checking that all values in header fields comply with a
 rather narrow interpretation of the TCP specifications. To comply
 with this specification, such middleboxes MUST be updated to
 recognise and forward values in fields that comply with the newly
 defined semantics of AccECN. This includes the explicitly stated
 requirements to forward Reserved (Rsvd) and Currently Unused (CU)
 values unaltered. An 'ideal' TCP normaliser would not have to change
 to accommodate AccECN, because AccECN does not directly contravene
 any existing TCP specifications, even though it uses existing TCP
 fields in unorthodox ways.

4. Interaction with Other TCP Variants

4.1. Compatibility with SYN Cookies

 A server can use SYN Cookies (see Appendix A of [RFC4987]) to protect
 itself from SYN flooding attacks. It places minimal commonly used
 connection state in the SYN/ACK, and deliberately does not hold any
 additional state while waiting for the subsequent ACK. Therefore it
 cannot record the fact that it entered AccECN mode for both half-
 connections. Indeed, it cannot even remember whether it negotiated
 the use of classic ECN [RFC3168].

 If the server (host B) receives the final ACK of the 3-way handshake
 with a SupAccECN TCP option, it can infer that the originating host
 (A) supports AccECN. If host B supports AccECN itself, it can
 further infer that it would have entered AccECN mode before sending
 the SYN/ACK.

 If, on the other hand, the originating host (A) sends the final ACK
 of the 3-way handshake with the SupAccECN field in the Non-Urgent
 field, responding host B can still infer that host A originally
 negotiated AccECN, by checking the fourteen least significant bits of
 the Non-Urgent field and the ACE field, as follows:

 o Host B knows that host A would not defer the final ACK of the
 3-way handshake, because TCP never delays this.

 o Therefore, if host B sends the SYN/ACK with its IP-ECN field set
 to ECT(0) [RFC5562], then checks the fourteen least significant
 bits of the Non-Urgent field of the final ACK of the 3-way
 handshake, it can make the following inferences:

 1. lsb(Non-Urgent) == 000010100000 && ACE == 000 implies host A
 is AccECN and the SYN/ACK arrived unchanged as ECT(0);

https://datatracker.ietf.org/doc/html/rfc4987#appendix-A
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc5562

Briscoe, et al. Expires January 3, 2015 [Page 31]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 2. lsb(Non-Urgent) == 000010100000 && ACE == 001 implies host A
 is AccECN and the SYN-ACK was CE-marked;

 3. lsb(Non-Urgent) == 000010100001 && ACE == 111 implies host A
 is AccECN and the IP-ECN field of the SYN/ACK was zeroed;

 4. lsb(Non-Urgent) == 000000000000 or any value other than those
 above implies host A is Not AccECN or a middlebox is
 interfering with the Non-Urgent field.

 o If, on the other hand, host B sends the SYN/ACK with its IP-ECN
 field set to Not-ECT, then checks the fourteen least significant
 bits of the Non-Urgent field of the final ACK of the 3-way
 handshake, it can make the following inferences:

 1. lsb(Non-Urgent) == 000010100001 && ACE == 111 implies host A
 is AccECN;

 2. lsb(Non-Urgent) == 000000000000 or any value other than that
 above implies host A is Not AccECN or a middlebox is
 interfering with the Non-Urgent field.

4.2. Compatibility with Other Options and Experiments

 AccECN is compatible (at least on paper) with the most commonly used
 TCP options: MSS, time-stamp, window scaling, SACK and TCP-AO. It is
 also compatible with the recent promising experimental TCP options
 TCP Fast Open (TFO [I-D.ietf-tcpm-fastopen]) and Multipath TCP (MPTCP
 [RFC6824]). AccECN is particularly friendly to all these protocols,
 because space for TCP options is particularly scarce on the SYN,
 where AccECN consumes zero additional header space.

5. Protocol Properties

 This section is informative not normative. It describes how well the
 protocol satisfies the agreed requirements for a more accurate ECN
 feedback protocol [I-D.ietf-tcpm-accecn-reqs].

 Accuracy: From each ACK, the Data Sender can infer the number of new
 Not-ECT, ECT(0), ECT(1) and CE markings since the previous ACK.

 Accuracy: The Data Receiver can feed back to the Data Sender a list
 of the order of the IP-ECN markings covered by each delayed ACK.

 Overhead: The AccECN scheme is divided into two parts. The
 essential part reuses the 3 flags already assigned to ECN in the
 IP header. The supplementary part requires fifteen bits.

https://datatracker.ietf.org/doc/html/rfc6824

Briscoe, et al. Expires January 3, 2015 [Page 32]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 Overhead: Two alternative locations for the supplementary protocol
 field are proposed:

 1. In the 16-bit Urgent Pointer when URG=0. This specification
 reserves 15 bits of this space, but while the specification is
 only experimental it refrains from using this space in the
 main TCP header. If AccECN progresses to the standards track
 and uses these 15b, it will require zero additional overhead,
 because it will overload fields that already takes up space in
 every TCP header

 2. In a TCP option. This takes up 4B; the fifteen bits have to
 be rounded up to 2B, plus 2B for the TCP option Kind and
 Length.

 Timeliness: In the absence of lost ACKs, no feedback is deferred to
 a future ACK, which is intended to enable latency-sensitive uses
 of ECN feedback.

 Timeliness: {ToDo: Add improved timeliness if the Delayed ACK
 Control (DAC) feature is included.}

 Resilience: Each ACK includes a counter of one of the ECN congestion
 signals. If ACKs are lost, the counter on the first ACK following
 the losses allows the Data Sender to immediately recover the
 number of one of the ECN markings that it missed.

 Resilience: Subsequent ACKs will allow it to recover the number of
 other ECN markings that it missed.

 Resilience against Bias: Undetected ACK loss is as likely to
 decrease as increase congestion signals detected by the Data
 Sender.

 Resilience against Bias: However, if the supplementary part is
 unavailable, the required conservative decoding of feedback during
 ACK loss is more likely to increase perceived congestion signals,
 which would otherwise be more likely to be under-reported.

 Timeliness vs Overhead: For efficiency, each delayed ACK only
 includes one of the counters at a time, therefore recovery of the
 count of the other signals might not be immediate if an ACK is
 lost that covers more than one signal. The receiver cannot
 predict which ACKs might get lost, if any. Therefore it repeats
 the count of each signal roughly in proportion to how often each
 signal changes.

Briscoe, et al. Expires January 3, 2015 [Page 33]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 Ordering: The order of arriving ECN codepoints is communicated in a
 10-bit field in the supplementary part;

 Resilience vs. Ordering: Following an ACK loss, only a count of the
 lost ECN signals is recovered, not their order of arrival over the
 sequence covered by the loss.

 Ordering vs. Overhead: The encoding is tailored for sequences of ECN
 codepoints expected to be typical. It can encode sequences of up
 to 15 segments but, if the pattern of arrivals becomes too
 complex, the protocol forces the Data Receiver to emit an ACK.
 The protocol can always encode any sequence of 3 segments in one
 delayed ACK;

 Ordering, Timeliness and Resilience: If one delayed ACK covers
 changes to more than one congestion counter the supplementary
 sequence information provides more timely congestion feedback than
 waiting for the other congestion counters on future ACKs, and it
 provides resilience against the possibility of those future ACKs
 going missing;

 Complexity: {ToDo: Once implemented, quantify the code complexity}

 Integrity: AccECN is compatible with complementary protocols that
 assure the integrity of ECN feedback.

 Backward Compatibility: If only one endpoint supports the AccECN
 scheme, it will fall-back to the most advanced ECN feedback scheme
 supported by the other end.

 Backward Compatibility: Each endpoint can detect normalisation of
 the Supplementary AccECN field by middleboxes at any time during a
 connection. It could then fall-back to the essential part using
 only the fewer but safer bits in the TCP header.

 Forward Compatibility: The behaviour of endpoints and middleboxes is
 carefully defined for all reserved or currently unused codepoints
 in the scheme, to ensure that any blocking of anomalous values is
 always at least under reversible policy control.

6. IANA Considerations

6.1. SupAccECN TCP Option Allocation

 This specification requires IANA to allocate one value from the TCP
 option Kind name-space, against the name "Supplementary Accurate ECN"
 (SupAccECN).

Briscoe, et al. Expires January 3, 2015 [Page 34]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 Early implementation before the IANA allocation MUST follow [RFC6994]
 and use experimental option 254 and magic number 0xACCE (16 bits)
 {ToDo register this with IANA}, then migrate to the new option after
 the allocation.

6.2. Non-Urgent Field Registry

 This specification requests that IANA sets up a new TCP parameters
 registry in accordance with [RFC5226]. This registry enables future
 standards track RFCs to assign values to sub-fields of the TCP Non-
 Urgent field defined in Section 3.3.1.2.

 Name of registry: Non-Urgent field.

 Information required for assignments:

 * Width and position of sub-field or sub-fields,

 * Assignment of values to sub-field(s),

 * Confirmation of compliance with additional conditions 1 & 2
 below.

 Review Process: Standards Action - Values to be assigned for
 Standards Track RFCs approved by the IESG. At the IESG's
 discretion, values MAY be assigned for Standards Track RFCs still
 in the process of approval, in order to resolve the catch-22 where
 the assignment needs deployment testing but deployment testing
 needs the assignment.

 Size, format and syntax of registry entries: Binary values of sub-
 fields.

 Initial assignments and reservations: This specification reserves
 the 15 least significant bits of the Non-Urgent field for use by a
 potential future standards action that might define the AccECN
 scheme for the standards track.

 Additional conditions for assignment:

 1. Assignments within the Non-Urgent field MUST be used by a
 protocol that is robust to the field being unavailable
 occasionally. This is because the Non-Urgent field is unusable
 and undefined on segments with URG = 1 in the TCP header
 [RFC0793]. The Non-Urgent field overloads the meaning of the
 16-bit Urgent Pointer only when URG = 0.

https://datatracker.ietf.org/doc/html/rfc6994
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc0793

Briscoe, et al. Expires January 3, 2015 [Page 35]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 2. The value zero, i.e. all 16 bits of the Non-Urgent field cleared
 to zero, SHOULD be undefined, because it is known that certain
 'normalising' middleboxes overzealously zero the urgent pointer
 when URG = 0. An undefined zero value can be achieved by
 requiring that the value all-zeros is undefined for at least one
 sub-field of the Non-Urgent field. Then even if the value all-
 zeros is defined and used in other sub-fields, the value all-
 zeros for the whole field will be undefined.

7. Security Considerations

 If ever the supplementary part of AccECN is unusable (due for example
 to middlebox interference) the essential part of AccECN's congestion
 feedback offers only limited resilience to long runs of ACK loss (see

Section 3.2.2). These problems are unlikely to be due to malicious
 intervention (because if an attacker could discard a long run of ACKs
 it could wreak other arbitrary havoc). However, it would be of
 concern if AccECN's resilience could be indirectly compromised during
 a flooding attack. AccECN is still considered safe though, because
 an AccECN Data Sender can detect when the supplementary part is
 unusable, and it is then required to switch to more conservative
 assumptions about wrap of congestion indication counters (see

Section 3.2.2 and Appendix A.1).

 AccECN does not signal the ordering of ECN codepoints covered by a
 delayed ACK reliably, i.e. if one delayed ACK is lost, the ECN
 sequence information in that ACK is not retransmitted. The design of
 AccECN assumes gaps in this information will not be critical, and
 that this information is unlikely to be security-sensitive. However,
 this point is mentioned for completeness.

 The SYN cookie method for mitigating SYN flooding attacks is not
 generally compatible with enhancements to the TCP 3-way handshake.
 Nonetheless, Section 4.1 describes how a server can negotiate AccECN
 and use SYN cookies.

 AccECN is compatible with all the known schemes that ensure the
 integrity of ECN feedback (see Section 3.3.5 for details). Given the
 experimental ECN nonce is now probably undeployable, AccECN has been
 generalised for other possible uses of the ECT(1) codepoint to avoid
 any risk of obsolescence.

8. Acknowledgements

 We want to thank Michael Welzl for his input and discussion. The
 idea of using the three ECN-related TCP flags as one field for more
 accurate TCP-ECN feedback was first introduced in the re-ECN protocol
 that was the ancestor of ConEx.

Briscoe, et al. Expires January 3, 2015 [Page 36]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 Bob Briscoe was part-funded by the European Community under its
 Seventh Framework Programme through the Reducing Internet Transport
 Latency (RITE) project (ICT-317700) and through the Trilogy 2 project
 (ICT-317756). The views expressed here are solely those of the
 authors.

9. Comments Solicited

 Comments and questions are encouraged and very welcome. They can be
 addressed to the IETF TCP maintenance and minor modifications working
 group mailing list <tcpm@ietf.org>, and/or to the authors.

10. References

10.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, September 1981.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP", RFC

3168, September 2001.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [RFC6994] Touch, J., "Shared Use of Experimental TCP Options", RFC
6994, August 2013.

10.2. Informative References

 [I-D.bensley-tcpm-dctcp]
 sbens@microsoft.com, s., Eggert, L., and D. Thaler,
 "Microsoft's Datacenter TCP (DCTCP): TCP Congestion
 Control for Datacenters", draft-bensley-tcpm-dctcp-01
 (work in progress), June 2014.

 [I-D.ietf-conex-abstract-mech]
 Mathis, M. and B. Briscoe, "Congestion Exposure (ConEx)
 Concepts and Abstract Mechanism", draft-ietf-conex-

abstract-mech-11 (work in progress), March 2014.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6994
https://datatracker.ietf.org/doc/html/rfc6994
https://datatracker.ietf.org/doc/html/draft-bensley-tcpm-dctcp-01
https://datatracker.ietf.org/doc/html/draft-ietf-conex-abstract-mech-11
https://datatracker.ietf.org/doc/html/draft-ietf-conex-abstract-mech-11

Briscoe, et al. Expires January 3, 2015 [Page 37]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 [I-D.ietf-tcpm-accecn-reqs]
 Kuehlewind, M., Scheffenegger, R., and B. Briscoe,
 "Problem Statement and Requirements for a More Accurate
 ECN Feedback", draft-ietf-tcpm-accecn-reqs-05 (work in
 progress), February 2014.

 [I-D.ietf-tcpm-fastopen]
 Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", draft-ietf-tcpm-fastopen-09 (work in
 progress), July 2014.

 [I-D.kuehlewind-tcpm-ecn-fallback]
 Kuehlewind, M. and B. Trammell, "A Mechanism for ECN Path
 Probing and Fallback", draft-kuehlewind-tcpm-ecn-

fallback-01 (work in progress), September 2013.

 [I-D.moncaster-tcpm-rcv-cheat]
 Moncaster, T., Briscoe, B., and A. Jacquet, "A TCP Test to
 Allow Senders to Identify Receiver Non-Compliance", draft-

moncaster-tcpm-rcv-cheat-02 (work in progress), November
 2007.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC3540] Spring, N., Wetherall, D., and D. Ely, "Robust Explicit
 Congestion Notification (ECN) Signaling with Nonces", RFC

3540, June 2003.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, August 2007.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5562] Kuzmanovic, A., Mondal, A., Floyd, S., and K.
 Ramakrishnan, "Adding Explicit Congestion Notification
 (ECN) Capability to TCP's SYN/ACK Packets", RFC 5562, June
 2009.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, June 2010.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, January 2013.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-accecn-reqs-05
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-fastopen-09
https://datatracker.ietf.org/doc/html/draft-kuehlewind-tcpm-ecn-fallback-01
https://datatracker.ietf.org/doc/html/draft-kuehlewind-tcpm-ecn-fallback-01
https://datatracker.ietf.org/doc/html/draft-moncaster-tcpm-rcv-cheat-02
https://datatracker.ietf.org/doc/html/draft-moncaster-tcpm-rcv-cheat-02
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc4987
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5562
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc6824

Briscoe, et al. Expires January 3, 2015 [Page 38]

Internet-Draft Accurate TCP-ECN Feedback July 2014

Appendix A. Example Algorithms

 This appendix is informative, not normative. It gives examples in
 pseudocode for the various algorithms used by AccECN.

A.1. Example Algorithm for Safety Against Long Sequences of ACK Loss

 This appendix gives an example algorithm that a Data Sender can use
 to heuristically detect a long enough unbroken string of ACK losses
 that could have concealed wrap of the congestion counter in the ACE
 field of the next ACK to arrive. The Data Sender is unlikely to need
 to run an algorithm like this unless it detects that supplementary
 AccECN feedback is not available (see Section 3.2.2 and Section 3.6).

 It is assumed that the focus is solely safety not complete protocol
 precision. Therefore, this example solely detects possible wrap of
 the congestion indication (CI) counter, not E1 or NI. This is on the
 assumption that, even if ECT(1) is redefined to indicate congestion
 in some way, then ECN CE markings will always indicate more severe
 congestion. It is also assumed that numerous Not-ECT markings imply
 middlebox tampering, which only needs to be detected, not quantified
 perfectly.

 If the supplementary Top-ACE field cannot be used, there is only room
 for 4 values of the congestion indication (CI) counter in the ACE
 field. The CI counter in an arriving ACK could have wrapped and
 become ambiguous to the Data Sender if a row of ACKs goes missing
 that covers a stream of data long enough to contain 4 or more CE
 marks. We use the word missing rather than lost, because some or all
 the missing ACKs might arrive eventually, but out of order. Even if
 some of the lost ACKs are piggy-backed on data (i.e. not pure ACKs)
 retransmissions will not repair the lost AccECN information, because
 AccECN requires retransmissions to carry the latest AccECN counters,
 not the original ones (Section 3.2.3).

 If the CE marking probability were p on the forward data path,
 ambiguity would arise if 100% of ACKs went missing from the reverse
 path in a row was at least 4/p long. For example, if p was 5% on the
 forward path, ambiguity would ensue if simultaneously on the reverse
 path a sequence of ACKs covering 4/0.05 = 80 packets all went
 missing. With a delayed ACK ratio of 2 that translates to missing 40
 ACKs in a row. Obviously, missing ACKs would be far less likely if
 pure ACKs were allowed to be ECN-capable. However, because RFC 3168
 currently precludes this, we will assume that pure ACKs are not ECN-
 capable.

 To protect against such an unlikely event, Section 3.2.2 requires the
 Incoming Protocol Handler to assume that the CI field did wrap if it

https://datatracker.ietf.org/doc/html/rfc3168

Briscoe, et al. Expires January 3, 2015 [Page 39]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 could have wrapped under prevailing conditions. It could be
 extremely conservative and assume that ECN marking suddenly jumped to
 100% on the forward path just when there were no ACKs on the reverse
 path to detect it.

 Specifically, if the Incoming Protocol Handler receives an ACK with
 an acknowledgement number that acknowledges L full-sized segments
 since the previous ACK, it could conservatively assume that the CI
 field incremented by

 D' = L - ((L-D) % 4),

 where D is the apparent increase in the CI field. This would still
 be safe if segments were 5% of full-sized as long as ECN marking was
 5% or less, not 100%.

 For example, imagine an ACK acknowledges 5 more full-size segments
 than any previous ACK, and that it apparently increases CI by 2. The
 above formula works out that a safe increment of CI would still be 2
 (because 5 - ((5-2) % 4) = 2). However, if CI apparently increases
 by 2 but acknowledges 11 more full-sized segments, then CI should be
 assumed to have increased by 10 (because 11 - ((11-2) % 4) = 10).

 Implementers could build in more heuristics to estimate prevailing
 segment sizes and prevailing ECN marking. For instance, L in the
 above formula could be replaced with L' = L*p*M/s, where M is the
 MSS, s is the prevailing segment size and p is the prevailing ECN
 marking probability. However, ultimately, if TCP's ECN feedback
 becomes inaccurate it still has loss detection to fall back on.
 Therefore, it would seem safe to implement a simple algorithm like
 that given initially, rather than a perfect one.

 If missing acknowledgement numbers arrive later (due to reordering),
Section 3.2.2 says "the Data Sender MAY attempt to neutralise the

 effect of any action it took based on a conservative assumption that
 it later found to be incorrect". To do this, the Data Sender would
 have to store the values of all the relevant variables whenever it
 made assumptions, so that it could re-evaluate them later. Given
 this could become complex and it is not required, we do not attempt
 to provide an example of how to do this.

A.2. Example Counter Selection Algorithms

 When the Data Receiver sends an ACK, if the last IP-ECN field that
 arrived was ECT(0), Section 3.2.3 says, "...the Data Receiver can
 signal either the CI or the E1 counter. The choice of which to
 signal SHOULD be based on the principle that the more one counter has
 changed recently the more it SHOULD be signalled." A couple of

Briscoe, et al. Expires January 3, 2015 [Page 40]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 alternative algorithms are suggested below that would satisfy this
 requirement.

A.2.1. Counter Selection Algorithm Alt#1

 Counter selection algorithm Alt#1 repeats whichever counter has been
 repeated proportionately less often, relative to how often it has
 changed, with preference for CI if they tie. Or in pseudocode:

 if ((e1 / r_e1) > (ci / r_ci))
 send_ack(e1)
 else
 send_ack(ci)

 where r_e1 and r_ci are counts of how often E1 and CI were already
 repeated when ECT(0) was signalled. The algorithm below implements
 this comparison between two divisions using only integer addition.
 It is a little terse, so it is explained afterwards.

Briscoe, et al. Expires January 3, 2015 [Page 41]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 ci = 0 // CE counter
 w_ci = 0 // internal 'weight' variable for CI
 r_ci = 0 // internal count of how often CI has been repeated
 e1 = 0 // ECT(1) counter
 w_e1 = 0 // internal 'weight' variable for E1
 r_e1 = 0 // internal count of how often E1 has been repeated
 ni = 0 // Not-ECT counter

 dack_to_be_sent() // shorthand for test if a delayed ACK is needed

 switch (read(pkt.ip.ecn)) {
 case CE :
 ci++
 w_ci += r_e1
 if (dack_to_be_sent()) send_ack(ci)
 case ECT1 :
 e1++
 w_e1 += r_ci
 if (dack_to_be_sent()) send_ack(e1)
 case Not-ECT :
 ni++
 if (dack_to_be_sent()) send_ack(ni)
 case ECT0 :
 if (dack_to_be_sent()) {
 /* Choice between E1 and CI */
 if (w_e1 > w_ci) { // Preference to CI if they tie
 send_ack(e1)
 r_e1++
 w_ci += ci
 } else {
 send_ack(ci)
 r_ci++
 w_e1 += e1
 }
 }
 }

 {ToDo: Handle wrap of the weights (see my notebook?).}

 Explanation: The algorithm ensures that the weights always equal the
 following products:

 w_ci = ci * r_e1,
 w_e1 = e1 * r_ci.

 It does this by incremental addition rather than multiplication:

 o every time r_e1 increments by 1, w_ci is incremented by 1 * ci;

Briscoe, et al. Expires January 3, 2015 [Page 42]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 o every time ci increments by 1, w_ci is incremented by 1 * r_e1;

 and the same for w_e1 and the pair of variables it consists of.

 This ensures that the condition

 w_e1 > w_ci

 used in the algorithm is equivalent to:

 e1 * r_ci > ci * r_e1,

 or rearranging:

 (e1 / r_e1) > (ci / r_ci),

 which is the required proportionality condition.

A.2.2. Counter Selection Algorithm Alt#2

 Counter selection algorithm Alt#2 implements the policy "Send each
 recently changed codepoint twice, unless the other one has also
 changed, and alternate sending CI, E1 if no counter changes."

 {ToDo: Alt#2 has the disadvantage that it can repeat E1 a lot, even
 if E1 has never been signalled, which unnecessarily reduces the
 resilience of CI.

Briscoe, et al. Expires January 3, 2015 [Page 43]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 ci = 0 // CE counter
 q_ci = 0 // queue of CI's to repeat
 nxt_ci = TRUE // Signal E1 next if FALSE
 e1 = 0 // ECT(1) counter
 q_e1 = 0 // queue of E1's to repeat
 ni = 0 // Not-ECT counter

 dack_to_be_sent() // shorthand for test if a delayed ACK is needed

 switch (read(pkt.ip.ecn)) {
 case CE :
 ci++
 q_ci = 2
 if (dack_to_be_sent()) send_ack(ci)
 case ECT1 :
 e1++
 q_e1 = 2
 if (dack_to_be_sent()) send_ack(e1)
 case Not-ECT :
 ni++
 if (dack_to_be_sent()) send_ack(ni)
 case ECT0 :
 if (dack_to_be_sent()) {
 /* Choice between E1 and CI */
 if (q_ci || q_e1) { // If either queue is non-zero
 if (q_e1 > q_ci) { // Preference to CI if they tie
 send_ack(e1)
 q_e1 = max(0, q_e1 - 1)
 } else {
 send_ack(ci)
 q_ci = max(0, q_ci - 1)
 }
 } else { // Both queues are zero
 if (nxt_ci)
 send_ack(ci)
 else
 send_ack(e1)
 nxt_ci = !nxt_ci // Toggle the next signal
 }
 }
 }

A.3. Example Encodings and Decodings of Top-ACE and ACE

 This appendix gives formulae for encoding and decoding the counters
 CI, E1 or NI with higher resilience to ACK loss by supplementing the
 ACE field with the Top-ACE field, as required in Section 3.3.3.

Briscoe, et al. Expires January 3, 2015 [Page 44]

Internet-Draft Accurate TCP-ECN Feedback July 2014

A.3.1. Encoding Top-ACE and ACE by the Data Receiver

 The values associated with codepoints in ACE for CI and E1 are
 respectively base 4 and base 3 numbers (see Table 3). Although there
 is only space for one value of NI, mathematically, NI can still be
 treated as a base 1 counter. Then the following general formulae
 allow a Data Receiver to encode any of the counters CI, E1 or NI, by
 calling them all cntr, and defining ACE_base as their respective
 number base:

 Top-ACE = Int(cntr / ACE_base) % 16,
 ACE_cntr = cntr % ACE_base.

 Then the Data Receiver looks up the codepoint to put in the ACE field
 by looking up ACE_cntr in Table 3 in the column of the relevant
 counter (CI, E1 or NI). Int() means round down to an integer and '%'
 is the modulo operator.

 To implement this without a costly division operation, two counters
 can be maintained while processing the header information for the
 ACK. The first counter can be mapped into the ACE field via Table 3.
 A wrap every 4 increments of the counter could be implemented as a
 single conditional check, and when it wraps, a secondary, high-order
 counter could be incremented. This secondary counter could then be
 mapped directly into the Top ACE field. For instance, the two
 counters for CE markings would be implemented as follows:

 if (read(pkt.ip.ecn) == CE) {
 if (ACE_cntr.ci == 4) {
 ACE_cntr.ci = 0
 if (Top-ACE.ci == 16) {
 Top-ACE.ci = 0
 } else
 Top-ACE.ci++
 } else
 ACE_cntr.ci++
 }

 The three examples below explain how the algorithm determines which
 codepoints to place in Top-ACE and ACE, for each counter in turn.
 For brevity, they use the first mathematical formula above, rather
 than the second conditional logic variant.

 Example #1: if the Data Receiver has determined that it will signal
 its CI counter next and its local value is 73, it encodes this as:

Briscoe, et al. Expires January 3, 2015 [Page 45]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 Top-ACE = INT(73 / 4) % 16
 = 2
 = 0b0010
 ACE_cntr = 73 % 4
 = 1

 Looking up the codepoint for CI = 1 in Table 3 gives:

 ACE = 0b001.

 Example #2: if the Data Receiver has determined that it will signal
 its E1 counter next and its local value is 75, it encodes this as:

 Top-ACE = INT(75 / 3) % 16
 = 9
 = 0b1001
 ACE_cntr = 75 % 3
 = 0

 Looking up the codepoint for E1 = 0 in Table 3 gives:

 ACE = 0b100.

 Example #3: if the Data Receiver has determined that it will signal
 its NI counter next and its local value is 43, it encodes this as:

 Top-ACE = INT(43 / 1) % 16
 = 11
 = 0b1011
 ACE_cntr = 43 % 1
 = 0 // Anything modulo 1 is 0

 Looking up the codepoint for NI = 0 in Table 3 gives:

 ACE = 0b111.

A.3.2. Decoding Top-ACE and ACE by the Data Sender

 An AccECN Data Sender decodes the incoming combination of Top-ACE and
 ACE by looking up the ACE codepoint in Table 3 to get ACE_cntr and
 ACE_base, then:

 cntr = Top-ACE * ACE_base + ACE_cntr.

 For example, if ACE = 0b101 and Top-ACE = 0b0111 = 7, the Data Sender
 looks up ACE = 0b101 in Table 3 to see that this is the E1 counter
 and that ACE_cntr = 1 base 3. Therefore,

Briscoe, et al. Expires January 3, 2015 [Page 46]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 E1 = cntr = 7 * 3 + 1
 = 22

 The Data Sender is likely to be primarily interested in the increment
 in this counter relative to the previous ACK. In the case of E1, it
 will have to use modulo 48 arithmetic for the difference, because the
 encoding wraps at 48 (see Table 4). Specifically, if the Data
 Sender's local counter is snd_e1, then the difference,

 delta_e1 = (E1 + 48 - snd_e1 % 48) % 48

 {ToDo: Provide algorithms that decode correctly with ACK reordering}

A.4. Example ECN Sequence (ESQ) Encoding Algorithms

 This appendix gives an example algorithm for the Data Receiver to
 encode the arriving sequence of IP-ECN codepoints in the ECN Sequence
 (ESQ) field of a delayed ACK, as required in Section 3.3.4.

 /* Algorithm to encode the arrival sequence of IP-ECN codepoints
 */
 DEFAULT = ECT0 // Any ECN codepoint except Not-ECT
 DACK_T_MAX = 500 // Max time to delay an ACK [ms]
 RL_MAX = 7 // Max run-length that can fit in 3-bit field
 DACK_SEG_MAX = 2 // Max full-sized delayed ACK segments:
 MSS = 1500 // Example max segment size [B]
 DACK_B_MAX = DACK_SEG_MAX * MSS // Max deferred bytes

 sp = mk1 = DEFAULT // 2-bit ECN codepoints: space and mark
 mk2 // second mark (fed back in ACE, not ESQ)
 rl1 = rl2 = 0 // 3-bit run-lengths
 dack_b = 0 // deferred bytes

 /* Strategy: in readiness for a packet arrival, hold the variables
 * necessary to build the ECN sequence field (ESQ) of the next ACK.
 * If a packet arrives, and it can be added to the held sequence,
 * do so and return.
 * If it can't be added to the held sequence, send the ACK
 * with the most recent packet as the second mark.
 * If the delayed ack timer expires, unwind the last packet in the
 * held sequence to use as the second mark, and send the ACK
 */

 foreach pkt {
 tmp = read(pkt.ip.ecn) // Store incoming ECN field
 dack_b += read(pkt.ip.size) // Add to deferred bytes

 if (dack_b >= DACK_B_MAX) { // Test deferred bytes threshold

Briscoe, et al. Expires January 3, 2015 [Page 47]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 mk2 = tmp // Assign incoming ECN to mk2
 send_ack(rl1,rl2,sp,mk1,mk2) // Encode ESQ and send ACK
 } elif ((rl1 + rl2) =< 0) { // Is the held sequence empty?
 sp = tmp // Initialise with a space in run2
 rl2++
 init_timer(dack_expire, DACK_T_MAX) // Arm delayed ACK timer
 } elif (tmp == sp) { // Is the incoming ECN another space?
 if (rl2 < RL_MAX) { // Is there room in run2?
 rl2++ // Extend run2
 } elif (rl1 =< 0) { // Otherwise, is run1 empty?
 mk1 = sp // Shift run2 to run1, making mk1=sp
 rl1 = rl2
 rl2 = 1
 }
 /* If got to here, incoming ECN is assigned as a mark */
 } elif (rl1 =< 0) { // If there's room in run1, switch to it
 mk1 = tmp
 rl1 = rl2
 rl2 = 0
 } elif ((tmp == mk1) // Is incoming ECN a mark already seen
 && (rl1 = 2) // with only one space before it?
 && (rl2 = 0)) {
 mk1 = sp // If so, swap marks with spaces
 sp = tmp
 rl1 = 1
 rl2 = 2
 } else { // Cannot extend sequence
 mk2 = tmp // Assign the incoming ECN to mk2
 send_ack(rl1,rl2,sp,mk1,mk2) // Encode ESQ and send ACK
 }
 }

 /* dack_expire()
 * Routine called when the delayed ACK timer expires.
 * There is no incoming packet to fill mk2,
 * so the last value from the held sequence has to be used instead
 * (there will always be a held sequence because the timer is only
 * armed once the sequence is non-empty).
 */
 dack_expire() {
 if (rl2 > 0) { // run2 contains a value
 rl2--
 mk2 = sp // copy it into mk2
 } else { // run2 is empty, therefore run1 is not
 mk2 = mk1 // copy mk1 into mk2
 rl2 = rl1-- // shift run1 into run2 without mk1
 rl1 = 0
 } // Last value extraction is complete

Briscoe, et al. Expires January 3, 2015 [Page 48]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 send_ack(rl1,rl2,sp,mk1,mk2) // Encode ESQ and send ACK
 }

 /* send_ack()
 * Algorithm to encode the arrival sequence of IP-ECN codepoints
 * into the ECN sequence (ESQ) field of a TCP ACK, then send it.
 */
 send_ack(rl1,rl2,sp,mk1,mk2) {
 del_timer(dack) // Remove any pending delayed ACK timer
 /* Marshall the ECN Sequence field (esq) */
 pkt.tcp.esq = lsb(2,sp) & lsb(2,mk1) & lsb(3,rl1) & lsb(3,rl2)
 /* lsb(n,x): pseudocode for the lowest n significant bits of x */
 /* x & y : pseudocode for concatenate x and y */
 /*
 * Insert code to send ACK here, with mk2 in pkt.tcp.ace
 */
 /* Reset all variables ready for next packet arrival */
 sp = mk1 = DEFAULT
 rl1 = rl2 = 0
 }

Appendix B. Alternative Design Choices (To Be Removed Before
 Publication)

 This appendix is informative, not normative. It records alternative
 designs that the authors chose not to include in the normative
 specification, but which the IETF might wish to consider for
 inclusion.

B.1. Supplementary AccECN Field on the SYN/ACK

 {ToDo: The tcpm working group is recommended to consider including
 this in an AccECN RFC from the start. The AccECN protocol defined in
 the body of this specification currently gives no ECN feedback on the
 SYN/ACK on the assumption that the SYN is not ECN-capable. If it is
 required for the protocol to be future-proofed against the
 possibility that SYNs might one-day be ECN-capable, the following
 definition of the SupAccECN field for the SYN/ACK would need to be
 added to Section 3.3.1 and Section 3.3.2. The text below is written
 as if it is normative, but it is only informative while it is demoted
 to this appendix.}

B.1.1. Placement of the Supplementary AccECN Field in a SYN/ACK

 To include the SupAccECN field on a SYN/ACK, the Data Receiver MUST
 use the SupAccECN TCP Option with TCP option Kind 0x<KK> (TBA) and
 set the Length field to 3 [octets], as illustrated in Figure 9. .

Briscoe, et al. Expires January 3, 2015 [Page 49]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
 | Kind = 0xKK | Length = 3 |0 0 0 0| Sup- |
 | | | | AccECN|
 +-+

 Figure 9: Placement of the SupAccECN field within the SupAccECN TCP
 Option on a SYN/ACK

 If the Data Sender has entered AccECN mode but there is no SupAccECN
 TCP Option on a SYN/ACK, the Incoming AccECN Protocol Handler MUST
 take the SupAccECN field to be right-justified within the Non-Urgent
 field (i.e. the least significant bit of SupAccECN is aligned with
 the least significant bit of the Non-Urgent Field) as shown in
 Figure 10. The remaining most significant bits are currently unused
 (CU).

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | X X X X X X X X X X X X | SupAccECN |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 Figure 10: Placement of the SupAccECN field within the Non-Urgent
 field on a SYN/ACK

B.1.2. Structure of the Supplementary AccECN Field in a SYN/ACK

 The size of the SupAccECN field on a SYN/ACK (i.e. a segment with SYN
 = 1 and ACK = 1) is always 4 bits. Figure 11 defines the sub-fields
 of the SupAccECN field on a SYN/ACK.

 0 1 2 3
 +---+---+---+---+
 | D-ECN | E-ECN |
 +---+---+---+---+

 Figure 11: The Supplementary AccECN Field on a SYN/ACK Segment

 The sub-fields of SupAccECN on a SYN/ACK segment have the following
 meanings:

 E-ECN: Echo ECN, for the responding host (B) to echo the IP-ECN
 field that arrives in the SYN. RFC 3168 requires that the ECN
 field on a SYN must always be Not-ECT (0b00). Therefore initially
 the E-ECN field is likely to always be 0b00. However, the AccECN
 wire protocol allows for the possibility that ECN-capable SYNs

https://datatracker.ietf.org/doc/html/rfc3168

Briscoe, et al. Expires January 3, 2015 [Page 50]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 might be allowed in future. The responding host (B) MUST echo a
 copy of the IP-ECN field of the SYN in the E-ECN field of the SYN/
 ACK.

 If the SYN were to arrive carrying a congestion indication, the
 responding host (B) MUST also increment the relevant counter
 (r.ci, r.e1 or r.e1) as specified in Section 3.2.1. Then the
 counters on subsequent feedback will remain consistent even though
 the SYN/ACK does not have an ACE field to feedback congestion
 counters (because it is still using the same bits as flags for
 capability negotiation). The E-ECN field has been defined within
 a SYN/ACK because the start of a flow is when it is most critical
 for congestion feedback to be timely. Without the E-ECN field,
 feedback of any congestion marking on a SYN would get deferred for
 at least a round trip.

 D-ECN: Reserved for a Duplicate ECN field, meaning a duplicate of
 the ECN field in the IP header of the same packet. This field is
 not defined in the present specification, but it is reserved for
 possible use by a companion specification about ECN-fall-back (see

Appendix B.3).

 Forward Compatibility: In the meantime, the responding host (B)
 MUST set D-ECN to ECT(0) (0b10), the originating host (A) MUST
 ignore this field and middleboxes MUST forward this field
 unaltered whether or not it is 0b10.

B.2. Remove Not-ECT from ECN Sequence (ESQ) Encoding

 This alternative encoding would allow the ESQ field to be 1 bit
 shorter (9 bits instead of 10). The trade-off is that the receiver
 has to send an ACK immediately whenever a Not-ECT packet arrives.
 This is because this alternative encoding only caters for one Not-ECT
 codepoint in the ACE field, and none in the ESQ field.

 Once ECN has been negotiated for a connection, the sender ought to
 rarely send data segments with the Not-ECT codepoint. The only data
 segments on which RFC 3168 requires the sender to set Not-ECT are
 retransmissions and window probes. Pure ACKs also have to be sent as
 Not-ECT, but they are not data segments, so they are not included in
 the feedback sequence.

 If the encoding of the ESQ field has to allow for Not-ECT as well as
 the three ECN-capable codepoints, it needs space to encode 4 possible
 spaces and 4 possible marks. This requires 4 bits for 4x4=16
 combinations (two 2-bit fields for SP and MK1). If on the other hand
 Not-ECT is excluded, space for only 3x3=9 combinations is required.
 This many combinations can only be fitted into 3 bits if they can be

https://datatracker.ietf.org/doc/html/rfc3168

Briscoe, et al. Expires January 3, 2015 [Page 51]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 reduced to 8 codepoints by encoding two combinations as one symbol.
 Two combinations can be encoded as one symbol using the same encoding
 for sp=mk1=ECT(1) and sp=mk1=CE. This is because either an ECT(1) or
 CE code in the ACE field can be used to distinguish which is which.
 However, whenever a run of ECT(1) or of CE ended, the encoding
 algorithm would have to send two ACKs at once.

 Arguments against this alternative design choice:

 o Although retransmissions would be expected to be rare in a fully
 ECN-enabled network, there might be frequent losses and
 retransmissions during early deployment of ECN, when many
 bottleneck links might not be ECN-enabled. Then this alternative
 encoding would reduce the opportunities when a receiver could use
 delayed ACKs.

 o Even if the sender sets Not-ECT on few data segments, incorrectly
 configured or buggy network equipment exists that clears the IP-
 ECN field to Not-ECT. With this alternative encoding, connections
 via such equipment would never be able to use delayed ACKs. The
 consequential extra ACK load might be considered an incentive for
 these networks to fix their bugs. However, the endpoints would
 also suffer the extra ACK load.

 o To save 1 bit in the encoding it seems necessary for the algorithm
 to sometimes have to send two ACKs at once.

B.3. ECN Fall-Back

 {ToDo: consider whether the present specification could be enhanced
 with ECN fall-back on the SYN/ACK to give earlier fall-back than in
 [I-D.kuehlewind-tcpm-ecn-fallback]. Space for a duplicate of the IP-
 ECN field on the SYN/ACK has been reserved in the SupAccECN field
 (Appendix B.1), but the behaviour is still TBA. A duplicate of the
 IP-ECN field has not been provided on the SYN, because it would be
 unremarkable if ECN on the SYN was zeroed by security devices, given

RFC 3168 prohibited ECT on SYN because it enables DoS attacks.
 Therefore the IP-ECN field has to be tested on the last ACK of the
 3WHS, IMO}

B.4. Remote Delayed ACK Control Proposal

 {ToDo: The tcpm working group is recommended to consider including
 this in an AccECN RFC from the start, because it would be less useful
 if it was unpredictable whether it had been implemented. The text
 below is written as if it is normative, but it is only informative
 while it is demoted to this appendix.} {ToDo: Add a use-case.}

https://datatracker.ietf.org/doc/html/rfc3168

Briscoe, et al. Expires January 3, 2015 [Page 52]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 Traditionally, each decision on whether to delay an ACK is taken
 independently by the Data Receiver. This makes it hard to deploy
 behaviours where the Data Sender would like the Data Receiver not to
 delay feedback, perhaps so that it can measure the effect of subtle
 changes in the timing between packets to more rapidly get up to speed
 during slow-start without overshoot.

 A single bit for a Delayed ACK Control (DAC) flag is defined within
 the SupAccECN field of segments with SYN=0. Space for this is
 reserved in Section 3.3.2 and illustrated in Figure 6. For either
 half-connection, the Data Sender can use the DAC flag to request that
 the remote Data Receiver turns delayed ACKing on or off:

 o DAC = 0 means the sender requests that the receiver turns Delayed
 ACKing on, using the receiver's choice of delayed ACK factor.

 o DAC = 1 means the sender requests that the receiver turns Delayed
 ACKing off.

 For resilience, the Data Sender MUST repeat its currently chosen
 value of DAC continuously on every packet. The Data Receiver SHOULD
 start to honour the request on receipt. Therefore, as soon as a
 segment arrives with DAC=1, a Data Sender SHOULD immediately send any
 deferred ACKs and no longer withhold ACKs while it continues to
 receive segments with DAC=1. The DAC flag is meaningful on every
 packet with SYN=0. The DAC flag is not needed and therefore not
 present in the SupAccECN field when SYN=1 (Figure 11), because TCP
 never withholds the SYN/ACK or the final ACK of the 3-way handshake.

 A receiver MAY ignore a request from a sender to alter its Delayed
 ACKing behaviour, e.g. a challenged receiver that cannot send ACKs
 fast enough need not turn off Delayed ACKs, or a receiver that has
 not implemented delayed ACKs need not turn them on.

Appendix C. Open Protocol Design Issues (To Be Removed Before
 Publication)

 1. A possibility to simplify the protocol would be to remove
 ordering feedback entirely, but require the receiver to disable
 delayed ACKs during slow-start (including within a connection
 after a time-out or idle period) or to provide the DAC flag to
 allow the sender to ask the receiver to disable delayed ACKs when
 it needs more accuracy. However, not delaying ACKs may impact
 server performance. Also a new way to identify middlebox
 interference in the remaining SupAccECN field (Top-ACE & DAC)
 would have to be found.

Briscoe, et al. Expires January 3, 2015 [Page 53]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 2. The protocol currently gives no ECN feedback on the SYN/ACK on
 the assumption that the SYN is not ECN-capable. If it is
 required for the protocol to be future-proofed against the
 possibility that SYNs might one-day be ECN-capable, the proposal
 in Appendix B.1 could be adopted. This also provides earlier
 ECN-fall-back than would otherwise be possible.

 3. Section 3.3.1 says an AccECN implementation has to be prepared to
 read the SupAccECN field from either a TCP option or the Non-
 Urgent field. If the definition of the SupAccECN field changes
 between this experimental spec and the standards track spec, the
 structure of the Non-Urgent field will have to include a version
 number somehow.

 4. The Non-Urgent field might be used for something else in future
 rather than SupAccECN, despite the attempt to reserve it in this
 spec. Section 3.3.1 says "If a SupAccECN TCP option is present,
 the Non-Urgent field MUST be ignored.", which seems to correctly
 ensure that experimental implementations will not read the
 altered Non-Urgent field in this case. However, they will
 incorrectly read the Non-Urgent field if a future AccECN protocol
 uses a different TCP option.

 5. There is possibly a concern that, if the supplementary field is
 unavailable, the counter selection (Section 3.2.3) always uses
 the last codepoint in a delayed ACK, which may starve visibility
 of other counters.

 6. Counter Selection Algo #Alt2 Appendix A.2.2 needs to be altered
 to prevent the E1 counter being continually repeated when no
 ECT(1) codepoints are arriving at the Data Receiver.

 7. A production version of Counter Selection Algo #Alt1
Appendix A.2.1 needs to be developed that handles wrapping of the

 variables, without losing proportionality.

 8. Example algorithms need to be developed that decode the Top-
 ACE:ACE counters correctly when ACKs are reordered.

 9. The definition of the D-ECN field Section 3.3.2 and ECN fall-back
 more generally Appendix B.3 will need to be resolved before
 publication.

Appendix D. Changes in This Version (To Be Removed Before Publication)

 The difference between any pair of versions can be displayed at
 <http://datatracker.ietf.org/doc/draft-kuehlewind-tcpm-accurate-ecn/

history/>

http://datatracker.ietf.org/doc/draft-kuehlewind-tcpm-accurate-ecn/history/
http://datatracker.ietf.org/doc/draft-kuehlewind-tcpm-accurate-ecn/history/

Briscoe, et al. Expires January 3, 2015 [Page 54]

Internet-Draft Accurate TCP-ECN Feedback July 2014

 From 02 to 03:

 * Extensively rewritten. No summary of changes has been
 prepared.

Authors' Addresses

 Bob Briscoe
 BT
 B54/77, Adastral Park
 Martlesham Heath
 Ipswich IP5 3RE
 UK

 Phone: +44 1473 645196
 EMail: bob.briscoe@bt.com
 URI: http://bobbriscoe.net/

 Richard Scheffenegger
 NetApp, Inc.
 Am Euro Platz 2
 Vienna 1120
 Austria

 Phone: +43 1 3676811 3146
 EMail: rs@netapp.com

 Mirja Kuehlewind
 University of Stuttgart
 Pfaffenwaldring 47
 Stuttgart 70569
 Germany

 EMail: mirja.kuehlewind@ikr.uni-stuttgart.de

http://bobbriscoe.net/

Briscoe, et al. Expires January 3, 2015 [Page 55]

