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Abstract

   Explicit Congestion Notification (ECN) is a mechanism where network
   nodes can mark IP packets instead of dropping them to indicate
   incipient congestion to the end-points.  Receivers with an ECN-
   capable transport protocol feed back this information to the sender.
   ECN is specified for TCP in such a way that only one feedback signal
   can be transmitted per Round-Trip Time (RTT).  Recently, new TCP
   mechanisms like Congestion Exposure (ConEx) or Data Center TCP
   (DCTCP) need more accurate ECN feedback information whenever more
   than one marking is received in one RTT.  This document specifies an
   experimental scheme to provide more than one feedback signal per RTT
   in the TCP header.  Given TCP header space is scarce, it overloads
   the three existing ECN-related flags in the TCP header.  Also, to
   improve robustness it uses 15 more bits if available.  For initial
   experiments it places these in a TCP option.  However, if the Urgent
   flag is cleared, zero header overhead could be achieved by reusing
   the Urgent Pointer opportunistically.  Therefore this document
   reserves space in the Urgent Pointer to be used if the protocol
   progresses to the standards track.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."
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   This Internet-Draft will expire on January 3, 2015.

Copyright Notice

   Copyright (c) 2014 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   Explicit Congestion Notification (ECN) [RFC3168] is a mechanism where
   network nodes can mark IP packets instead of dropping them to
   indicate incipient congestion to the end-points.  Receivers with an
   ECN-capable transport protocol feed back this information to the
   sender.  ECN is specified for TCP in such a way that only one
   feedback signal can be transmitted per Round-Trip Time (RTT).
   Recently, proposed mechanisms like Congestion Exposure (ConEx
   [I-D.ietf-conex-abstract-mech]) or DCTCP [I-D.bensley-tcpm-dctcp]
   need more accurate ECN feedback information whenever more than one
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   marking is received in one RTT.  A fuller treatment of the motivation
   for this specification is given in [I-D.ietf-tcpm-accecn-reqs].

   This documents specifies an experimental scheme for ECN feedback in
   the TCP header to provide more than one feedback signal per RTT.  It
   will be called the more accurate ECN feedback scheme, or AccECN for
   short.  If AccECN progresses from experimental to the standards
   track, it is intended to be a complete replacement for classic ECN
   feedback, not a fork in the design of TCP.  Thus, the applicability
   of AccECN is intended to include all public and private IP networks
   (and even any non-IP networks over which TCP is used today).  Until
   the AccECN experiment succeeds, [RFC3168] will remain as the
   standards track specification for adding ECN to TCP.  To avoid
   confusion we call the ECN specification of [RFC3168] 'classic ECN' in
   this document.

   AccECN is solely an (experimental) change to the TCP wire protocol.
   It is completely independent of how TCP might respond to congestion
   feedback.  This specification overloads flags and fields in the main
   TCP header with new definitions, so both ends have to support the new
   wire protocol before it can be used.  Therefore during the TCP
   handshake the two ends use the three ECN-related flags in the TCP
   header to negotiate the most advanced feedback protocol that they can
   both support.

1.1.  Document Roadmap

   The following introductory sections outline the goals of AccECN
   (Section 1.2) and the goal of experiments with ECN (Section 1.3) so
   that it is clear what success would look like.  Then terminology is
   defined (Section 1.4) and a recap of existing prerequisite technology
   is given (Section 1.5).

Section 2 gives an informative overview of the AccECN protocol.  Then
Section 3 gives the normative protocol specification.  Section 4

   assesses the interaction of AccECN with commonly used variants of
   TCP, whether standardised or not.  Section 5 summarises the features
   and properties of AccECN.

Section 6 summarises the protocol fields and numbers that IANA will
   need to assign and Section 7 points to the aspects of the protocol
   that will be of interest to the security community, as well as
   discussing additional security-related issues.

   The following aspects are relegated to appendices:

   o  Appendix A: Pseudocode examples for the various algorithms that
      AccECN uses;

https://datatracker.ietf.org/doc/html/rfc3168
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   o  Then three appendices for use during document development that
      will be deleted before publication {ToDo: Delete this list before
      publication}:

      *  Appendix B: Protocol design alternatives that could be
         considered for inclusion in the main specification;

      *  Appendix C: a 'To Do' list of open protocol design issues;

      *  Appendix D: Document change log.

1.2.  Goals

   [I-D.ietf-tcpm-accecn-reqs] enumerates requirements that a candidate
   feedback scheme will need to satisfy, under the headings: resilience,
   timeliness, integrity, accuracy (including ordering and lack of
   bias), complexity, overhead and compatibility (both backward and
   forward).  It recognises that a perfect scheme that fully satisfies
   all the requirements is unlikely and trade-offs between requirements
   are likely.  Section 5 presents the properties of AccECN against
   these requirements and discusses the trade-offs made.

   The requirements document recognises that a protocol as ubiquitous as
   TCP needs to be able to serve as-yet-unspecified requirements.
   Therefore an AccECN receiver aims to act as a generic reflector of
   congestion information so that in future new sender behaviours can be
   deployed unilaterally.

1.3.  Experiment Goals

   TCP is critical to the robust functioning of the Internet, therefore
   any proposed modifications to TCP need to be thoroughly tested.  The
   present specification describes an experimental protocol that adds
   more accurate ECN feedback to the TCP protocol.  The intention is to
   specify the protocol sufficiently so that more than one
   implementation can be built in order to test its function, robustness
   and interoperability (with itself and with previous version of ECN
   and TCP).

   Success criteria:   The experimental protocol will be considered
      successful if it satisfies the requirements of
      [I-D.ietf-tcpm-accecn-reqs] in the consensus opinion of the IETF
      tcpm working group.  In short, this requires that it improves the
      accuracy and timeliness of TCP's ECN feedback, as claimed in

Section 5, while striking a balance between the conflicting
      requirements of resilience, integrity and minimisation of
      overhead.  It also requires that it is not unduly complex, and
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      that it is compatible with prevalent equipment behaviours in the
      current Internet, whether or not they comply with standards.

   Duration:   To be credible, the experiment will need to last at least
      12 months from publication of the present specification.  At that
      time, a report on the experiment will be written up.  If
      successful, it would then be appropriate to work on a standards
      track specification that adds more accurate ECN feedback to TCP.

1.4.  Terminology

   AccECN:  The more accurate ECN feedback scheme will be called AccECN
      for short.

   Classic ECN:  the ECN scheme as specified in [RFC3168].

   ACK:  A TCP acknowledgement, with or without a data payload.

   Pure ACK:  A TCP acknowledgement without a data payload.

   SupAccECN:  The Supplementary Accurate ECN field that provides
      additional resilience as well as information about the ordering of
      ECN markings covered by a delayed ACK.

   Data receiver:  The endpoint of a TCP half-connection that receives
      data and sends AccECN feedback.

   Data sender:  The endpoint of a TCP half-connection that sends data
      and receives AccECN feedback.

   Outgoing AccECN Protocol Handler (or, Outgoing Protocol Handler):
      The protocol handler at the Data Receiver that marshals the AccECN
      fields when sending an ACK.

   Incoming AccECN Protocol Handler (or, Incoming Protocol Handler):
      The protocol handler at the Data Sender that reads the AccECN
      fields when receiving an ACK.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

1.5.  Recap of Existing ECN feedback in IP/TCP

   ECN [RFC3168] requires two bits in the IP header.  Prior to the
   specification of ECN, these two bits were always zero, which is
   called Not-ECT.  An ECN sender can set two possible codepoints
   (ECT(0) or ECT(1)) to indicate an ECN-capable transport (ECT).  It is

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
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   prohibited from doing so unless it has checked that the receiver will
   understand ECN and be able to feed it back.  A network node can set
   both bits simultaneously when it experiences congestion, which is
   termed 'Congestion Experienced' (CE), or loosely a 'congestion mark'.
   Table 1 summarises these codepoints.

   +---------------+-----------+-----------+---------------------------+
   | IP-ECN        | Codepoint | Abbrev-   | Description               |
   | codepoint     | name      | iation    |                           |
   | (binary)      |           |           |                           |
   +---------------+-----------+-----------+---------------------------+
   | 00            | Not-ECT   | N         | Not ECN-Capable Transport |
   | 01            | ECT(1)    | 1         | ECN-Capable Transport (1) |
   | 10            | ECT(0)    | 0         | ECN-Capable Transport (0) |
   | 11            | CE        | C         | Congestion Experienced    |
   +---------------+-----------+-----------+---------------------------+

                  Table 1: The ECN Field in the IP Header

   In the TCP header the first two bits in byte 14 are defined as flags
   for the use of ECN (CWR and ECE in Figure 1).  On reception of a CE-
   marked packet at the IP layer, the Data Receiver starts to set the
   Echo Congestion Experienced (ECE) flag continuously in the TCP header
   of ACKs, which ensures the signal is received reliably even if ACKs
   are lost.  The TCP sender confirms that it has received at least one
   ECE signal by responding with the congestion window reduced (CWR)
   flag, which allows the TCP receiver to stop repeating the ECN-Echo
   flag.  This always leads to a full RTT of ACKs with ECE set.  Thus
   any additional CE markings arriving within this RTT cannot be fed
   back.

   The ECN Nonce [RFC3540] is an optional experimental addition to ECN
   that the TCP sender can use to protect against accidental or
   malicious concealment of marked or dropped packets.  The sender can
   send an ECN nonce, which is a continuous pseudo-random pattern of
   ECT(0) and ECT(1) codepoints in the ECN field.  The receiver is
   required to feed back a 1-bit nonce sum that counts the occurrence of
   ECT(1) packets using the last bit of byte 13 in the TCP header, which
   is defined as the Nonce Sum (NS) flag.

       0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
     +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
     |               |           | N | C | E | U | A | P | R | S | F |
     | Header Length | Reserved  | S | W | C | R | C | S | S | Y | I |
     |               |           |   | R | E | G | K | H | T | N | N |
     +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

     Figure 1: The (post-ECN Nonce) definition of the TCP header flags

https://datatracker.ietf.org/doc/html/rfc3540
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2.  AccECN Protocol Overview

   This section provides an informative overview of the AccECN protocol
   that will be normatively specified in Section 3.

2.1.  Essential and Supplementary Parts

   Given limitations on the space available for TCP options and given
   the possibility that certain incorrectly designed middleboxes prevent
   TCP using any new options, the AccECN protocol has had to be designed
   in two parts:

   o  an essential part that provides more accurate ECN feedback than
      classic ECN with limited resilience against ACK loss;

   o  a supplementary part that serves three functions:

      *  it greatly improves the resilience of AccECN feedback
         information against loss of ACKs;

      *  it provides information about the order in which ECN markings
         in the IP header arrived at the Data Receiver;

      *  it improves the timeliness of AccECN feedback when a delayed
         ACK covers multiple congestion signals.

   The essential part overloads the previous definition of the three
   flags in the TCP header that had been assigned for use by ECN.  This
   design choice deliberately replaces the classic ECN feedback
   protocol, rather than leaving classic ECN intact and adding more
   accurate feedback separately:

   o  because this efficiently reuses scarce TCP header space, given TCP
      option space is approaching saturation;

   o  because a single upgrade path for the TCP protocol is preferable
      to a fork in the design;

   o  because otherwise classic and accurate ECN feedback could give
      conflicting feedback on the same segment, which could open up new
      security concerns and make implementations unnecessarily complex;

   o  because middleboxes are more likely to faithfully forward the TCP
      ECN flags than newly defined areas of the TCP header.

   AccECN is designed to work even if the supplementary part is removed
   or zeroed out, as long as the essential part gets through.  The
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   supplementary part is carried in a field called Supplementary
   Accurate ECN (SupAccECN).

   It is eventually intended that the SupAccECN field would be placed
   within the main TCP header, by overloading the Urgent Pointer in any
   segment with URG = 0.  However, it would be presumptuous to reassign
   bits in the main TCP header on an experimental basis.  Therefore,
   this specification reserves sufficient bits within the Urgent Pointer
   (when URG = 0) for use by AccECN if it reaches the standards track.
   For the present AccECN experiments, this specification defines an
   experimental TCP option to carry SupAccECN instead.

   When URG = 0, the Urgent Pointer field cannot be used as an Urgent
   Pointer.  Therefore, this specification gives it a new name when URG
   = 0, defining it as the Non-Urgent field.  This specification also
   establishes an IANA registry for future standards actions to assign
   values in this newly defined Non-Urgent field.

   In order to ease a future transition from experiment to standards
   track, the Incoming Protocol Handler of all AccECN implementations is
   required to be able to read the SupAccECN field whether it arrives in
   a TCP Option or within the Non-Urgent field.  However, for the
   present experimental specification, an AccECN implementation is
   forbidden from writing into the Non-Urgent field.

   Reserving the Non-Urgent field for future use by AccECN is justified,
   because the Non-Urgent field cannot always be guaranteed to be
   available.  AccECN is unusual in that it is designed to work
   reasonably well even if the supplementary part is sometimes missing.
   Therefore, on the rare segments when the Urgent Pointer is needed for
   its original purpose, URG=1 can still be set and AccECN will still
   work.  However, a future standards action can overload part of the
   Non-Urgent field for use by AccECN, whenever URG=0.

2.2.  Capability Negotiation

   AccECN is a change to the wire protocol of the main TCP header,
   therefore it can only be used if both endpoints have been upgraded to
   understand it.  The client signals support for AccECN on the initial
   SYN of a connection and the server signals whether it supports AccECN
   on the SYN/ACK.  The TCP flags on the SYN that the client uses to
   signal AccECN support have been carefully chosen so that a server
   will interpret them as a request to support the most advanced variant
   of ECN that it supports.  Then the client falls back to the same ECN
   variant.

   The above negotiation uses the three ECN-related flags in the TCP
   header and determines if both ends support the essential part of
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   AccECN.  On segments after the SYN/ACK, the SupAccECN field is used
   to determine whether the supplementary part of AccECN is usable over
   each half-connection.  No supplementary part is needed on the initial
   SYN.  A proposal to include a supplementary AccECN field on the SYN/
   ACK is included in Appendix B.1.

2.3.  Two Complementary Feedback Methods

   Each AccECN half-connection uses two complementary methods to feed
   back ECN markings:

   Cumulative Counters:  A Data Receiver maintains three counters for
      the number of CE, ECT(1) and Not-ECT codepoints received since the
      start of the half-connection.  In each ACK it places one of these
      counters, reduced in size by a suitable modulo operation.  The
      Data Sender reads each counter in order to update its own three
      respective counters, which it uses to track the three counters at
      the Data Receiver.  Of course, each endpoint takes the role of
      both Data Receiver and Data Sender, so each will maintain three
      counters as a receiver and three as a sender.  AccECN does not
      provide an explicit count of ECT(0) marks, but this can be
      inferred from the other feedback;

   Sequence List:  A list of the codepoints in the IP-ECN field of all
      the segments covered by a delayed ACK, in the order that they
      arrived at the Data Receiver.  This list also provides timely
      feedback of any congestion information other than the one covered
      by the single counter selected.

   TCP's traditional feedback is byte-based, whereas AccECN feedback is
   packet-based, which was a pragmatic choice to reduce feedback
   overhead, given each packet carries only one ECN mark.  AccECN aims
   to act as a sufficiently generic feedback reflector that can be
   applied for different uses by different TCP sender behaviours, both
   existing and in the future.

   If a particular sender behaviour needed to associate AccECN's
   feedback of each ECN marking with the size of the original packet
   that picked up the marking, there is enough information in AccECN
   feedback to do so, although perhaps imperfectly.  Similarly, if a
   sender behaviour needed to associate the feedback of each ECN marking
   with the timing of each packet it originally sent, that too ought to
   be possible.  Of course, the order of arrival at the receiver is not
   necessarily the order in which packets were sent, and the order in
   which ACKs return might be different again.  So, to apply AccECN to
   these more challenging tasks, the Data Sender would probably have to
   record the sizes and/or timings of packets in flight and combine
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   AccECN feedback with the cumulative acknowledgement numbers on each
   ACK as well as selective ACK (SACK) information [RFC2018].

   Whether such calculations are required or not is outside the scope of
   the present AccECN specification.  The role of AccECN is merely to
   ensure it would be possible for a Data Sender to reconstruct which
   segment carried which marking, not to mandate whether it should.  As
   long as AccECN reflects sufficient feedback information without
   excessive overhead, it fulfils its role.  One reason for the
   experimental status of the present specification is to establish
   whether the trade-off between accuracy and overhead has been pitched
   at the right level.

2.4.  Resilience Against ACK Loss

   Because the counter method repeats one of the accumulating counters
   on each ACK, if ACKs are lost, a counter in a subsequent ACK will
   still recover the lost information in a fairly timely fashion.

   There is very little space in the 3 bits available for the essential
   part of an AccECN acknowledgement, so each of the three counters can
   wrap fairly frequently.  Therefore, even if the counter appears to
   have incremented by one (say), the counter might have actually
   wrapped completely then incremented by one.  This is a possibility
   because the whole sequence of ACKs carrying the intervening values of
   the counter might all have been lost or delayed.  To be able to tell
   if a counter has wrapped, AccECN feeds back more significant bits of
   the counter within the supplementary part, making it resilient to ACK
   loss.

   The supplementary part includes the sequence of ECN codepoints
   covered by a delayed ACK (see below).  As well as providing ordering
   information, this provides more timely feedback when more than one
   counter has changed within the time covered by one delayed ACK.  It
   also provides resilience against the loss of a counter in a future
   ACK.

2.5.  Order of Arrival of IP-ECN Markings

   [RFC5681] recommends using delayed ACKs, so one acknowledgement will
   often carry feedback about the ECN markings on more than one segment.
   Therefore, ideally, AccECN is required to provide ordering
   information [I-D.ietf-tcpm-accecn-reqs].  However, a counter in each
   ACK only says how many more IP-ECN markings arrived since the last
   ACK, not the order in which they arrived.

   This might seem an unnecessary level of precision given [RFC5681]
   currently advises against delaying acknowledgement for more than two

https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc5681
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   full-sized segments.  However, a delayed ACK could cover multiple
   segments that are smaller than full-size.  Also, in practice one
   delayed ACK can cover many tens of packets that have all been
   coalesced into one large segment by large receive offload (LRO)
   hardware before being passed to the Data Receiver.  Therefore, the
   design of AccECN allows for future expansion of the number of
   segments that can be covered by one delayed ACK.

   Once the connection is in progress, in each ACK the Data Receiver
   encodes the sequence of IP-ECN markings covered by that ACK, which
   includes the number of segments covered by the delayed ACK.  The
   sequence does not need to include the last segment to arrive, because
   there is already sufficient information in the essential part of the
   feedback to infer that marking (by subtracting the markings in the
   list from the increment of the cumulative counter).

   AccECN uses a fixed size (10b) field for the sequence encoding.  This
   can communicate a sequence of up to 14 codepoints, not including the
   last segment.  The encoding is optimised for a selection of simple
   but common patterns.  If the pattern of arriving codepoints becomes
   too complex to encode in 10b, the Data Receiver has to emit an ACK
   and start a new sequence for the next ACK.  The scheme can always
   encode all the theoretically possible combinations of arriving
   codepoints in a delayed ACK covering 3 segments or less.

3.  AccECN Protocol Specification

3.1.  Negotiation during the TCP handshake

   During the TCP handshake at the start of a connection, to request
   more accurate ECN feedback the originator of the connection (host A)
   MUST set the TCP flags NS=1, CWR=1 and ECE=1 in the initial SYN
   segment.

   If a responding host (B) that implements AccECN receives a SYN with
   the above three flags set, it MUST set both its half connections into
   AccECN mode.  Then it MUST set the flags NS=0, CWR=1 and ECE=0 on its
   response in the SYN/ACK segment to confirm that it supports AccECN.
   The responding host MUST NOT set this combination of flags unless the
   preceding SYN requested support for AccECN as above.

   Once an originating host (A) has sent the above SYN to declare that
   it supports AccECN, and once it has received the above SYN/ACK
   segment that confirms that the responding host supports AccECN, the
   originating host MUST set both its half connections into AccECN mode.

   The three flags set to 1 to indicate AccECN support on the SYN have
   been carefully chosen to enable natural fall-back to prior stages in
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   the evolution of ECN.  Table 2 tabulates all the negotiation
   possibilities for ECN-related capabilities that involve at least one
   AccECN-capable host.  To compress the width of the table, the
   headings of the first four columns have been severely abbreviated, as
   follows:

   Ac: More *Ac*curate ECN Feedback

   N:  ECN-*N*once [RFC3540]

   E:  *E*CN [RFC3168]

   I:  Not-ECN (*I*mplicit congestion notification using packet drop).

     +----+---+---+---+------------+--------------+------------------+
     | Ac | N | E | I |  SYN A->B  | SYN/ACK B->A | Mode             |
     +----+---+---+---+------------+--------------+------------------+
     |    |   |   |   | NS CWR ECE |  NS CWR ECE  |                  |
     | AB |   |   |   | 1   1   1  |  0   1   0   | AccECN           |
     |    |   |   |   |            |              |                  |
     | A  | B |   |   | 1   1   1  |  1   0   1   | classic ECN      |
     | A  |   | B |   | 1   1   1  |  0   0   1   | classic ECN      |
     | A  |   |   | B | 1   1   1  |  0   0   0   | Not ECN          |
     | A  |   |   | B | 1   1   1  |  1   1   1   | Not ECN (broken) |
     |    |   |   |   |            |              |                  |
     | B  | A |   |   | 0   1   1  |  0   0   1   | classic ECN      |
     | B  |   | A |   | 0   1   1  |  0   0   1   | classic ECN      |
     | B  |   |   | A | 0   0   0  |  0   0   0   | Not ECN          |
     |    |   |   |   |            |              |                  |
     | A  |   |   |   | 1   1   1  |  0   1   1   | AccECN (Rsvd)    |
     | A  |   |   |   | 1   1   1  |  1   0   0   | AccECN (Rsvd)    |
     | A  |   |   |   | 1   1   1  |  1   1   0   | AccECN (Rsvd)    |
     +----+---+---+---+------------+--------------+------------------+

      Table 2: ECN capability negotiation between Originator (A) and
                               Responder (B)

   Table 2 is divided into blocks each separated by an empty row.

   1.  The top block shows the case already described where both
       endpoints support AccECN.

   2.  The second block shows the cases where the originating host (A)
       supports AccECN but the responding host (B) supports some earlier
       variant of TCP, indicated in its SYN/ACK.  Therefore, as soon as
       an originating AccECN-capable host (A) receives the SYN/ACK shown
       it MUST set both its half connections into the mode shown in the
       rightmost column.

https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc3168
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   3.  The third block shows the cases where the responding host (B)
       supports AccECN but the originating host (A) supports some
       earlier variant of TCP, indicated in its SYN.  Therefore, as soon
       as responding AccECN-capable host (B) receives the SYN shown it
       MUST set both its half connections into the mode shown in the
       rightmost column.

   4.  Forward Compatibility: The fourth block enumerates the remaining
       combinations of AccECN-related flags that are Reserved for future
       use by AccECN ('Rsvd').

       *  If an originating AccECN host (A) sends NS=1, CWR=1 and ECE=1
          in the initial SYN segment and if it receives any of these
          Reserved values in a SYN/ACK response, it MUST set both its
          half connections into AccECN mode.

          {ToDo: Can we think of anything now that an AccECN server
          could use any of these Reserved combinations of flags for, to
          signal something extra for the whole connection?  If not,
          rather than Reserved, we need to decide whether to make these
          combinations Rsvd and therefore not switch to AccECN mode.}

       *  To comply with the present AccECN protocol, middleboxes MUST
          forward these Rsvd combinations of flags unaltered (see also

Section 3.7).

   The table is self-explanatory in most respects, but the following
   exceptional cases need some explanation.

   Not ECN (broken):  [RFC3168] points out that broken TCP server
      implementations exist that reflect the 'reserved' flags [RFC0793]
      back to the originator.  If the SYN/ACK reflects the same flag
      settings as the preceding SYN, an AccECN client implementation
      MUST revert to Not-ECT.

   ECN Nonce:  An AccECN implementation, whether client or server,
      sender or receiver, does not need to implement the ECN Nonce
      behaviour [RFC3540].  AccECN is compatible with a sender-only ECN
      feedback integrity approach that does not use up the ECT(1)
      codepoint (see Section 3.3.5).

   Simultaneous Open:  An originating AccECN Host (A), having sent a SYN
      with NS=1, CWR=1 and ECE=1, might receive another SYN from host B.
      Host A MUST then enter the same mode as it would have entered had
      it been a responding host and received the same SYN.  Then host A
      MUST send the same SYN/ACK as it would have sent had it been a
      responding host (see the third block above).

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc3540
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3.2.  Essential AccECN Feedback

   This section specifies the essential part of AccECN feedback,
   including its placement and the encoding of the counters.

3.2.1.  The ACE Field

   Once AccECN has been negotiated for a connection, it overloads the
   three TCP flags ECE, CWR and NS in the main TCP header as one 3-bit
   field to encode 8 distinct codepoints.  Then the field is given a new
   name, ACE, as shown in Figure 2.  The original definition of these
   three flags in the TCP header, including the addition of support for
   the ECN Nonce, is shown for comparison in Figure 1.  This
   specification does not rename these three TCP flags, it merely
   overloads them with another name and definition once an AccECN
   connection has been established.

   A host MUST interpret the ECE, CWR and NS flags as the 3-bit ACE
   counter on a segment with SYN=0 that it sends or receives after it
   has set both its half-connections into AccECN mode having
   successfully negotiated AccECN (see Section 3.1).  A host MUST NOT
   interpret the 3 flags as a 3-bit ACE field on any segment with SYN=1
   (whether ACK is 0 or 1), or if AccECN negotiation is incomplete or
   has not succeeded.

   Both parts of each of these conditions are equally important.  For
   instance, even if AccECN negotiation has been successful, the ACE
   field is not defined on any segments with SYN=1 (e.g. a
   retransmission of an unacknowledged SYN/ACK, or when both ends send
   SYN/ACKs after AccECN support has been successfully negotiated during
   a simultaneous open).

       0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
     +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
     |               |           |           | U | A | P | R | S | F |
     | Header Length | Reserved  |    ACE    | R | C | S | S | Y | I |
     |               |           |           | G | K | H | T | N | N |
     +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

    Figure 2: Definition of the ACE field within bytes 13 and 14 of the
          TCP Header (when AccECN has been negotiated and SYN=0).

   The Data Receiver maintains three counters, r.ci, r.e1 and r.ni, to
   count the number of packets it receives with respectively the CE,
   ECT(1) and Not-ECT codepoint in the IP-ECN field.  When a Data
   Receiver first enters AccECN mode, it MUST initialise its counters to
   zero.  The Outgoing Protocol Handler at the Data Receiver uses the
   ACE field to encode one of these counters at a time into each ACK.
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   How it determines which counter to signal on any particular ACK is
   specified later (Section 3.2.3).

   The 8 possible codepoints of the ACE field are shown in Table 3.  A
   Data Receiver uses four of them to encode a 'Congestion Indication'
   (CI) counter for CE markings and three to encode E1 for ECT(1)
   markings.  It uses the eighth codepoint to feed back the arrival of
   Not-ECT in the IP-ECN field using a codepoint termed NI (Not-ECT
   Indication).  We will now use an example to explain how ACE is
   encoded by the Outgoing Protocol Handler and decoded by the Incoming
   Protocol Handler.

   +-----------+----------------+------------------+-------------------+
   | ACE (base |  CI (base 4)   | E1 (base 3) for  | NI (base 1) for   |
   |     2)    |     for CE     |      ECT(1)      | Not-ECT           |
   +-----------+----------------+------------------+-------------------+
   |    000    |       0        |        -         | -                 |
   |    001    |       1        |        -         | -                 |
   |    010    |       2        |        -         | -                 |
   |    011    |       3        |        -         | -                 |
   |    100    |       -        |        0         | -                 |
   |    101    |       -        |        1         | -                 |
   |    110    |       -        |        2         | -                 |
   |    111    |       -        |        -         | 0                 |
   +-----------+----------------+------------------+-------------------+

      Table 3: Codepoint assignments in the ACE field for feedback of
                            congestion counters

   Encode: Imagine that the E1 counter is the next to be signalled and
   r.e1 = 17.  Then, because the E1 counter is base 3, the Data Receiver
   calculates

       E1 = 17 % 3
          = 2

   So it looks up E1=2 in Table 3 to get the codepoint to set in ACE,
   which is 0b110.

   Decode: The Data Sender maintains three counters, s.ci, s.e1 and s.ni
   and it uses the incoming codepoints in ACE to ensure these track the
   equivalent counters at the receiver.  Imagine the s.e1 counter at the
   Data Sender has currently reached 16 when the 0b110 codepoint arrives
   via the ACE field.  The Data Sender looks up 0b110 in Table 3 to get
   E1 = 2.  It finds the difference between s.e1 and E1 using modulo 3
   arithmetic, then adds the difference to s.e1, as follows:
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       delta_s.e1 = (E1 + 3 - s.e1 % 3) % 3
                  = (2 + 3 - 16 % 3) % 3
                  = 1
       =>  s.e1 = s.e1 + delta_s.e1
                = 16 + 1
                = 17

3.2.2.  Safety against Ambiguity of the ACE Field

   Clearly, the CI, E1 and NI counters will frequently wrap given the
   size of the space available to encode them is so small.  If a number
   of ACKs in a row are lost, the Data Sender might not be able to tell
   whether one of these counters has wrapped or not.

   The supplementary part of AccECN provides more space to signal higher
   bits of these counters, which gives resilience against ACK loss
   (Section 3.3.3).  However, the supplementary part of the AccECN
   protocol might be unavailable (perhaps due to middlebox
   interference).

   Therefore, if the Data Sender detects that these fields could have
   wrapped, it SHOULD behave conservatively.  That is, if the AccECN
   sender detects that the supplementary part of the AccECN protocol is
   unavailable, and it detects a jump in the acknowledgement number that
   implies that so many ACKs are missing that a counter could have
   wrapped under the prevailing conditions, it SHOULD decode the counter
   assuming that the counter did wrap.  If missing acknowledgement
   numbers arrive later (reordering) and prove that the counter did not
   wrap, the Data Sender MAY attempt to neutralise the effect of any
   action it took based on a conservative assumption that it later found
   to be incorrect.

   An example algorithm to implement this policy is given in
Appendix A.1.  An implementer MAY develop an alternative algorithm as

   long as it satisfies these requirements.

3.2.3.  ACE Counter Selection

   If the Data Receiver implements ACK-withholding as recommended in
   [RFC5681], more than one counter could have incremented before
   sending each ACK.  It follows the steps below to determine which
   counter to encode in the ACE field:

   1.  If the last IP-ECN field that arrived was CE, ECT(1) or Not-ECT,
       the Data Receiver MUST encode the associated counter in the ACE
       field, i.e. respectively CI, E1 or Not-ECT;

https://datatracker.ietf.org/doc/html/rfc5681
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   2.  If the last IP-ECN field that arrived was ECT(0), the Data
       Receiver can signal either the CI or the E1 counter:

       *  The choice of which to signal SHOULD be based on the principle
          that the more one counter has changed recently the more it
          SHOULD be signalled;

       *  If there is a tie between CI and E1, CI MUST take precedence.

Appendix A.2 suggests two possible algorithms that could be used to
   determine which counter to encode in ACE.  An implementer MAY develop
   an alternative algorithm as long as it meets the requirements in the
   three steps above.

   If an AccECN Data Sender has to retransmit a packet due to a
   suspected loss, in its role as a Data Receiver it will piggy-back
   AccECN feedback on the retransmitted packet.  On a retransmitted
   packet, a Data Receiver MUST select which counter to send using the
   rules in the above three steps and encode the latest prevailing value
   of the selected counter, which will not necessarily be the same
   counter that the packet carried originally, nor the original value of
   that counter.

   There is no standards track end-to-end definition of the ECT(1)
   codepoint of the IP-ECN field.  Nonetheless, to comply with this
   specification, an AccECN Data Receiver MUST implement and reflect the
   ECT(1) counter as specified here.  Then, a standards track definition
   of the ECT(1) codepoint can be defined in future and be deployed
   unilaterally in Data Senders, without having to wait for associated
   receivers to be deployed.  The above rules ensure that a Data
   Receiver will only feed back the ECT(1) counter if some packets
   marked with ECT(1) are arriving.

   At the Data Sender, the Incoming AccECN Protocol Handler MUST be able
   to receive feedback of E1 codepoints, but the Data Sender MAY discard
   them (it might not have any logic to understand what to do with
   them).  However, if an Incoming AccECN Protocol Handler is running
   back-to-back with an Outgoing AccECN Protocol handler (e.g.  to
   implement a split TCP connection), it MUST forward the values of all
   AccECN counters including E1, and not discard any.

   {ToDo: Refer if necessary to Section 3.4).

3.3.  The Supplementary AccECN Field (SupAccECN)

   This section defines the size, placement and internal structure of
   the Supplementary AccECN field (SupAccECN), as well as the semantics
   of the sub-fields within it.  The internal structure of the SupAccECN
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   field is agnostic to where it is placed in the TCP header, so that it
   can be moved during planned evolution of the protocol.  The protocol
   overview in Section 2 explains that the field is placed in a TCP
   option for initial experiments, but if it progresses to the standards
   track, it is planned to place it in the main TCP header, using some
   of the bits in the Urgent Pointer (when URG=0).

3.3.1.  Placement of the SupAccECN Field

   The Outgoing AccECN Protocol Handler at a Data Receiver MUST place
   the SupAccECN field in a SupAccECN TCP option (Section 3.3.1.1).

   Forward compatibility: If the SupAccECN TCP option (Section 3.3.1.1)
   is absent, the Incoming AccECN Protocol Handler at a Data Sender MUST
   attempt to read the SupAccECN field from within the Non-Urgent field
   (Section 3.3.1.2).

3.3.1.1.  The SupAccECN TCP Option

   The Data Receiver MUST set the Kind field to 0x<KK> (TBA), which is
   registered in Section 6.1 as a new TCP option Kind called SupAccECN.
   An experimental TCP option with Kind=254 MAY be used for initial
   experiments, with magic number 0xACCE.

   The Data Receiver MUST set the Length field to 4 [octets] on any
   segment with SYN=0.  For initial experiments, the Length field MUST
   be 2 greater to accommodate the 16-bit magic number.  In either case,
   the Data Receiver MUST pad the most significant bit with zeros up to
   a whole number of octets, as illustrated in Figure 3.  This padding
   bit is currently unused (CU).

   Forward compatibility: To comply with the present AccECN
   specification:

   o  the Incoming AccECN Protocol Handler at the Data Sender MUST
      ignore the padding bit, whether it is set to zero or not;

   o  if the Length field of the TCP option is greater than that
      expected from the paragraph above, a Data Sender MUST take the
      SupAccECN field to be aligned with the right hand end (least
      significant bit) of the TCP Option as calculated using the Length
      field;

   o  if the Length value is less than that expected from the paragraph
      above, the Incoming AccECN Protocol Handler at the Data Sender
      MUST discard the segment;
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   o  a middlebox MUST forward the padding bit unaltered, whether it is
      set to zero or not;

   o  if the Length value is different to that expected from the
      paragraph above (whether larger or smaller), a middlebox MUST
      still forward the TCP option unaltered.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ a)
   |  Kind = 0xKK  |  Length = 4   |0|        SupAccECN            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Kind = 254   |  Length = 6   |     magic number = 0xACCE     | b)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0|        SupAccECN            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    a) Using the permanently assigned TCP option Kind 0x<KK> (TBA); b)
          Using a Shared TCP Option Kind for Initial Experiments

    Figure 3: Placement of the SupAccECN field within the SupAccECN TCP
                      Option on a Segment with SYN=0

3.3.1.2.  The Non-Urgent Field

   If the Urgent (URG) flag in the TCP header [RFC0793] is zero, this
   specification experimentally renames the Urgent Pointer (bytes 19 and
   20 counting from 1 of the TCP header) as the Non-Urgent field.  If
   URG = 1, this 16 bit field keeps its original name and definition
   from [RFC0793] as the Urgent Pointer.  Bytes 13 to 20 of the TCP
   header when URG=0 are illustrated in Figure 4, which shows the new
   experimental definition of the Non-Urgent Field.

   Note that the new experimental definition of the Non-Urgent field is
   intended for wider use than just AccECN, which is why it solely
   depends on the URG flag and it is independent of whether AccECN has
   been negotiated or not.

Section 6.2 establishes a new registry to assign values within this
   Non-Urgent field.  Section 6.2 also reserves space for a future
   standards track AccECN specification within this field.

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0793
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       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       ...
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Data |Res- |N|C|E|U|A|P|R|S|F|                               |
      | Offset|erved|S|W|C|R|C|S|S|Y|I|            Window             |
      |       |     | |R|E|G|K|H|T|N|N|                               |
      |       |     | | | |=| | | | | |                               |
      |       |     | | | |0| | | | | |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Checksum            |           Non-Urgent          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       ...

   Figure 4: Experimental Renaming of the TCP Urgent Pointer (bytes 19 &
                  20) as the Non-Urgent field when URG=0

   As required in Section 3.3.1, the Outgoing Protocol Handler of the
   present AccECN specification never writes into the Non-Urgent field.
   Nonetheless, the Incoming AccECN Protocol Handler can read the
   SupAccECN field from within the Non-Urgent field.

   When reading the Non-Urgent field, AccECN implementations MUST take
   the SupAccECN field to be right-justified (i.e. the least significant
   bit of SupAccECN is aligned with the least significant bit of the
   Non-Urgent Field) as shown in Figure 5.  The remaining most
   significant bit is currently unused (CU).

         0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
       +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
       | X |                         SupAccECN                         |
       +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

     Figure 5: Placement of the SupAccECN field within the Non-Urgent
                       field of a segment with SYN=0

   Forward compatibility: To comply with the present AccECN
   specification:

   o  the Incoming Protocol Handler of an AccECN Data Sender MUST ignore
      the remaining most significant bit in the Non-Urgent field (shown
      as X in Figure 5 meaning "Don't care");

   o  middleboxes MUST forward the most significant bit unaltered,
      whether it is set to zero or not.
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3.3.2.  Structure of the SupAccECN Field

   This section defines the structure of the Supplementary AccECN field
   (SupAccECN) for SYN/ACKs and for subsequent segments within each
   half-connection.  There is no SupAccECN field in the initial SYN
   segment.

   The size of the SupAccECN field on a segment with SYN = 0 is always
   15 bits.  Figure 6 shows the internal structure of the SupAccECN
   field on any segment with SYN = 0 including the ACK that ends the
   3-way handshake.

     0   1   2   3   4   5   6   7   8   9  10  11  12  13  14
   +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
   |DAC|                  ESQ                  |    Top-ACE    |
   +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

    Figure 6: The Supplementary AccECN Field on a Segment with SYN = 0

   The sub-fields of SupAccECN on a segment with SYN = 0 have the
   following meanings:

   Top-ACE:  Higher significant bits of the counter in ACE within the
      same segment (defined in Section 3.3.3).

   ESQ:  The ECN Sequence field (defined in Section 3.3.4).

   DAC:  Reserved for Delayed ACK Control (see Appendix B.4).

      Forward Compatibility: In the meantime, the Outgoing AccECN
      Protocol Handler MUST set DAC to zero (0); the Incoming AccECN
      Protocol Handler MUST ignore this flag; and middleboxes MUST
      forward this flag unaltered whether or not it is zero.

3.3.3.  Higher Resilience Congestion Counters (Top-ACE)

   Four codepoints are set aside for the CI counter in the ACE field to
   provide reasonable resilience under expected marking and loss
   regimes.  However, resilience against more extreme levels of CE
   marking, return ACK loss or ACK thinning really requires more space
   than the 3 bits taken from existing TCP flags for the ACE counter.
   At the same time, is it not necessary to deliver higher order bits
   with every returned segment, or even reliably at all.

   Therefore on segments with SYN=0, the least significant four bits of
   the Supplementary AccECN field are defined as the 'Top ACE' field, as
   illustrated in Figure 6.  Whenever an AccECN implementation encodes a
   counter in ACE, it MUST also encode the higher precision bits of the
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   same counter in the Top-ACE field of the same segment, using the
   following rules:

   o  Top-ACE MUST be initialised to 0 at the start of each half-
      connection.

   o  Whenever the CI counter (base 4) in ACE wraps, the associated Top-
      ACE MUST increment by 1.

   o  Similarly, whenever the E1 counter (base 3) in ACE wraps, Top-ACE
      MUST increment by 1.

   o  The NI counter in ACE is base 1, so it can hardly be called a
      counter.  The presence of the NI counter in ACE MUST be
      interpreted as an indication that the associated Top-ACE field in
      the same segment has incremented, because Top-ACE on its own
      represents the NI counter.

   Formulae for encoding and decoding the counters CI, E1 or NI into the
   Top-ACE and ACE fields are given in Appendix A.3, which also includes
   numerical examples.

   The 4 bits in the Top-ACE field multiply the number of distinct
   codepoints for each counter by 2^4 = 16.  Using Top-ACE therefore
   increases the numbers of distinct codepoints for each counter as
   follows:

   +---------------------+-----------------+---------------------------+
   | Counter             | codepoints in   | codepoints in Top-ACE     |
   |                     | ACE             | with ACE                  |
   +---------------------+-----------------+---------------------------+
   | CI (counts CE)      | 4               | 16 * 4 = 64               |
   | E1 (counts ECT(1))  | 3               | 16 * 3 = 48               |
   | NI (counts Not-ECT) | 1               | 16 * 1 = 16               |
   +---------------------+-----------------+---------------------------+

   Top-ACE hugely improves the resilience of AccECN against ambiguity of
   counters due to ACK loss, compared with that of ACE alone (quantified
   in Appendix A.1).  With Top-ACE, the AccECN protocol can lose a whole
   string of ACKs covering up to 64 - 1 = 63 congestion indications
   without becoming ambiguous.  Similarly AccECN is robust to losing a
   whole string of ACKs covering 47 ECT(1) markings or 15 Not-ECT
   markings.  If, for example, about 1 in 100 data packets were marked
   with a CE codepoint on the forward path, all the ACKs covering about
   100 * 63 = 6,300 segments would have to be missing from the reverse
   path before AccECN would become ambiguous.  If just one of these ACKs
   got through, it would resolve any ambiguity.
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3.3.4.  Accurate ECN Sequence within Delayed ACKs

   Given each delayed ACK can cover multiple segments, a Data Receiver
   needs to describe the order in which the ECN codepoints arrived.
   AccECN uses a 10-bit ECN Sequence (ESQ) field to encode this
   ordering.  This section explains the encoding.  An example encoding
   algorithm in pseudocode is given in Appendix A.4.  Implementations
   MAY develop their own encoding algorithm as long as it complies with
   the requirements in this section.

   Once the TCP 3-way handshake has completed, an AccECN Data Receiver
   can defer an ACK until one of these three tests does not pass:

   1.  The number of deferred bytes exceeds a configured limit
       (currently two full-sized segments [RFC5681]);

   2.  The longest time for which an ACK has been delayed exceeds a
       configured limit (currently 500ms [RFC5681]);

   3.  The sequence of ECN codepoints has become too complex to encode
       in the fixed 10b available.

   AccECN can encode the order of a sequence of up to 15 ECN codepoints
   in one ACK.  The ACE field in the ACK always encodes the ECN
   codepoint of the latest packet to arrive.  Using the ESQ field of the
   same ACK, the Outgoing AccECN Protocol Handler can encode the order
   of arrival of up to 14 ECN codepoints that arrived before this,
   making a maximum coverage of 15 packets.

   The encoding of the ESQ field is optimised for a selection of simple
   sequences that are expected to be common.  Even if the first two
   tests pass, if a more complex sequence occurs, the third test above
   will fail so the Data Receiver will be forced to send an ACK earlier
   than it would have otherwise.  The most complex sequence that AccECN
   can encode is a run of 'spaces' (SP) ending in one 'mark' (MK1), then
   another run of 'spaces', followed by a 'mark' that might be different
   from the first (MK2).

   The internal structure of the 10-bit Accurate ECN Sequence (ESQ)
   field is show in Figure 7.

     0   1   2   3   4   5   6   7   8   9
   +---+---+---+---+---+---+---+---+---+---+
   |    RL1    |    RL2    |  SP   |  MK1  |
   +---+---+---+---+---+---+---+---+---+---+

   Figure 7: Internal Structure of the Accurate ECN Sequence (ESQ) Field

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681
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   The sub-fields of ESQ have the following meanings:

   RL1:  Run-Length #1: a 3-bit field giving the length of a first run
      consisting of spaces (SP) ending in one mark (MK1), which is
      included in the length of the run;

   RL2:  Run-Length #2: another 3-bit field giving the length of a
      second run of spaces (SP).  There is no mark included in this run;

   SP:  Space: The 2-bit ECN codepoint defined as a space, for the
      present ACK only;

   MK1:  Mark #1: The 2-bit ECN codepoint defined as the first mark, for
      the present ACK only.

   The Incoming Protocol Handler can always determine the second mark
   (MK2) from the counter that the Data Receiver uses in the ACE field,
   which has to be the counter associated with the last ECN codepoint to
   have arrived (according to the rules in Section 3.2.3).  Even though
   there is no counter associated with ECT(0), the Incoming Protocol
   Handler can tell if the last codepoint to arrive was ECT(0), because
   the counter used in ACE will not have changed relative to the
   previous packet.

   Figure 8 gives example sequences of ECN codepoints and illustrates
   how the Data Receiver encodes them.  The sequences use the single-
   character abbreviations in Table 1 for each ECN codepoint.  The last
   codepoint to arrive is shown on the right.
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          ,----- RL1 = 6 ------>  ,--- RL2=4 -->
   a)      0   0   0   0   0   C   0   0   0   0   1
          SP  SP  SP  SP  SP  MK1 SP  SP  SP  SP  MK2

          ,--- RL1=4 -->       (RL2 = 0)
   b)      C   C   C   0   0
          SP  SP  SP  MK1 MK2

          ,--------- RL1 = 7 ------>  ,--------- RL2 = 7 ------>
   c)      0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
          SP  SP  SP  SP  SP  SP  MK1 SP  SP  SP  SP  SP  SP  SP  MK2

    RL1=1 ,>  ,--- RL2=4 -->
   d)      C   0   0   0   0   C
          MK1 SP  SP  SP  SP  MK2

    RL2=1 ,>                  (RL1 = 0)
   e)      N   N
          SP  MK2

    Figure 8: Examples Encodings of Sequences of ECN Codepoints in the
                                 ESQ Field

   The examples should be self-explanatory, but the following points
   might help:

   o  The term 'mark' does not have to mean an 'ECN mark'.  In (a) the
      'spaces' are defined as ECT(0) and the first 'mark' is defined as
      CE.  However, in (b) it is more efficient to define CE as the
      'space' and ECT(0) as the first 'mark';

   o  A mark is defined to mean just one codepoint, so two marks in a
      row have to be encoded as two different marks, even if they are
      the same codepoint (b).  The first and second marks can be defined
      as different (a) or the same (b or c);

   o  For a long run of the same codepoint, the first mark can be
      defined to be the same as a space, and if necessary the second
      mark can be the same as well (c);

   o  The first run (if non-zero length) always ends in one mark.  So,
      if its run-length is 1, it contains a mark but no spaces (d);

   o  Either run-length might be zero (b & e), but MK2 will always be
      present.  If the first run-length is zero, the definition of MK1
      is redundant (e).  If both run-lengths are zero, the definition of
      SP would be redundant as well.
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   The following normative statements govern an implementation of an
   AccECN Data Receiver when it defers an ACK:

   o  The Outgoing Protocol Handler MUST NOT encode the last packet to
      be acknowledged into the ESQ field;

   o  If the Outgoing Protocol Handler cannot encode the last ECN
      codepoint to arrive in the ESQ field, it MUST send an ACK
      immediately;

   o  The Outgoing Protocol Handler MUST NOT include a codepoint in the
      sequence of codepoints in an ACK that is from any packet already
      reported in another ACK;

   o  If RL1=0, the Outgoing Protocol Handler MUST set MK1 = ECT(0) =
      0b10, even though the value of MK1 seems redundant.

   o  If RL2=0 and RL1=<1, the Outgoing Protocol Handler MUST set SP =
      ECT(0) = 0b10, even though the value of SP seems redundant.

   The last two rules ensure that the value of ESQ as a whole is never
   all-zeros, which allows the Incoming Protocol Handler to detect
   interference by middleboxes (see Section 3.6).

   The following normative statements govern an implementation of an
   AccECN Data Sender:

   o  The Incoming AccECN Protocol Handler MUST increment the congestion
      codepoint counters (other than the one associated with the ACE
      field) by counting the codepoints as it decodes the ESQ field;

   o  If the Incoming AccECN Protocol Handler finds that the value of a
      congestion counter calculated using ESQ would be more than that
      calculated using Top-ACE/ACE, it SHOULD use the higher of the two
      calculations.

   o  If the Incoming AccECN Protocol Handler finds that the value of a
      congestion counter calculated using ESQ would be less than that
      calculated using Top-ACE/ACE, it SHOULD use the higher of the two
      calculations.  An example of an exception to this rule would be
      where the Incoming Protocol Handler had previously conservatively
      assumed counter wrap, but then missing ACKs arriving later filled
      the gap in the sequence feedback.

   o  While the Incoming AccECN Protocol Handler is calculating the
      value of a congestion counter using Top-ACE/ACE, if it finds that
      the value calculated using ESQ in a previous segment is already
      higher, it SHOULD use the lower value calculated using ACE/Top-
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      ACE.  It SHOULD also consider the SupAccECN field in subsequent
      segments as suspect {ToDo: suggest what concrete action this
      implies}.

   Forward Compatibility:

   o  if RL1=0:

      *  the Incoming Protocol Handler MUST ignore the value in MK1;

      *  middleboxes MUST forward the value in MK1 unaltered (whether or
         not it is 0b10 as it ought to be).

   o  if RL2=0 and RL1=<1:

      *  the Incoming Protocol Handler MUST ignore the value in SP;

      *  middleboxes MUST forward the value in SP unaltered (whether or
         not it is 0b10 as it ought to be).

3.3.5.  AccECN Feedback Integrity

   The ECN Nonce [RFC3540] is an experimental IETF specification
   intended to allow a sender to test whether ECN CE markings (or
   losses) are being suppressed by the receiver (or anywhere else in the
   feedback loop, such as another network or a middlebox).  The ECN
   nonce has not been deployed as far as can be ascertained.  The nonce
   would now be nearly impossible to deploy retrospectively, because to
   catch a misbehaving receiver it relies on the receiver volunteering
   feedback information to incriminate itself.  A receiver that has been
   modified to misbehave can simply claim that it does not support nonce
   feedback, which will seem unremarkable given so many other hosts do
   not support it either.

   With minor changes AccECN could be optimised for the possibility that
   the ECT(1) codepoint might be used as a nonce.  However, given the
   nonce is now probably undeployable, the AccECN design has been
   generalised so that it ought to be able to support other possible
   uses of the ECT(1) codepoint, such as a lower severity or a more
   instant congestion signal than CE.

   Three alternative mechanisms are available to assure the integrity of
   ECN and/or loss signals.  AccECN is compatible with any of these
   approaches:

   o  The Data Sender can test the integrity of the receiver's ECN (or
      loss) feedback by occasionally setting the IP-ECN field to a value
      normally only set by the network (and/or deliberately leaving a

https://datatracker.ietf.org/doc/html/rfc3540
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      sequence number gap).  Then it can test whether the Data
      Receiver's feedback faithfully reports what it expects
      [I-D.moncaster-tcpm-rcv-cheat].  Unlike the ECN Nonce, this
      approach does not waste the ECT(1) codepoint in the IP header, it
      does not require standardisation and it does not rely on
      misbehaving receivers volunteering to reveal feedback information
      that allows them to be detected.

   o  Networks generate congestion signals when they are becoming
      congested, so they are more likely than Data Senders to be
      concerned about the integrity of the receiver's feedback of these
      signals.  A network can enforce a congestion response to its ECN
      markings (or packet losses) using congestion exposure (ConEx)
      audit [I-D.ietf-conex-abstract-mech].  Whether the receiver or a
      downstream network is suppressing congestion feedback or the
      sender is unresponsive to the feedback, or both, ConEx audit can
      neutralise any advantage that any of these three parties would
      otherwise gain.

      ConEx is a change to the Data Sender that is most useful when
      combined with AccECN.  Without AccECN, the ConEx behaviour of a
      Data Sender would have to be more conservative than would be
      necessary if it had the accurate feedback of AccECN.

   o  The TCP authentication option (TCP-AO [RFC5925]) can be used to
      detect any tampering with AccECN feedback between the Data
      Receiver and the Data Sender.  Although this section of the
      feedback loop is the least likely to come under malicious attack,
      it is increasingly likely to be tampered with accidentally by
      middleboxes intervening at layer 4.  The AccECN fields are
      immutable end-to-end, so whether placed in the Non-Urgent field or
      a TCP option, they are amenable to default TCP-AO protection (but
      not if TCP-AO protection of TCP options is turned off, which is
      non-default but might be necessary for other reasons).

3.4.  Accurate ECN Receiver Operation

   A TCP receiver MUST only feedback ECN information arriving in a
   segment that it deems is part of the flow, by using regular TCP
   techniques based on sequence numbers.

   {ToDo: It might be useful to describe receiver end of the feedback
   process, including special cases, e.g. pure ACKs, retransmissions,
   window probes, partial ACKs, etc.  Does AccECN feed back each ECN
   codepoint when a data packet is duplicated?}

https://datatracker.ietf.org/doc/html/rfc5925
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3.5.  Accurate ECN Sender Operation

   A TCP sender MUST only accept ECN feedback on ACKs that it deems is
   part of the flow, by using regular TCP techniques based on sequence
   numbers.

   {ToDo: It might be useful to describe the sender end of the feedback
   process, including special cases, e.g. pure ACKs, retransmissions,
   window probes, partial ACKs, etc.}

3.6.  Detection of Legacy Middlebox Interference

   The definition of the SupAccECN field has been contrived so that the
   value all-zeros is undefined.  Therefore, an Outgoing AccECN Protocol
   Handler MUST NOT ever set the value of SupAccECN to all-zeros.

   Therefore, the Incoming AccECN Protocol Handler MUST check that the
   value of ESQ is non-zero (on a segment with SYN=0).  If the Incoming
   Protocol Handler detects all-zeros in either of these fields on any
   segment, it MUST ignore the whole SupAccECN field on that segment,
   and it SHOULD ignore the SupAccECN field on all subsequent segments
   in the same half-connection or at least treat each with greater
   suspicion.

   If a Data Sender ignores the incoming SupAccECN field, it MUST revert
   to the conservative behaviour needed when only the essential part of
   the AccECN protocol is available, as described in Section 3.2.2.
   Nonetheless, the Outgoing AccECN Protocol Handler of the same Data
   Sender MUST continue to set the SupAccECN field as normal
   (Section 3.3), because any interference might be only in one
   direction.  The AccECN protocol does not include any requirement for
   a Data Sender that detects interference to notify the other end,
   because the complexity required to assure message integrity in the
   face of interference is not warranted.

3.7.  Correct Middlebox Operation

   A large class of middleboxes split TCP connections, acting as the
   receiver for one connection and the sender for another, passing data
   between the two, usually via a buffer.  Network interface hardware to
   offload certain TCP processing represents another large class of
   middleboxes, even though it is rarely in its own 'box'.

   To comply with this specification, each side of such a middlebox MUST
   comply with the AccECN requirements applicable to a responding host
   or an originating host during capability negotiation (Section 3.1)
   and the required AccECN behaviours as a Data Receiver or as a Data
   Sender throughout this specification.
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   Another class of middleboxes attempts to 'normalise' the TCP wire
   protocol by checking that all values in header fields comply with a
   rather narrow interpretation of the TCP specifications.  To comply
   with this specification, such middleboxes MUST be updated to
   recognise and forward values in fields that comply with the newly
   defined semantics of AccECN.  This includes the explicitly stated
   requirements to forward Reserved (Rsvd) and Currently Unused (CU)
   values unaltered.  An 'ideal' TCP normaliser would not have to change
   to accommodate AccECN, because AccECN does not directly contravene
   any existing TCP specifications, even though it uses existing TCP
   fields in unorthodox ways.

4.  Interaction with Other TCP Variants

4.1.  Compatibility with SYN Cookies

   A server can use SYN Cookies (see Appendix A of [RFC4987]) to protect
   itself from SYN flooding attacks.  It places minimal commonly used
   connection state in the SYN/ACK, and deliberately does not hold any
   additional state while waiting for the subsequent ACK.  Therefore it
   cannot record the fact that it entered AccECN mode for both half-
   connections.  Indeed, it cannot even remember whether it negotiated
   the use of classic ECN [RFC3168].

   If the server (host B) receives the final ACK of the 3-way handshake
   with a SupAccECN TCP option, it can infer that the originating host
   (A) supports AccECN.  If host B supports AccECN itself, it can
   further infer that it would have entered AccECN mode before sending
   the SYN/ACK.

   If, on the other hand, the originating host (A) sends the final ACK
   of the 3-way handshake with the SupAccECN field in the Non-Urgent
   field, responding host B can still infer that host A originally
   negotiated AccECN, by checking the fourteen least significant bits of
   the Non-Urgent field and the ACE field, as follows:

   o  Host B knows that host A would not defer the final ACK of the
      3-way handshake, because TCP never delays this.

   o  Therefore, if host B sends the SYN/ACK with its IP-ECN field set
      to ECT(0) [RFC5562], then checks the fourteen least significant
      bits of the Non-Urgent field of the final ACK of the 3-way
      handshake, it can make the following inferences:

      1.  lsb(Non-Urgent) == 000010100000 && ACE == 000 implies host A
          is AccECN and the SYN/ACK arrived unchanged as ECT(0);

https://datatracker.ietf.org/doc/html/rfc4987#appendix-A
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc5562
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      2.  lsb(Non-Urgent) == 000010100000 && ACE == 001 implies host A
          is AccECN and the SYN-ACK was CE-marked;

      3.  lsb(Non-Urgent) == 000010100001 && ACE == 111 implies host A
          is AccECN and the IP-ECN field of the SYN/ACK was zeroed;

      4.  lsb(Non-Urgent) == 000000000000 or any value other than those
          above implies host A is Not AccECN or a middlebox is
          interfering with the Non-Urgent field.

   o  If, on the other hand, host B sends the SYN/ACK with its IP-ECN
      field set to Not-ECT, then checks the fourteen least significant
      bits of the Non-Urgent field of the final ACK of the 3-way
      handshake, it can make the following inferences:

      1.  lsb(Non-Urgent) == 000010100001 && ACE == 111 implies host A
          is AccECN;

      2.  lsb(Non-Urgent) == 000000000000 or any value other than that
          above implies host A is Not AccECN or a middlebox is
          interfering with the Non-Urgent field.

4.2.  Compatibility with Other Options and Experiments

   AccECN is compatible (at least on paper) with the most commonly used
   TCP options: MSS, time-stamp, window scaling, SACK and TCP-AO.  It is
   also compatible with the recent promising experimental TCP options
   TCP Fast Open (TFO [I-D.ietf-tcpm-fastopen]) and Multipath TCP (MPTCP
   [RFC6824]).  AccECN is particularly friendly to all these protocols,
   because space for TCP options is particularly scarce on the SYN,
   where AccECN consumes zero additional header space.

5.  Protocol Properties

   This section is informative not normative.  It describes how well the
   protocol satisfies the agreed requirements for a more accurate ECN
   feedback protocol [I-D.ietf-tcpm-accecn-reqs].

   Accuracy:  From each ACK, the Data Sender can infer the number of new
      Not-ECT, ECT(0), ECT(1) and CE markings since the previous ACK.

   Accuracy:  The Data Receiver can feed back to the Data Sender a list
      of the order of the IP-ECN markings covered by each delayed ACK.

   Overhead:  The AccECN scheme is divided into two parts.  The
      essential part reuses the 3 flags already assigned to ECN in the
      IP header.  The supplementary part requires fifteen bits.

https://datatracker.ietf.org/doc/html/rfc6824
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   Overhead:  Two alternative locations for the supplementary protocol
      field are proposed:

      1.  In the 16-bit Urgent Pointer when URG=0.  This specification
          reserves 15 bits of this space, but while the specification is
          only experimental it refrains from using this space in the
          main TCP header.  If AccECN progresses to the standards track
          and uses these 15b, it will require zero additional overhead,
          because it will overload fields that already takes up space in
          every TCP header

      2.  In a TCP option.  This takes up 4B; the fifteen bits have to
          be rounded up to 2B, plus 2B for the TCP option Kind and
          Length.

   Timeliness:  In the absence of lost ACKs, no feedback is deferred to
      a future ACK, which is intended to enable latency-sensitive uses
      of ECN feedback.

   Timeliness:  {ToDo: Add improved timeliness if the Delayed ACK
      Control (DAC) feature is included.}

   Resilience:  Each ACK includes a counter of one of the ECN congestion
      signals.  If ACKs are lost, the counter on the first ACK following
      the losses allows the Data Sender to immediately recover the
      number of one of the ECN markings that it missed.

   Resilience:  Subsequent ACKs will allow it to recover the number of
      other ECN markings that it missed.

   Resilience against Bias:  Undetected ACK loss is as likely to
      decrease as increase congestion signals detected by the Data
      Sender.

   Resilience against Bias:  However, if the supplementary part is
      unavailable, the required conservative decoding of feedback during
      ACK loss is more likely to increase perceived congestion signals,
      which would otherwise be more likely to be under-reported.

   Timeliness vs Overhead:  For efficiency, each delayed ACK only
      includes one of the counters at a time, therefore recovery of the
      count of the other signals might not be immediate if an ACK is
      lost that covers more than one signal.  The receiver cannot
      predict which ACKs might get lost, if any.  Therefore it repeats
      the count of each signal roughly in proportion to how often each
      signal changes.
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   Ordering:  The order of arriving ECN codepoints is communicated in a
      10-bit field in the supplementary part;

   Resilience vs. Ordering:  Following an ACK loss, only a count of the
      lost ECN signals is recovered, not their order of arrival over the
      sequence covered by the loss.

   Ordering vs. Overhead:  The encoding is tailored for sequences of ECN
      codepoints expected to be typical.  It can encode sequences of up
      to 15 segments but, if the pattern of arrivals becomes too
      complex, the protocol forces the Data Receiver to emit an ACK.
      The protocol can always encode any sequence of 3 segments in one
      delayed ACK;

   Ordering, Timeliness and Resilience:  If one delayed ACK covers
      changes to more than one congestion counter the supplementary
      sequence information provides more timely congestion feedback than
      waiting for the other congestion counters on future ACKs, and it
      provides resilience against the possibility of those future ACKs
      going missing;

   Complexity:  {ToDo: Once implemented, quantify the code complexity}

   Integrity:  AccECN is compatible with complementary protocols that
      assure the integrity of ECN feedback.

   Backward Compatibility:  If only one endpoint supports the AccECN
      scheme, it will fall-back to the most advanced ECN feedback scheme
      supported by the other end.

   Backward Compatibility:  Each endpoint can detect normalisation of
      the Supplementary AccECN field by middleboxes at any time during a
      connection.  It could then fall-back to the essential part using
      only the fewer but safer bits in the TCP header.

   Forward Compatibility:  The behaviour of endpoints and middleboxes is
      carefully defined for all reserved or currently unused codepoints
      in the scheme, to ensure that any blocking of anomalous values is
      always at least under reversible policy control.

6.  IANA Considerations

6.1.  SupAccECN TCP Option Allocation

   This specification requires IANA to allocate one value from the TCP
   option Kind name-space, against the name "Supplementary Accurate ECN"
   (SupAccECN).
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   Early implementation before the IANA allocation MUST follow [RFC6994]
   and use experimental option 254 and magic number 0xACCE (16 bits)
   {ToDo register this with IANA}, then migrate to the new option after
   the allocation.

6.2.  Non-Urgent Field Registry

   This specification requests that IANA sets up a new TCP parameters
   registry in accordance with [RFC5226].  This registry enables future
   standards track RFCs to assign values to sub-fields of the TCP Non-
   Urgent field defined in Section 3.3.1.2.

   Name of registry:  Non-Urgent field.

   Information required for assignments:

      *  Width and position of sub-field or sub-fields,

      *  Assignment of values to sub-field(s),

      *  Confirmation of compliance with additional conditions 1 & 2
         below.

   Review Process:  Standards Action - Values to be assigned for
      Standards Track RFCs approved by the IESG.  At the IESG's
      discretion, values MAY be assigned for Standards Track RFCs still
      in the process of approval, in order to resolve the catch-22 where
      the assignment needs deployment testing but deployment testing
      needs the assignment.

   Size, format and syntax of registry entries:  Binary values of sub-
      fields.

   Initial assignments and reservations:  This specification reserves
      the 15 least significant bits of the Non-Urgent field for use by a
      potential future standards action that might define the AccECN
      scheme for the standards track.

   Additional conditions for assignment:

   1.  Assignments within the Non-Urgent field MUST be used by a
       protocol that is robust to the field being unavailable
       occasionally.  This is because the Non-Urgent field is unusable
       and undefined on segments with URG = 1 in the TCP header
       [RFC0793].  The Non-Urgent field overloads the meaning of the
       16-bit Urgent Pointer only when URG = 0.

https://datatracker.ietf.org/doc/html/rfc6994
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc0793
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   2.  The value zero, i.e. all 16 bits of the Non-Urgent field cleared
       to zero, SHOULD be undefined, because it is known that certain
       'normalising' middleboxes overzealously zero the urgent pointer
       when URG = 0.  An undefined zero value can be achieved by
       requiring that the value all-zeros is undefined for at least one
       sub-field of the Non-Urgent field.  Then even if the value all-
       zeros is defined and used in other sub-fields, the value all-
       zeros for the whole field will be undefined.

7.  Security Considerations

   If ever the supplementary part of AccECN is unusable (due for example
   to middlebox interference) the essential part of AccECN's congestion
   feedback offers only limited resilience to long runs of ACK loss (see

Section 3.2.2).  These problems are unlikely to be due to malicious
   intervention (because if an attacker could discard a long run of ACKs
   it could wreak other arbitrary havoc).  However, it would be of
   concern if AccECN's resilience could be indirectly compromised during
   a flooding attack.  AccECN is still considered safe though, because
   an AccECN Data Sender can detect when the supplementary part is
   unusable, and it is then required to switch to more conservative
   assumptions about wrap of congestion indication counters (see

Section 3.2.2 and Appendix A.1).

   AccECN does not signal the ordering of ECN codepoints covered by a
   delayed ACK reliably, i.e. if one delayed ACK is lost, the ECN
   sequence information in that ACK is not retransmitted.  The design of
   AccECN assumes gaps in this information will not be critical, and
   that this information is unlikely to be security-sensitive.  However,
   this point is mentioned for completeness.

   The SYN cookie method for mitigating SYN flooding attacks is not
   generally compatible with enhancements to the TCP 3-way handshake.
   Nonetheless, Section 4.1 describes how a server can negotiate AccECN
   and use SYN cookies.

   AccECN is compatible with all the known schemes that ensure the
   integrity of ECN feedback (see Section 3.3.5 for details).  Given the
   experimental ECN nonce is now probably undeployable, AccECN has been
   generalised for other possible uses of the ECT(1) codepoint to avoid
   any risk of obsolescence.
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9.  Comments Solicited
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Appendix A.  Example Algorithms

   This appendix is informative, not normative.  It gives examples in
   pseudocode for the various algorithms used by AccECN.

A.1.  Example Algorithm for Safety Against Long Sequences of ACK Loss

   This appendix gives an example algorithm that a Data Sender can use
   to heuristically detect a long enough unbroken string of ACK losses
   that could have concealed wrap of the congestion counter in the ACE
   field of the next ACK to arrive.  The Data Sender is unlikely to need
   to run an algorithm like this unless it detects that supplementary
   AccECN feedback is not available (see Section 3.2.2 and Section 3.6).

   It is assumed that the focus is solely safety not complete protocol
   precision.  Therefore, this example solely detects possible wrap of
   the congestion indication (CI) counter, not E1 or NI.  This is on the
   assumption that, even if ECT(1) is redefined to indicate congestion
   in some way, then ECN CE markings will always indicate more severe
   congestion.  It is also assumed that numerous Not-ECT markings imply
   middlebox tampering, which only needs to be detected, not quantified
   perfectly.

   If the supplementary Top-ACE field cannot be used, there is only room
   for 4 values of the congestion indication (CI) counter in the ACE
   field.  The CI counter in an arriving ACK could have wrapped and
   become ambiguous to the Data Sender if a row of ACKs goes missing
   that covers a stream of data long enough to contain 4 or more CE
   marks.  We use the word missing rather than lost, because some or all
   the missing ACKs might arrive eventually, but out of order.  Even if
   some of the lost ACKs are piggy-backed on data (i.e. not pure ACKs)
   retransmissions will not repair the lost AccECN information, because
   AccECN requires retransmissions to carry the latest AccECN counters,
   not the original ones (Section 3.2.3).

   If the CE marking probability were p on the forward data path,
   ambiguity would arise if 100% of ACKs went missing from the reverse
   path in a row was at least 4/p long.  For example, if p was 5% on the
   forward path, ambiguity would ensue if simultaneously on the reverse
   path a sequence of ACKs covering 4/0.05 = 80 packets all went
   missing.  With a delayed ACK ratio of 2 that translates to missing 40
   ACKs in a row.  Obviously, missing ACKs would be far less likely if
   pure ACKs were allowed to be ECN-capable.  However, because RFC 3168
   currently precludes this, we will assume that pure ACKs are not ECN-
   capable.

   To protect against such an unlikely event, Section 3.2.2 requires the
   Incoming Protocol Handler to assume that the CI field did wrap if it

https://datatracker.ietf.org/doc/html/rfc3168
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   could have wrapped under prevailing conditions.  It could be
   extremely conservative and assume that ECN marking suddenly jumped to
   100% on the forward path just when there were no ACKs on the reverse
   path to detect it.

   Specifically, if the Incoming Protocol Handler receives an ACK with
   an acknowledgement number that acknowledges L full-sized segments
   since the previous ACK, it could conservatively assume that the CI
   field incremented by

       D' = L - ((L-D) % 4),

   where D is the apparent increase in the CI field.  This would still
   be safe if segments were 5% of full-sized as long as ECN marking was
   5% or less, not 100%.

   For example, imagine an ACK acknowledges 5 more full-size segments
   than any previous ACK, and that it apparently increases CI by 2.  The
   above formula works out that a safe increment of CI would still be 2
   (because 5 - ((5-2) % 4) = 2).  However, if CI apparently increases
   by 2 but acknowledges 11 more full-sized segments, then CI should be
   assumed to have increased by 10 (because 11 - ((11-2) % 4) = 10).

   Implementers could build in more heuristics to estimate prevailing
   segment sizes and prevailing ECN marking.  For instance, L in the
   above formula could be replaced with L' = L*p*M/s, where M is the
   MSS, s is the prevailing segment size and p is the prevailing ECN
   marking probability.  However, ultimately, if TCP's ECN feedback
   becomes inaccurate it still has loss detection to fall back on.
   Therefore, it would seem safe to implement a simple algorithm like
   that given initially, rather than a perfect one.

   If missing acknowledgement numbers arrive later (due to reordering),
Section 3.2.2 says "the Data Sender MAY attempt to neutralise the

   effect of any action it took based on a conservative assumption that
   it later found to be incorrect".  To do this, the Data Sender would
   have to store the values of all the relevant variables whenever it
   made assumptions, so that it could re-evaluate them later.  Given
   this could become complex and it is not required, we do not attempt
   to provide an example of how to do this.

A.2.  Example Counter Selection Algorithms

   When the Data Receiver sends an ACK, if the last IP-ECN field that
   arrived was ECT(0), Section 3.2.3 says, "...the Data Receiver can
   signal either the CI or the E1 counter.  The choice of which to
   signal SHOULD be based on the principle that the more one counter has
   changed recently the more it SHOULD be signalled."  A couple of
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   alternative algorithms are suggested below that would satisfy this
   requirement.

A.2.1.  Counter Selection Algorithm Alt#1

   Counter selection algorithm Alt#1 repeats whichever counter has been
   repeated proportionately less often, relative to how often it has
   changed, with preference for CI if they tie.  Or in pseudocode:

   if ( (e1 / r_e1) > (ci / r_ci) )
       send_ack(e1)
   else
       send_ack(ci)

   where r_e1 and r_ci are counts of how often E1 and CI were already
   repeated when ECT(0) was signalled.  The algorithm below implements
   this comparison between two divisions using only integer addition.
   It is a little terse, so it is explained afterwards.
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   ci   = 0    // CE counter
   w_ci = 0    // internal 'weight' variable for CI
   r_ci = 0    // internal count of how often CI has been repeated
   e1   = 0    // ECT(1) counter
   w_e1 = 0    // internal 'weight' variable for E1
   r_e1 = 0    // internal count of how often E1 has been repeated
   ni   = 0    // Not-ECT counter

   dack_to_be_sent()    // shorthand for test if a delayed ACK is needed

   switch (read(pkt.ip.ecn)) {
       case CE :
           ci++
           w_ci += r_e1
           if (dack_to_be_sent()) send_ack(ci)
       case ECT1 :
           e1++
           w_e1 += r_ci
           if (dack_to_be_sent()) send_ack(e1)
       case Not-ECT :
           ni++
           if (dack_to_be_sent()) send_ack(ni)
       case ECT0 :
           if (dack_to_be_sent()) {
               /* Choice between E1 and CI */
               if (w_e1 > w_ci) {      // Preference to CI if they tie
                   send_ack(e1)
                   r_e1++
                   w_ci += ci
               } else {
                   send_ack(ci)
                   r_ci++
                   w_e1 += e1
               }
           }
   }

   {ToDo: Handle wrap of the weights (see my notebook?).}

   Explanation: The algorithm ensures that the weights always equal the
   following products:

       w_ci = ci * r_e1,
       w_e1 = e1 * r_ci.

   It does this by incremental addition rather than multiplication:

   o  every time r_e1 increments by 1, w_ci is incremented by 1 * ci;
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   o  every time ci increments by 1, w_ci is incremented by 1 * r_e1;

   and the same for w_e1 and the pair of variables it consists of.

   This ensures that the condition

       w_e1 > w_ci

   used in the algorithm is equivalent to:

       e1 * r_ci > ci * r_e1,

   or rearranging:

       (e1 / r_e1) > (ci / r_ci),

   which is the required proportionality condition.

A.2.2.  Counter Selection Algorithm Alt#2

   Counter selection algorithm Alt#2 implements the policy "Send each
   recently changed codepoint twice, unless the other one has also
   changed, and alternate sending CI, E1 if no counter changes."

   {ToDo: Alt#2 has the disadvantage that it can repeat E1 a lot, even
   if E1 has never been signalled, which unnecessarily reduces the
   resilience of CI.
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   ci   = 0        // CE counter
   q_ci = 0        // queue of CI's to repeat
   nxt_ci = TRUE   // Signal E1 next if FALSE
   e1   = 0        // ECT(1) counter
   q_e1 = 0        // queue of E1's to repeat
   ni   = 0        // Not-ECT counter

   dack_to_be_sent()    // shorthand for test if a delayed ACK is needed

   switch (read(pkt.ip.ecn)) {
       case CE :
           ci++
           q_ci = 2
           if (dack_to_be_sent()) send_ack(ci)
       case ECT1 :
           e1++
           q_e1 = 2
           if (dack_to_be_sent()) send_ack(e1)
       case Not-ECT :
           ni++
           if (dack_to_be_sent()) send_ack(ni)
       case ECT0 :
           if (dack_to_be_sent()) {
               /* Choice between E1 and CI */
               if (q_ci || q_e1) {     // If either queue is non-zero
                   if (q_e1 > q_ci) {  // Preference to CI if they tie
                       send_ack(e1)
                       q_e1 = max(0, q_e1 - 1)
                   } else {
                       send_ack(ci)
                       q_ci = max(0, q_ci - 1)
                   }
               } else {            // Both queues are zero
                   if (nxt_ci)
                       send_ack(ci)
                   else
                       send_ack(e1)
                   nxt_ci = !nxt_ci    // Toggle the next signal
               }
           }
   }

A.3.  Example Encodings and Decodings of Top-ACE and ACE

   This appendix gives formulae for encoding and decoding the counters
   CI, E1 or NI with higher resilience to ACK loss by supplementing the
   ACE field with the Top-ACE field, as required in Section 3.3.3.
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A.3.1.  Encoding Top-ACE and ACE by the Data Receiver

   The values associated with codepoints in ACE for CI and E1 are
   respectively base 4 and base 3 numbers (see Table 3).  Although there
   is only space for one value of NI, mathematically, NI can still be
   treated as a base 1 counter.  Then the following general formulae
   allow a Data Receiver to encode any of the counters CI, E1 or NI, by
   calling them all cntr, and defining ACE_base as their respective
   number base:

        Top-ACE = Int(cntr / ACE_base) % 16,
       ACE_cntr = cntr % ACE_base.

   Then the Data Receiver looks up the codepoint to put in the ACE field
   by looking up ACE_cntr in Table 3 in the column of the relevant
   counter (CI, E1 or NI).  Int() means round down to an integer and '%'
   is the modulo operator.

   To implement this without a costly division operation, two counters
   can be maintained while processing the header information for the
   ACK.  The first counter can be mapped into the ACE field via Table 3.
   A wrap every 4 increments of the counter could be implemented as a
   single conditional check, and when it wraps, a secondary, high-order
   counter could be incremented.  This secondary counter could then be
   mapped directly into the Top ACE field.  For instance, the two
   counters for CE markings would be implemented as follows:

   if (read(pkt.ip.ecn) == CE) {
       if (ACE_cntr.ci == 4) {
           ACE_cntr.ci = 0
           if (Top-ACE.ci == 16) {
               Top-ACE.ci = 0
           } else
               Top-ACE.ci++
       } else
          ACE_cntr.ci++
   }

   The three examples below explain how the algorithm determines which
   codepoints to place in Top-ACE and ACE, for each counter in turn.
   For brevity, they use the first mathematical formula above, rather
   than the second conditional logic variant.

   Example #1: if the Data Receiver has determined that it will signal
   its CI counter next and its local value is 73, it encodes this as:
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       Top-ACE = INT(73 / 4) % 16
               = 2
               = 0b0010
       ACE_cntr = 73 % 4
                = 1

   Looking up the codepoint for CI = 1 in Table 3 gives:

       ACE = 0b001.

   Example #2: if the Data Receiver has determined that it will signal
   its E1 counter next and its local value is 75, it encodes this as:

       Top-ACE = INT(75 / 3) % 16
               = 9
               = 0b1001
       ACE_cntr = 75 % 3
                = 0

   Looking up the codepoint for E1 = 0 in Table 3 gives:

       ACE = 0b100.

   Example #3: if the Data Receiver has determined that it will signal
   its NI counter next and its local value is 43, it encodes this as:

       Top-ACE = INT(43 / 1) % 16
               = 11
               = 0b1011
       ACE_cntr = 43 % 1
                = 0               // Anything modulo 1 is 0

   Looking up the codepoint for NI = 0 in Table 3 gives:

       ACE = 0b111.

A.3.2.  Decoding Top-ACE and ACE by the Data Sender

   An AccECN Data Sender decodes the incoming combination of Top-ACE and
   ACE by looking up the ACE codepoint in Table 3 to get ACE_cntr and
   ACE_base, then:

       cntr = Top-ACE * ACE_base + ACE_cntr.

   For example, if ACE = 0b101 and Top-ACE = 0b0111 = 7, the Data Sender
   looks up ACE = 0b101 in Table 3 to see that this is the E1 counter
   and that ACE_cntr = 1 base 3.  Therefore,
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       E1 = cntr = 7 * 3 + 1
                 = 22

   The Data Sender is likely to be primarily interested in the increment
   in this counter relative to the previous ACK.  In the case of E1, it
   will have to use modulo 48 arithmetic for the difference, because the
   encoding wraps at 48 (see Table 4).  Specifically, if the Data
   Sender's local counter is snd_e1, then the difference,

       delta_e1 = (E1 + 48 - snd_e1 % 48) % 48

   {ToDo: Provide algorithms that decode correctly with ACK reordering}

A.4.  Example ECN Sequence (ESQ) Encoding Algorithms

   This appendix gives an example algorithm for the Data Receiver to
   encode the arriving sequence of IP-ECN codepoints in the ECN Sequence
   (ESQ) field of a delayed ACK, as required in Section 3.3.4.

   /* Algorithm to encode the arrival sequence of IP-ECN codepoints
    */
   DEFAULT = ECT0      // Any ECN codepoint except Not-ECT
   DACK_T_MAX = 500    // Max time to delay an ACK [ms]
   RL_MAX = 7          // Max run-length that can fit in 3-bit field
   DACK_SEG_MAX = 2    // Max full-sized delayed ACK segments:
   MSS = 1500          // Example max segment size [B]
   DACK_B_MAX = DACK_SEG_MAX * MSS     // Max deferred bytes

   sp = mk1 = DEFAULT  // 2-bit ECN codepoints: space and mark
   mk2                 // second mark (fed back in ACE, not ESQ)
   rl1 = rl2 = 0       // 3-bit run-lengths
   dack_b = 0          // deferred bytes

   /* Strategy: in readiness for a packet arrival, hold the variables
    *  necessary to build the ECN sequence field (ESQ) of the next ACK.
    * If a packet arrives, and it can be added to the held sequence,
    *  do so and return.
    * If it can't be added to the held sequence, send the ACK
    *  with the most recent packet as the second mark.
    * If the delayed ack timer expires, unwind the last packet in the
    * held sequence to use as the second mark, and send the ACK
    */

   foreach pkt {
       tmp = read(pkt.ip.ecn)      // Store incoming ECN field
       dack_b += read(pkt.ip.size) // Add to deferred bytes

       if (dack_b >= DACK_B_MAX) { // Test deferred bytes threshold
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           mk2 = tmp               // Assign incoming ECN to mk2
           send_ack(rl1,rl2,sp,mk1,mk2)     // Encode ESQ and send ACK
       } elif ((rl1 + rl2) =< 0) { // Is the held sequence empty?
           sp = tmp                // Initialise with a space in run2
           rl2++
           init_timer(dack_expire, DACK_T_MAX) // Arm delayed ACK timer
       } elif (tmp == sp) {        // Is the incoming ECN another space?
           if (rl2 < RL_MAX) {     // Is there room in run2?
               rl2++               // Extend run2
           } elif (rl1 =< 0) {     // Otherwise, is run1 empty?
               mk1 = sp            // Shift run2 to run1, making mk1=sp
               rl1 = rl2
               rl2 = 1
           }
       /* If got to here, incoming ECN is assigned as a mark */
       } elif (rl1 =< 0) {     // If there's room in run1, switch to it
           mk1 = tmp
           rl1 = rl2
           rl2 = 0
       } elif ( (tmp == mk1)   // Is incoming ECN a mark already seen
             && (rl1 = 2)      //  with only one space before it?
             && (rl2 = 0) ) {
           mk1 = sp            // If so, swap marks with spaces
           sp = tmp
           rl1 = 1
           rl2 = 2
       } else {                // Cannot extend sequence
           mk2 = tmp           // Assign the incoming ECN to mk2
           send_ack(rl1,rl2,sp,mk1,mk2)    // Encode ESQ and send ACK
       }
   }

   /* dack_expire()
    * Routine called when the delayed ACK timer expires.
    * There is no incoming packet to fill mk2,
    *  so the last value from the held sequence has to be used instead
    *  (there will always be a held sequence because the timer is only
    *  armed once the sequence is non-empty).
    */
   dack_expire() {
       if (rl2 > 0) {  // run2 contains a value
           rl2--
           mk2 = sp    // copy it into mk2
       } else {        // run2 is empty, therefore run1 is not
           mk2 = mk1   // copy mk1 into mk2
           rl2 = rl1-- // shift run1 into run2 without mk1
           rl1 = 0
       }               // Last value extraction is complete
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       send_ack(rl1,rl2,sp,mk1,mk2)    // Encode ESQ and send ACK
   }

   /* send_ack()
    * Algorithm to encode the arrival sequence of IP-ECN codepoints
    *  into the ECN sequence (ESQ) field of a TCP ACK, then send it.
    */
   send_ack(rl1,rl2,sp,mk1,mk2) {
       del_timer(dack)         // Remove any pending delayed ACK timer
       /* Marshall the ECN Sequence field (esq) */
       pkt.tcp.esq = lsb(2,sp) & lsb(2,mk1) & lsb(3,rl1) & lsb(3,rl2)
       /* lsb(n,x): pseudocode for the lowest n significant bits of x */
       /* x & y   : pseudocode for concatenate x and y */
       /*
        * Insert code to send ACK here, with mk2 in pkt.tcp.ace
        */
       /* Reset all variables ready for next packet arrival */
       sp = mk1 = DEFAULT
       rl1 = rl2 = 0
   }

Appendix B.  Alternative Design Choices (To Be Removed Before
             Publication)

   This appendix is informative, not normative.  It records alternative
   designs that the authors chose not to include in the normative
   specification, but which the IETF might wish to consider for
   inclusion.

B.1.  Supplementary AccECN Field on the SYN/ACK

   {ToDo: The tcpm working group is recommended to consider including
   this in an AccECN RFC from the start.  The AccECN protocol defined in
   the body of this specification currently gives no ECN feedback on the
   SYN/ACK on the assumption that the SYN is not ECN-capable.  If it is
   required for the protocol to be future-proofed against the
   possibility that SYNs might one-day be ECN-capable, the following
   definition of the SupAccECN field for the SYN/ACK would need to be
   added to Section 3.3.1 and Section 3.3.2.  The text below is written
   as if it is normative, but it is only informative while it is demoted
   to this appendix.}

B.1.1.  Placement of the Supplementary AccECN Field in a SYN/ACK

   To include the SupAccECN field on a SYN/ACK, the Data Receiver MUST
   use the SupAccECN TCP Option with TCP option Kind 0x<KK> (TBA) and
   set the Length field to 3 [octets], as illustrated in Figure 9. .
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    0                   1                   2
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Kind = 0xKK  |  Length = 3   |0 0 0 0|  Sup- |
   |               |               |       | AccECN|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Figure 9: Placement of the SupAccECN field within the SupAccECN TCP
                            Option on a SYN/ACK

   If the Data Sender has entered AccECN mode but there is no SupAccECN
   TCP Option on a SYN/ACK, the Incoming AccECN Protocol Handler MUST
   take the SupAccECN field to be right-justified within the Non-Urgent
   field (i.e. the least significant bit of SupAccECN is aligned with
   the least significant bit of the Non-Urgent Field) as shown in
   Figure 10.  The remaining most significant bits are currently unused
   (CU).

         0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
       +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
       | X   X   X   X   X   X   X   X   X   X   X   X |   SupAccECN   |
       +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

     Figure 10: Placement of the SupAccECN field within the Non-Urgent
                            field on a SYN/ACK

B.1.2.  Structure of the Supplementary AccECN Field in a SYN/ACK

   The size of the SupAccECN field on a SYN/ACK (i.e. a segment with SYN
   = 1 and ACK = 1) is always 4 bits.  Figure 11 defines the sub-fields
   of the SupAccECN field on a SYN/ACK.

                0   1   2   3
              +---+---+---+---+
              | D-ECN | E-ECN |
              +---+---+---+---+

      Figure 11: The Supplementary AccECN Field on a SYN/ACK Segment

   The sub-fields of SupAccECN on a SYN/ACK segment have the following
   meanings:

   E-ECN:  Echo ECN, for the responding host (B) to echo the IP-ECN
      field that arrives in the SYN.  RFC 3168 requires that the ECN
      field on a SYN must always be Not-ECT (0b00).  Therefore initially
      the E-ECN field is likely to always be 0b00.  However, the AccECN
      wire protocol allows for the possibility that ECN-capable SYNs

https://datatracker.ietf.org/doc/html/rfc3168
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      might be allowed in future.  The responding host (B) MUST echo a
      copy of the IP-ECN field of the SYN in the E-ECN field of the SYN/
      ACK.

      If the SYN were to arrive carrying a congestion indication, the
      responding host (B) MUST also increment the relevant counter
      (r.ci, r.e1 or r.e1 ) as specified in Section 3.2.1.  Then the
      counters on subsequent feedback will remain consistent even though
      the SYN/ACK does not have an ACE field to feedback congestion
      counters (because it is still using the same bits as flags for
      capability negotiation).  The E-ECN field has been defined within
      a SYN/ACK because the start of a flow is when it is most critical
      for congestion feedback to be timely.  Without the E-ECN field,
      feedback of any congestion marking on a SYN would get deferred for
      at least a round trip.

   D-ECN:  Reserved for a Duplicate ECN field, meaning a duplicate of
      the ECN field in the IP header of the same packet.  This field is
      not defined in the present specification, but it is reserved for
      possible use by a companion specification about ECN-fall-back (see

Appendix B.3).

      Forward Compatibility: In the meantime, the responding host (B)
      MUST set D-ECN to ECT(0) (0b10), the originating host (A) MUST
      ignore this field and middleboxes MUST forward this field
      unaltered whether or not it is 0b10.

B.2.  Remove Not-ECT from ECN Sequence (ESQ) Encoding

   This alternative encoding would allow the ESQ field to be 1 bit
   shorter (9 bits instead of 10).  The trade-off is that the receiver
   has to send an ACK immediately whenever a Not-ECT packet arrives.
   This is because this alternative encoding only caters for one Not-ECT
   codepoint in the ACE field, and none in the ESQ field.

   Once ECN has been negotiated for a connection, the sender ought to
   rarely send data segments with the Not-ECT codepoint.  The only data
   segments on which RFC 3168 requires the sender to set Not-ECT are
   retransmissions and window probes.  Pure ACKs also have to be sent as
   Not-ECT, but they are not data segments, so they are not included in
   the feedback sequence.

   If the encoding of the ESQ field has to allow for Not-ECT as well as
   the three ECN-capable codepoints, it needs space to encode 4 possible
   spaces and 4 possible marks.  This requires 4 bits for 4x4=16
   combinations (two 2-bit fields for SP and MK1).  If on the other hand
   Not-ECT is excluded, space for only 3x3=9 combinations is required.
   This many combinations can only be fitted into 3 bits if they can be

https://datatracker.ietf.org/doc/html/rfc3168
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   reduced to 8 codepoints by encoding two combinations as one symbol.
   Two combinations can be encoded as one symbol using the same encoding
   for sp=mk1=ECT(1) and sp=mk1=CE.  This is because either an ECT(1) or
   CE code in the ACE field can be used to distinguish which is which.
   However, whenever a run of ECT(1) or of CE ended, the encoding
   algorithm would have to send two ACKs at once.

   Arguments against this alternative design choice:

   o  Although retransmissions would be expected to be rare in a fully
      ECN-enabled network, there might be frequent losses and
      retransmissions during early deployment of ECN, when many
      bottleneck links might not be ECN-enabled.  Then this alternative
      encoding would reduce the opportunities when a receiver could use
      delayed ACKs.

   o  Even if the sender sets Not-ECT on few data segments, incorrectly
      configured or buggy network equipment exists that clears the IP-
      ECN field to Not-ECT.  With this alternative encoding, connections
      via such equipment would never be able to use delayed ACKs.  The
      consequential extra ACK load might be considered an incentive for
      these networks to fix their bugs.  However, the endpoints would
      also suffer the extra ACK load.

   o  To save 1 bit in the encoding it seems necessary for the algorithm
      to sometimes have to send two ACKs at once.

B.3.  ECN Fall-Back

   {ToDo: consider whether the present specification could be enhanced
   with ECN fall-back on the SYN/ACK to give earlier fall-back than in
   [I-D.kuehlewind-tcpm-ecn-fallback].  Space for a duplicate of the IP-
   ECN field on the SYN/ACK has been reserved in the SupAccECN field
   (Appendix B.1), but the behaviour is still TBA.  A duplicate of the
   IP-ECN field has not been provided on the SYN, because it would be
   unremarkable if ECN on the SYN was zeroed by security devices, given

RFC 3168 prohibited ECT on SYN because it enables DoS attacks.
   Therefore the IP-ECN field has to be tested on the last ACK of the
   3WHS, IMO}

B.4.  Remote Delayed ACK Control Proposal

   {ToDo: The tcpm working group is recommended to consider including
   this in an AccECN RFC from the start, because it would be less useful
   if it was unpredictable whether it had been implemented.  The text
   below is written as if it is normative, but it is only informative
   while it is demoted to this appendix.} {ToDo: Add a use-case.}

https://datatracker.ietf.org/doc/html/rfc3168
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   Traditionally, each decision on whether to delay an ACK is taken
   independently by the Data Receiver.  This makes it hard to deploy
   behaviours where the Data Sender would like the Data Receiver not to
   delay feedback, perhaps so that it can measure the effect of subtle
   changes in the timing between packets to more rapidly get up to speed
   during slow-start without overshoot.

   A single bit for a Delayed ACK Control (DAC) flag is defined within
   the SupAccECN field of segments with SYN=0.  Space for this is
   reserved in Section 3.3.2 and illustrated in Figure 6.  For either
   half-connection, the Data Sender can use the DAC flag to request that
   the remote Data Receiver turns delayed ACKing on or off:

   o  DAC = 0 means the sender requests that the receiver turns Delayed
      ACKing on, using the receiver's choice of delayed ACK factor.

   o  DAC = 1 means the sender requests that the receiver turns Delayed
      ACKing off.

   For resilience, the Data Sender MUST repeat its currently chosen
   value of DAC continuously on every packet.  The Data Receiver SHOULD
   start to honour the request on receipt.  Therefore, as soon as a
   segment arrives with DAC=1, a Data Sender SHOULD immediately send any
   deferred ACKs and no longer withhold ACKs while it continues to
   receive segments with DAC=1.  The DAC flag is meaningful on every
   packet with SYN=0.  The DAC flag is not needed and therefore not
   present in the SupAccECN field when SYN=1 (Figure 11), because TCP
   never withholds the SYN/ACK or the final ACK of the 3-way handshake.

   A receiver MAY ignore a request from a sender to alter its Delayed
   ACKing behaviour, e.g. a challenged receiver that cannot send ACKs
   fast enough need not turn off Delayed ACKs, or a receiver that has
   not implemented delayed ACKs need not turn them on.

Appendix C.  Open Protocol Design Issues (To Be Removed Before
             Publication)

   1.  A possibility to simplify the protocol would be to remove
       ordering feedback entirely, but require the receiver to disable
       delayed ACKs during slow-start (including within a connection
       after a time-out or idle period) or to provide the DAC flag to
       allow the sender to ask the receiver to disable delayed ACKs when
       it needs more accuracy.  However, not delaying ACKs may impact
       server performance.  Also a new way to identify middlebox
       interference in the remaining SupAccECN field (Top-ACE & DAC)
       would have to be found.
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   2.  The protocol currently gives no ECN feedback on the SYN/ACK on
       the assumption that the SYN is not ECN-capable.  If it is
       required for the protocol to be future-proofed against the
       possibility that SYNs might one-day be ECN-capable, the proposal
       in Appendix B.1 could be adopted.  This also provides earlier
       ECN-fall-back than would otherwise be possible.

   3.  Section 3.3.1 says an AccECN implementation has to be prepared to
       read the SupAccECN field from either a TCP option or the Non-
       Urgent field.  If the definition of the SupAccECN field changes
       between this experimental spec and the standards track spec, the
       structure of the Non-Urgent field will have to include a version
       number somehow.

   4.  The Non-Urgent field might be used for something else in future
       rather than SupAccECN, despite the attempt to reserve it in this
       spec.  Section 3.3.1 says "If a SupAccECN TCP option is present,
       the Non-Urgent field MUST be ignored.", which seems to correctly
       ensure that experimental implementations will not read the
       altered Non-Urgent field in this case.  However, they will
       incorrectly read the Non-Urgent field if a future AccECN protocol
       uses a different TCP option.

   5.  There is possibly a concern that, if the supplementary field is
       unavailable, the counter selection (Section 3.2.3) always uses
       the last codepoint in a delayed ACK, which may starve visibility
       of other counters.

   6.  Counter Selection Algo #Alt2 Appendix A.2.2 needs to be altered
       to prevent the E1 counter being continually repeated when no
       ECT(1) codepoints are arriving at the Data Receiver.

   7.  A production version of Counter Selection Algo #Alt1
Appendix A.2.1 needs to be developed that handles wrapping of the

       variables, without losing proportionality.

   8.  Example algorithms need to be developed that decode the Top-
       ACE:ACE counters correctly when ACKs are reordered.

   9.  The definition of the D-ECN field Section 3.3.2 and ECN fall-back
       more generally Appendix B.3 will need to be resolved before
       publication.

Appendix D.  Changes in This Version (To Be Removed Before Publication)

   The difference between any pair of versions can be displayed at
   <http://datatracker.ietf.org/doc/draft-kuehlewind-tcpm-accurate-ecn/

history/>

http://datatracker.ietf.org/doc/draft-kuehlewind-tcpm-accurate-ecn/history/
http://datatracker.ietf.org/doc/draft-kuehlewind-tcpm-accurate-ecn/history/
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   From 02 to 03:

      *  Extensively rewritten.  No summary of changes has been
         prepared.
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